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Abstract A new camera calibration method based on DLT
model is presented in this paper. Full set of camera param-
eters can be obtained from multiple views of coplanar cal-
ibration object with coordinates of control points measured
in 2D. The method consists of four steps which are iterated
until convergence. The proposed approach is numerically
stable and robust in comparison with calibration techniques
based on nonlinear optimization of all camera parameters.
Practical implementation of the proposed method has been
evaluated on both synthetic and real data. A MATLAB tool-
box has been developed and is available on WWW.

1 Introduction

Camera calibration is one of the basic tasks in computer vi-
sion [4]. It is used to determine the optical characteristics
of the camera (so called intrinsic parameters) and position of
the camera in the scene (extrinsic parameters). One or more
images of a priori known calibration object are acquired by
a camera and several well-defined features (so calledcon-
trol points) are detected in the images. The coordinates of
the features in the scene can be unknown (so calledself-
calibration [10]) or they can be measured in advance. In
this paper, a known calibration object with coordinates of the
features measured in 2D is assumed.

Various camera calibration methods were introduced in a lit-
erature. The classical approach [9], based on methods used
in photogrammetry, gives precise results but it is computa-
tionally extensive. Several simplification were made (such
as [11] and [13]), but the nonlinear search used there may
lead into computational instability. There are also meth-
ods which combine both minimization and closed-form so-
lution [4, 5, 7, 15]. All these methods are based on phys-
ical camera parameters. Implicit camera calibration meth-
ods [12], on the other hand, use an interpolation between co-
ordinates of the points on multiple planes or images and they
do not explicitly compute camera parameters.

The calibration object can be three dimensional [1], two di-
mensional (also called coplanar) [7] or the method can use
multiple views of a coplanar object to simulate the three di-
mensional one. The three dimensional object gives better
results and the complete set of camera parameters can be
acquired, but such object is hard to manufacture. In addi-
tion, the coordinates of the detected features have to be mea-
sured in three dimensional space. In case of multiple views
of a coplanar object, it can be moved freely between the
views [5, 15] or the movement should be a priori known [11].
The known movement of a coplanar object requires a robot
which may not be available.

Above mentioned facts lead to a conclusion that the most
effective approach is to simulate a three dimensional calibra-
tion object by multiple views of coplanar one. The move-
ment of the coplanar target between image acquisitions can
be unconstrained.

2 Simulation of the 3D calibration target
using multiple unconstrained views of a
coplanar object

The proposed calibration method uses multiple views of a
2D calibration target (so calledcalibration plate) to simulate
a 3D object, which is needed for precise and reliable cali-
bration results. The calibration plate can be moved freely
between the image acquisitions. An important assumption of
the method is that the intrinsic parameters of the camera are
constant for all views. This constraint allows the simulation
of the 3D object to be based on relative positions of the plate
between particular acquisitions.

The method consists of the following four steps (see Fig-
ure1):

1. an initial estimation of the intrinsic parameters of a cam-
era,
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2. an estimation of the extrinsic camera parameters for each
view,

3. a construction of a virtual 3D calibration object from mul-
tiple 2D planes, and

4. a complete camera calibration based on the virtual 3D ob-
ject.
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Figure 1: A scheme of the proposed calibration method

Due to the employment of a coplanar calibration target, an
initial guess of the intrinsic camera parameters is required,
because the coordinates of the control points are measured
only in 2D. These parameters are supplied by the user in the
first step of the proposed method.

In the second step, the extrinsic camera parameters are es-
timated for each view with respect to the provided intrinsic
parameters. Any explicit coplanar camera calibration method
can be applied here.

In the third step, the virtual 3D calibration object is con-
structed. The construction exploits the knowledge on the
camera positions for all views provided by the previous step.

The pairs of scene and image coordinates of the control
points of the simulated calibration object are finally passed
to the fourth step of the proposed method. A complete set
of the camera parameters is estimated there. Any explicit 3D
based camera calibration method can be used for this pur-
pose.

