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Abstract Traditionally, the time needed to process a binary
image depends on the image size. Here, the image is loss-
lessly compressed using Schlesinger’s corner representation.
The compressed image is represented by residuals to a2× 2
pixels predictor. There are significantly less such residuals
than pixels of objects as residuals correspond to corners of
object outlines only. The main benefit comes from the fact
that set operations, translation and scaling can be performed
on compressed images directly. The processing time depends
on the number of corners (i.e. image complexity) and not
on the number image pixels. The described public domain
package implements operations AND, OR, XOR, NOT, scale,
shift, connected component labeling and skeletonization.

1 Introduction

This contribution describes thetoolbox Cornersalowing to
compress losslessly binary image and process it in a com-
pressed form. The toolbox is based on the theory proposed
by M.I. Schlesinger [5] and his group. The theory is not
widely known. The toolbox is a result of an ongoing software
project, two semesters long, performed by five students. The
teaching aim was to learn the team work during a software
development.

The C++ package is unified by the user interface environ-
ment running under Microsoft Windows that allows to use
individual modules. These are:

• Lossless compression/decompression of binary images.
The compressed image is represented as a list of coordi-
nates of predictor residuals (called corners).
∗This research was supported by the Czech Ministry of Education under

the grant VS96049, the Research Topic JD MSM 212300013 Decision and
Control for Industry.

• Basic set operations AND, OR, NOT, XOR, and scaling,
shifting performing directly on compressed images.

• Connected component counting and labeling.

• Skeletonization of objects. The skeleton definition is
slightly modified to perform in corner representation fast
and in a way that is intuitively expected by humans.

• Beautification of the obtained skeleton, i.e. representing
collection of shorter skeleton segments by longer ones.
This skeleton generalization provides an effective vector-
ization of elongated objects in the image.

•

2 Corner representation, basic theory

Let T = {(x, y) | 0 ≤ x ≤ m; 0 ≤ y ≤ n} be a rectangular
support in a plane. Letv(x, y) → {0, 1} be a binary image.
The value1 denotes (black in our images) pixels belonging to
the objects, the value0 indicates (white) background pixels.
Let us suppose without loss of generality that left column and
the bottom line of the image have value zero, i.e.v(0, y) =
v(x, 0) = 0.

The basic entity used to represent the binary imagev is
a 2 × 2 window which we call probe in the sequel. The
representative pixelp4 = v(x, y) of the probe is placed in
the upper right corner of the probe, see Fig.1. The other
three pixels of the probe have the following meaning:p1 =
v(x, y − 1); p2 = v(x− 1, y − 1); p3 = v(x− 1, y);

There are24 = 16 possible probe configurations that can
be arranged into two rows and eight columns in such a way
that probes in the same column differ by the bit in the repre-
sentative pixel only, see Fig.2. Eight out of sixteen possible
configurations correspond tocornersof objects in the image.
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Figure 1: 2× 2 probe.
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Figure 2: All 16 possible configurations arranged into eight pairs
differing in the upper right bit only.

Four corners areconvex, i.e. configurations A1, B0, C0, E0
and four corners areconcave, i.e. configurations D1, F1, G1,
H0.

Corners can be expressed easily mathematically. Let us
define thedifference imaged(x, y) = v(x, y)⊕ v(x, y − 1),
where⊕ denotes exclusive OR. The difference image indi-
cates transitions from black to white and vice versa in hor-
izontal direction. Transitions from black to white and vice
versa in vertical direction in two neighboring lines of differ-
ence imaged are given ask(x, y) = d(x, y) ⊕ d(x − 1, y).
CornersK in the binary imagev are given asK(v) =
{x, y) | k(x, y) = 1}. The actual calculation needed to
indicate corner in the2 × 2 probe is extremely easy. The
probe traversing the imagev indicates corner if and only if it
consists of odd black pixels, i.e. if and only ifk(x, y) = 1,

k(x, y) = v(x, y)⊕v(x−1, y)⊕v(x, y−1)⊕ v(x−1, y−1).