As a result of the calibration, both intrinsic and extrinsic
camera parameters are provided. Regarding the fact that the
proposed calibration method needs an initial guess of the in-
ternal characteristics of the camera, its accuracy can be im-
proved as follows: The obtained intrinsic parameters are put
back to the second step of the method and a new set of the
camera parameters is estimated (as depicted in Figure1. The
whole process is iterated until convergence.

3 Implementation of the method using DLT
camera model

The outline of the proposed calibration method presented in
the previous section illustrates only main ideas of the novel
approach. All the estimation steps are relatively independent
on concrete calibration method. Practical realization, how-
ever, has to be based on particular models of a camera.

A coplanar variant of the DLT [1] camera model (so called
CDLT) has been chosen for implementation of the second
step of the method. The model can be expressed in form
of a linear matrix equation which allows direct extraction of
camera parameters. Although it does not compensate nonlin-
ear distortions, it still gives a very good approximation of a
camera. Due to the fact that all camera parameters cannot be
extracted from the CDLT matrix [7], an initial estimate of at
least three of them has to be provided to the first step of the
method.

CDLT model allows the image formation to be expressed in
homogeneous coordinates by the following matrix equation:

qi = A pi , (1)

whereA is the coplanar DLT (CDLT) matrix of the size3×
3, pi = [xi, yi, 1]T are homogeneous scene coordinates of
thei-th point andqi = [wiui, wivi, wi]T are the appropriate
coordinates in the image plane. The CDLT matrixA of the
size3× 3 can be written as

A = λV−1B−1FMT , (2)

where matricesV compensates the shift of the image origin,
B represents the difference in scale and lack of orthogonality
between image axes,F stands for focal length,M for rota-
tion andT represents translation, respectively andλ is a non
zero scalar.

An estimate of the extrinsic camera parameters is obtained by
a decomposition of the CDLT matrixA in the second step.
Values of these parameters have to be refined, especially the
matrix of rotationM need not to be orthonormal as required.
Geometrical approach to transform the matrixM to a proper
matrix of rotation was chosen in this particular realization of
the method (see Figure2):

First two columns ofM determine a 2D planep. Changing
the angleα between these vectorsm1 andm2 to the value
π
2 and computing the third column ofM as vector product of
m1 andm2 gives a proper matrix of rotation similar toM.
The translation is then computed directly from Equation2.
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α .

β
2

Figure 2: Orthogonalization of two vectors in a plane:t1 andt2 are
the original vectors,o1 ando2 the orthogonalized ones

The above closed-form computation of extrinsic parameters
gives only a rough approximation of camera parameters.
Therefore a nonlinear minimization is exploited to refine the
values of the parameters. The Euclidean distance between
observedqj and reprojected̃qj image coordinates of control
points is used as a criterion for this minimization. Reprojec-
tion is performed by applying the CDLT matrixA composed
from estimated camera parameters on scene coordinates of
control pointspj :

q̃j = Ai pj . (3)

In [3], a reduction of the search space to four is introduced.
This is achieved by representing rotation with three param-
eters and translation only by one parameter. Remaining two
translation values are computed from the coordinate pairs of
control points and their images. More details can be found in
[3]. In practical realization of the proposed method, SolvOpt
optimization toolkit [6] for MATLAB was used.

The optimization can be described by equation:

min
z0,σ,ρ,φ

n∑
j=1

‖qj − q̃j‖2 , (4)

wheren is a number of control points,z0 is a parameter of
translation andσ, ρ, φ represent rotation. These variables are
used is computation of reprojected coordinatesq̃j .

Construction of the virtual 3D calibration object is performed
in the third step of the method. One of the views is selected
as areference. Let it be the first one denoted by subscript
1. A virtual camera is created and placed into the position
respective to the reference view. Then, the images of control
points in all views are merged into that reference one. Scene
coordinates of control points are translated and rotated into a
new position. This position is chosen so that if the points are
observed by the virtual camera, they are projected into im-
ages acquired by camera in position respective to particular
views (see Figure3).