In thecompression passleading to corner representation, the
binary imagev is traversed by the introduced2 × 2 probe
starting from the lower left position to the right and upwards.
It is checked if the configuration is a corner or not in each
probe position. In the former case, the value 1 (residual),
and in the latter case the value 0 is written into corner repre-
sented image in the place of the currently placed representa-
tive point. There are significantly fewer corners compared to
all object pixels for the typical binary image (e.g. the scanned
engineering drawing). This yields much sparser corner repre-
sented image. The typical reduction factor is about 20 times!

The decompression passstarts again from the lower left
corner of the compressed image moving to the right and up-
ward. It is assumed that one column left to the image and be-
low the image have value 0. All pixels in the probe are known
with the exception of the representative pixel. The decom-
pressed value can be uniquely determined due to paired probe
configurations differing in the representative point only.

Region boundaries and corners lie between the pixels.
That is the reason why each corner actually represents a point
in the center of the probe that is denoted by a filled circle in
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Figure 3: Data structure storing corners in our representation.

Fig. 1. We shall use the same convention when showing cor-
ners pictorially.

Images in corner representation are not implemented as
matrix of corners. The list with pairs(x, y) corresponding to
corners is used instead. The elements of the list are ordered
by line coordinates. Corners in each line are ordered from
left to right. Ordering allows to speed up operations with
corner represented image. The actual structure is shown in
Fig. 3.

Let us note that the corner representation idea was devel-
oped further for the lossles compression of gray-scale im-
ages [2]. The probe properties were modified according to
the image to achieve higher compression ratio at the expense
of loosing the possibility to perform operations directly on
compressed images.

2.1 Operations working on images in corner
representation

Shifting of the image (object) means adding value of the shift
radiusvector to appropriate coordinate of each corner. The
complexity depends linearly on number of corners.

Scaling corresponds to multiplication of each corner coordi-
nate by a non-zero scale coefficient.

XOR is denoted as⊕. x⊕y = z, z(i, j) = x(i, j)⊕y(i, j). Let
#c(x) denote the number of corners in a picturex. The
following holds#c(z) ≤ #c(z)+#c(y). The complexity
of ⊕ depends on number of corners in both images.

��
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NOT x = x ⊕ 1, where the number1 represents the entirely
black image. Four operations are needed only, i.e. the
number of operations does not depend neither on the num-
ber of pixels nor number of corners.

���������	��
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OR, AND operations need more elaborate algoritms [1, 6] and
we do not explain them here due to space constraints. The
complexity depends on number of corners in both images.

Dilation, erosion can be effectively implemented in corner
representation [3]. In our package, the dilation is imple-
mented and erosion is performed via duality principle.

3 Connected components counting and
labeling

Counting and labeling of connected components is in a sep-
arate module as algorithms for NOT, XOR and AND work
on compressed image directly. Connected componenets are
based on the region contours. Let us sketch the related algo-
rithm.

Figure 4: Data structure for counting process.

Lets us introduce an algorithm for connected components
counting. Letm be number of lines in the image. A list
M(i), i = 1, . . . ,m, stores corners in the linei of the im-
age. The 1D arrayD(x) with the length equal to a number of
columns is initially filled by zeros. The element of the array
D(x) is set to the color number corresponding to the color of
a corner positioned above. The element should hold thei-th
of the left most or right most (it depends if it is righ most or
left most) corner of the same color. Let us assume that lines
above the currently processed linei were already analyzed.
The situation is illustrated in Fig.4. The upper part shows the
content of the image. From the point of view of the count-
ing algorithm there are three regions for that it is not known
how they are connected and they are assumed (provisionally)
to be colored by labels 1, 2, 3. Of course, finally they will
be all colored by one label. The corresponding corners are

stored in the listM . The 1D arrayD(x) shown in the bottom
part in Fig.4 tells how components of the image that was
already analyzed are connected. TheD(x) stores only the
left most and the right most column of each color. Assume a
border point in a columnx. Analysis ofD provides informa-
tion where the corresponding second end of the boundary is
positioned. This process is denoted by arrows in Fig.4.