The construction of virtual 3D object can be expressed as:

qi = A1Ripi , i = 1 . . . N , (5)

wherepi are scene coordinates of control points,qi are their
images taken by a camera in reference position represented
by matrix A1 andN is the number of views. MatricesRi

express the transformation of scene coordinates of control
points described above. They can be computed as:

Ri = TiMiM−1
1 T−1

1 , (6)

whereTi andMi are translation and rotation matrices corre-
sponding to thei-th view. Valuei = 1 denotes the reference

a) b)
�

Figure 3: Using more views of 2D plane (a) to simulate a 3D object
(b)

view. Note similarity of Equation6 with derivation of Epipo-
lar constraint [8].

4 Experimental results

For the following experiments, a MATLAB toolkit imple-
menting the proposed method, available on WWW [2], was
used. The tests were performed both on synthetic and real
data. The synthetic experiments have proved that the method
gives appropriate results. Image size was set to 704 by 573
pixels, focal length to 1136 pixels and coordinates of princi-
pal point to 363 and 280 pixels. Calibration target was a gen-
erated grid of 30 control points in 5 rows and 6 columns. 6
images from various angles were computed. The movement
of the simulated camera was regularly distributed around the
grid.

Speed of convergence of the method depends on the preci-
sion of the initial guess. Higher error in the estimate of the
initial values of parameters is compensated by higher number
of iteration. After a small number of steps, the improvement
of the accuracy was negligible. It was also observed, that the
best convergence was obtained when the movement of the
calibration object performed in all axes. This means that the
object was not moved only in one direction.

The mean Euclidean distance between the observed coor-
dinates of control points and their values predicted by the
model is referred to as aerror of reprojectionof estimation
of the camera parameters. Predicted coordinates were com-
puted by a reprojection of the control points by the model of
a camera composed from the estimated parameters. 10 cycles
were performed for each level of additive noise.

Table 1 presents the error of reprojection, focal lengthf
and coordinates of principal pointu0 andv0 in case of ideal
noise-free data. All values are in pixels. Each row of the ta-
ble, except the first and the last one, represents different num-
ber of views. The first row corresponds to an initial guess.
The last one contains ground truth for comparison.

As can be seen, the error value decreases with larger number
of views with exception of the case of two views. This am-
biguity is caused by numerical computation of the error of
reprojection. Two views do not suffice to ensure stability of
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the method which can be demonstrated on incorrect estima-
tion of camera parameters (see Table1).

Table 1: Results of the calibration on synthetic data: ideal data, no
noise. See text for a description of the table

No. of views Error f u0 v0

Initial guess 5.5349 1300 353 286
2 0.2683 1095 340 304
3 0.2806 1110 363 276
4 0.2295 1122 357 285
5 0.2208 1132 355 284
6 0.2119 1112 356 278

Ground truth 0.0 1136 363 280

Table2 contains results for experiment with synthetic data
blurred by Gaussian noise with standard deviation of 2 pix-
els. Structure of the table is the same as in the previous case.
Again, note that the error value decreases with larger number
of views.

Table 2: Results of the calibration on synthetic data: the data were
blurred by Gaussian noise with standard deviation of 2 pixels.

No. of views Error f u0 v0

Initial guess 5.3482 1300 353 286
2 2.6889 1120 326 295
3 2.6025 1169 366 277
4 2.5637 1183 364 264
5 2.4727 1167 356 277
6 2.4720 1124 355 268

Ground truth ≈2.0 1136 363 280

Figure 4 presents results of experiments on synthetic data.
Figure4(a) depicts the calibration error in the image plane.
Data were blurred by Gaussian noise with standard deviation
0.5 pixels. Note that the arrows are scaled, mean of the er-
ror is 0.63 pixels. As can be seen, there is no correlation
between error vectors (this means no systematic linear dis-
tortion) which means that the proposed method did estimate
the parameters of the DLT model correctly.

Figure 4(b) shows dependency of the calibration error on
noise. Observe that the dependency is linear and the values
of noise and error are of the same magnitude. This indicates
robustness of the approach.

Experiments on real data were performed with a commonly
available equipment. The calibration target was a regular grid
printed on a laser printer. The lines forming the grid were 4
cm in distance. The total number of 12 images sampled to
786 x 576 pixels were taken from various angles (see Fig-
ure5 for an example). All images were taken under the same
camera settings.

Lines crossings were chosen as the control points (depicted
in Figure6). From each image about 20 of them were manu-

ally detected. Precision of the detection was about 0.5 pixels.
A set of experiments was performed using combinations of
these images.

Figure 5: An image of calibration grid

Figure 6: Detail of the calibration grid with manually detected con-
trol point (marked with ’x’)

Figure7 illustrates the results of the experiment on real data.
Figure7(a) shows the error of reprojection in image plane.
Again, the arrows are scaled, mean error value is 0.89 pixels.
Again, it can be seen that there is no systematic linear distor-
tion. But, unlike in the synthetic case, one of the coordinates
is detected incorrectly. This can be observed as a big arrow
on the right side of the graph. Moreover there is nonlinear
distortion present in real cameras. Barrel radial distortion
can be observed in the figure.

Figure7(b) depicts the development of the error of reprojec-
tion for increasing number of iterations for 2 and 6 views.
Note that after a small number of iterations, the change in es-
timates is negligible which means that the method converges
rapidly. Gross error in the initial estimate of the intrinsic
parameters causes larger number of iterations. It should be
mentioned that even if the value of the error does improve
slowly after several steps, the values of the camera parame-
ters do change.

Table3 contains the estimated values of intrinsic camera pa-
rameters and error for various number of views. The format
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Figure 4: Test with synthetic data: (a) the calibration error (note that the arrows are scaled, mean value is 0.63 pixels), (b) dependence of the
calibration error on noise
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Figure 7: Experiments on real data: (a) calibration error for the reference view (note that the arrows are scaled, mean value is 0.89 pixels), (b)
calibration error for different number of iterations (2 and 6 planes)
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Table 3: Calibration error and intrinsic parameters for different
number of views, real data. See text for a description

No. of views Error f u0 v0

Initial guess 3.8014 1500 353 286
3 1.0019 1483 400 297
4 0.9718 1479 404 279
5 0.9642 1483 397 275
6 0.9171 1484 397 277

of the table is the same as for tables1 and2. Similar devel-
opment of the error of reprojection in relation to number of
views as in the case of synthetic data can be observed. The
error is smaller with increasing number of views.

5 Comparison with other methods

The proposed method was compared with other freely avail-
able camera calibration approaches. The most popular one
is the technique of Tsai [14] although it does not provide re-
liable results in the case when a coplanar calibration object
is used. Another method distributed freely was developed
by Heikkilä and Silv́en [5] which is based on nonlinear opti-
mization of all camera parameters.

The result of the comparison can be seen in Table4. The col-
umn marked ’Tsai (basic)’ corresponds to the method of Tsai
with no optimization, while the column ’Tsai (full optim)’
contains the values obtained by the Tsai’s approach with full
optimization which also includes an estimation of nonlinear
distortions. The last row contains time of computation. Each
other row corresponds to one camera parameter. Approxi-
mations of unknown camera parameters are listed in the first
column for comparison. Other columns contain estimations
of the parameters for each calibration method. Because the
proposed approach does not compensate nonlinear distortion,
the error of reprojection is bigger than in case of techniques
which use nonlinear optimization of all parameters. But as
can be seen on the results of the method of Tsai, numerical
instability may lead to incorrectly estimated values.