Figure 5: There are only four possible corner configurations while
analyzing current line and arrayD.

We can explain the counting algorithm now. The image
is processed line by line. A pair of corners is analyzed in
each step of the algorithm. According to the content of the
arrayD, i.e. the gathered information about connectivity, it
is known how the currently processed line modifiesD. There
are only four possible cases that are illustrated in Fig.5 and
denoted as A, B, C, D.

while not last row do
Read a new pair of corners xl, xp.
Check the array D at the coordinates xl,
xp.
case of situation

A: Increment the counter of continuous
parts.

B: Fill D between xl and xp by the value
D(xl).

C: Fill D between xl and xp by the value
D(xp).

D: Clear D between xl and xp, i.e. fill
it by zeros.

endcase
enddo

As can be seen from the sketch of the connected component
counting algorithm, it needs only a single pass through the
corner represented imageM . Its time complexity is linear
dependent on number of corners.

This algorithm does not treat the inner bouderies, i.e. re-
gions with holes. For doing that, one more data structure is
needed that stores whether the region has holes or not. Un-
fortunatelly, the linearity of the algorithm is lost in this point.
The Schlesigner’s implementation should be linear even for
multiply connected regions.

The simple operations can be added to counting connected
components, e.g. calculating region perimeter, area.

The algorithm for connected components labeling is an
extension to the described counting. More details can be
found in notes from [6].
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4 Skeletonization in corner represented
image

4.1 Modified definition of the skeleton

A skeleton of a binary object in a “continuous image” is tra-
ditionally defined as a union of centers of inscribed circles.
Various modifications to the definition are proposed in math-
ematical morphology to cope with digital images and ensure
that the homotopy of the original object and its skeleton is
secured. The related algorithms either expel layers of the ob-
ject (sequential thinning) or calculate maxima of a quench
(distance) function [7].

Figure 6: Ambiguity of the center of the object and of the thinning
to width one.

Image in corner representation expressed by object out-
lines as a subset of points in a plane allows to avoid tradi-
tional problems in digital images, e.g. to be in the center or
to be thinned to width one. The simple object in traditional
pixel representation possesses such an ambiguity as is illus-
trated in Fig.6. Schlesinger et. al suggested the concept
of skeletonization in corner representation. It is explained
in Russian elsewhere. Let us reference to the paper in En-
glish [4] and sketch basic ideas here.

Let theimageV ⊂ R2 be composed from black (object)
point in an Euclidean plane. Every connected component is
enclosed by a non-selfcrossing polygonal line that is com-
posed from vertical and horizontal line segments only. A
maximal squareSm ⊂ V is a square inscribed to the object
and there is no bigger inscribed square. The notion of the
maximal square is illustrated in the left side in Fig.7.

�

Figure 7: One of the maximal squaresSm is shown in the left part.
The right part shows the basic skeleton (thick lines) that consists of
centers of all possible maximal squares. The thin part constitutes
the auxiliary skeleton.

The basic skeletonof the imageV is defined as the set
to central points of all maximal squares. Every connected
component of the basic skeleton is either an isolated point
or consists of one or more horizonatal/vertical line segments.

The basic skeleton is shown as a thick lines in Fig.7 at the
right side. Two types of ends of basic skeleton segments are
distinguished. Theclosed endcorresponds to the point that
closes the object in that end, i.e. the point does not belong
to other bigger maximal square. The end is called theopen
endotherwise. Open ends are illustrated by empty circles in
Fig. 7.

Let p be an open end of the segment of the basic skeleton.
There is a maximal squareSm corresponding to the pointp.
It contains squaresS ⊂ V with the center inp. The maximal
square attached to pointp is shown as thick square in Fig.7
at the right side.

Theauxiliary skeletonis a set of additional line segments,
each of them links the open end of the basic skeleton with the
center of its attached maximal square. The auxiliary skele-
tons join basic skeletons belonging to one region (connected
component). Auxiliary skeleton segments are shown as thin
lines in Fig.7 at the right side.

4.2 An idea of the skeletonization algorithm

The skeletonization algorithm explores the “divide and con-
quer” strategy. The region is decomposed by adissective
squareinto two regions. This process is repeated recursively
until it is trivial to find a skeleton of the remaining regions.

Let q be a concave corner of the regionR. Recall that no-
tion of convex and concave corners was introduced in Sec-
tion 2. A squareSd ⊂ R is called adissective square, see
Fig. 8, if (a) one of theSd vertices coincides with cornerq,
(b) one of theSd diagonals coincides with the bisectrix (i.e.
line dividing the angle of the corner to one half) of the corner
q, and (c) there is no squareS for whichSd ⊂ S and condi-
tions (a), (b) are satisfied simultaneously. One of two sides
of the dissective squareSd not continuingq has a nonempty
intersection with the region boundary at least. Letq∗ be any
point of this intersection. Let assume thatq andq∗ belong
to the same connected component (region)Gc. Pointsq and
q∗ split the boundaryGc into two partsGc1, Gc2 and the
boundary of the dissective squareSd into two partsGs1 and
Gs2.

A regionR is decomposedinto two regionsR1 andR2,
see Fig.8, if (a) R1 ∩ R2 = Sd and (b) the boundary of each
new region contains only one of the partsGc1,Gc2 and only
one part of theGs1,Gs2. Theconnectorlinks centers of two
maximal squares containingSd and belonging regionsR1,
R2, respectively.

Three following statements hold about region decomposi-
tion. The basic skeleton of the regionR is a union of basic
skeletons of regionsR1 andR2. The auxiliary skeleton of
the regionR is a union of auxiliary skeletons of regionsR1,
R2 and a third set containing the connector only. Area (or
perimeter)P of the region is equal toP1 + P2 − Pd, where
P1, P2, Pd are areas (or perimeters) of regionsR1, R2 and
dissective squareSd, respectively.

A region is called asimple regionif its boundary does not
contain concave corners D1, H0, cf. Fig2 and does not inter-
sect with vertical sides of dissective squares corresponding to
concave corners F1, G1. The simple region can be classified
into three classes, see Fig.9. The class 0 does not contain any
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Figure 8: Decomposition of the region into two simpler compo-
nents by the dissection square.

Figure 9: Classes of regions. Dissective squares are shown in
black.

concave corners. Its skeleton is trivial, i.e. a line segment.
The class 1 contains only concave corners F1. That one with
the smallestx coordinate is selected and the dissective square
corresponding to it is determined. The simple region is split
into two ones. One region is a rectangle, i.e. class 0 and the
other one remains in general the class 1 region. This proce-
dure is repeated until all concave (F1) corners are removed.
The class 2 does not contain concave corners D1, H0. There
is a concave corner G1 in the class 2 region that is used to
split the region.

The splitting procedure for the most general case contain-
ing also corners D1, H0 is a bit more complicated, see [4, 3].

Two approaches are possible. At first, the general region
is split into set of regions of class 2. Then each region of
class 2 is split into a set of regions of class 1, and finally the
regions of class one are split into a seto of class zero regions.
At second, which is more efficient, the general region is split
again into class two regions. These are split into one or more
simple regions and set of rectangles. Simple objects are split
into rectangles.

The skeletonization algorithm in corner represented im-
age does not depend on the thickness of the thinned regions.
The computational complexity depends on the number of
corners that is much smaller compared to number of region
pixels in traditional skeletonization algorithms.