Exact values of camera parameters were not available for the
tests. Only basic camera parameters like the nominal focal
length and the camera resolution were obtained from data
sheet of the camera. The size of the CCD chip in millimeters
needed for the conversion of the focal length from pixels to
millimeters was unknown. Therefore the alternative values
of the focal lengthf in Table4 could not be computed.

Figure 8 compares the calibration approaches with respect
to their sensitivity to noise among data. This test was per-
formed on synthetic data blurred with Gaussian noise with
standard deviation set to 0.25, 0.5, 1, 2, 3, 4 and 5 pixels. It
can be seen that the proposed method gives the precision of
the same order as the method of Heikkilä and Silv́en. This
means that the proposed approach gives results of the same

quality without nonlinear optimization of all camera param-
eters.
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Figure 8: A comparison of various calibration methods with respect
to noise among data

Next two comparisons were also made on synthetic data.
They demonstrate, how the estimation of intrinsic parame-
ters is sensitive to noise. Figure9(a) depicts the precision
of estimation of focal length in comparison with ideal value.
Note that the proposed method shows smallest variations of
the computed values from the selected methods. This indi-
cates better stability than approaches based on nonlinear op-
timization of all parameters. Also the estimated focal length
is close to the ideal value even for high level of noise.

Precision of estimation of the coordinates of principal point
can be seen in Figure9(b). Resulting values are computed as
distances of predicted principal point from its correct posi-
tion. Again, the proposed approach performs more robustly
than methods based on nonlinear optimization of all parame-
ters. The estimated parameter is close to the correct position
even when large noise is present in data. As can be noticed,
the method of Tsai with full optimization is not suitable for
use with coplanar calibration object although it works very
well with 3D objects. When the optimization is disabled,
their results depend on the initial guess of the parameters.

6 Conclusion

A new camera calibration was presented in this paper. The
approach is capable to extract full set of camera parameters
from multiple views of a coplanar target. The target can
be moved without any constraint between the image acqui-
sitions. Tests both with synthetic and real data were per-
formed. They evaluated that the method is robust and sta-
ble and gives reliable results. Method was compared with
other approaches. The proposed method exhibits significant
improvements in comparison to the technique of Tsai with
coplanar object and better numerical stability than the meth-
ods based on nonlinear optimization of all camera parame-
ters.

The method models only linear distortion but it can be ex-
tended as in it is shown in [7] or [5]. The main disadvantage
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Table 4: Comparison of methods, real data. See text for a description
Parameter
name

Approx.
value

Proposed
method

Heikkilä
and Silv́en

Tsai (basic) Tsai (full
optim.)

f [pixels] ? 1513 ? ? ?
f [mm] ≈16.20 ? 16.64 20.32 19.55
u0[pixels] ≈384 400 428 353 197
v0[pixels] ≈288 292 314 286 330
error [pixels] ≈0.5 0.92 0.36 1.59 0.66
time [s] — 245 11 0.06 1.75
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Figure 9: A comparison of the calibration methods. (a) estimation of the focal length, (b) the distance of the estimated principal point from its
ideal position in pixels

is the time of the computation which is due to use of gen-
eral optimization routine in the second step of the method.
Providing gradients should speed up the execution. Future
work should be targeted mainly to decrease the time needed
for estimation of extrinsic camera parameters performed in
the second step of the method.

References

[1] Y. I. Abdel-Aziz and H. M. Karara. Direct linear transforma-
tion into object space coordinates in close-range photogram-
metry. In Proc. of the Symposium on Close-Range Pho-
togrammetry, Urbana, Illinois, pages 1–18, 1971.

[2] H. Bakstein. Camera calibration toolbox, March 1999. Avail-
able at,
http://terezka.ufa.cas.cz/hynek/toolbox.html.

[3] H. Bakstein. A complete DLT-based camera calibration with
a virtual 3D calibration object. Master’s thesis, Charles Uni-
versity, Prague, 1999.

[4] O. Faugeras.Three-dimensional computer vision — A geo-
metric viewpoint. MIT Press, 1993.
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