5 Modifications to the skeletonization
algorithm

We did some changes to the skeletonization algorithms pro-
posed in original work [4, 6, 3]. Instead of using class 1
regions, a general region is split into class 2 region. After-
wards, each class 2 region is split into rectangles and a simple
object. The simple region is split into rectangles as well as
we know from previous Section already. The result is set of
rectangles. It is trivial to find their skeleton.

We implemented our own algorithm for dissecting objects
of class two. It uses finite automaton with four states.

We created a graph storing topological relations which
corresponds to dissective squares in the algorithm mentioned
above. This graph tells how are skeletons of parts connected
together by dissective squares. This graph is then used to
create an output. An information stored in the graph allows
to reconstruct the original binary image with all its regions,
to draw the skeleton, dissective squares, and all rectangles
which constitute the image. We did not use the exact defi-
nition fo the auxiliary skeleton as described in Section4.1.
We used just auxiliary lines oriented modulo 45 degrees to
connect basic skeleton as this process is ambiguous.

If the skeleton is used for vectorization than its beautifi-
cation is useful. The skeleton obtained from a scanned real
raster image is typically broken to unnecessary many small
line segments. In this context, beautification means approx-
imating several smaller segments by longer line segments.
Cartographers would call this process – generalization. The
topological graph stores all needed information for beautifi-
cation.

6 Package design and implementation

Figure 10: Input binary image 130× 150 pixels with synthetic
object.

The Corners package is implemented in Microsoft C++.
It is composed of six parts.

Coding/decoding to corner representation.This part ac-
cepts a raster image in a special inner format or reads .bmp
files. Objects in the image are transformed to corner rep-
resentation and can be stored in a file with extension .crn.
The decoding from corner image to raster image works in
opposite direction and provides a .bmp file.
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Figure 11: Found skeleton of synthetic objects.

Connected components counting and labelingallows the
user to specify with which objects she/he intends to work.

Operations on a compressed picture,i.e. rotate, scale,
shift, AND, OR, NOT, XOR, and morphological dilation,
erosion.

Skeletonization provides the skeleton and represents it in a
topological graph.

Skeleton beautification runs on the topological graph and
finds a path segments in a skeleton image, i.e. segments
where inner vertices are of degree 2. A skeleton smooth-
ing can be performed during this phase.

Vectorization transfers data in the topological graph into the
format readable by vector editors. Briefly said it is trying
to interpolate the huge number of connected small lines
by longer lines. Work on this module is in progress.

The executable program (still under development) run-
ning under Microsoft Windows is available for exper-
iments at http://cmp.felk.cvut.cz/˜hlavac/
Public/corners . Use binary .bmp images as input.

7 Experiments

Let us show the experiment on synthetic data first. The input
image is shown in Fig.10. Its 1 bit raster version in .bmp
format needs 3062 bytes. When transformed to corner repre-
sentation only 300 corners are needed and occupy 463 bytes
if stored on a disc in .crn (corners) binary format. The found
skeleton is in Fig.11.

The experiments with real data were performed as well.
We used deliberately the same image of an engineering draw-
ing (3D view of a ventilator assembly) as was used in original
experiments by Kiev group [3] to allow comparison of imple-
mentations. The input binary raster image has size 1700×
1248 pixels and occupies in .bmp format 6364938 bytes, see
Fig. 12. The same image in corner representation needs only
69688 bytes which corresponds to the compression to 1.01%,
see Fig.13. The skeleton was calculated in the corner rep-
resentation. The result is shown in Fig.14. The 120 MHz
Pentium with 64 Kbytes of operational memory was used for
experiments. The conversion to corner representation took 3
seconds and skeletonization 4 seconds.

Figure 12: A view on a ventilator. The imput binary raster image.

8 Conclusions

The idea of corner representation was sketched in the paper
first. The implementation of the toolbox allowing to process
binary images in efficient corner representation was reported.
The implementation carried out by group of studens in a soft-
ware engineering project. The development of the toolbox is
continued.
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