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Abstract
In this paper we address the problem of reliably fitting

parametric and semi-parametric models to high density spot
array images obtained in genetic expression experiments.
The goal is to measure the amount of genetic material at spe-
cific spot locations. A lot of spots can be modelled accurately
by a Gaussian shape. In order to deal with highly overlap-
ping spots we use robust M-estimators. When the parametric
method fails (which can be detected automatically) we use
a novel, robust semi-parametric method which can handle
spots of different shapes accurately. These techniques are
evaluated in experiments.

1 Introduction

Genetic spot array images have to be analyzed in the
course of high-throughput hybridization experiments [2, 1],
where a spot in the array can identitify specific expressed
gene products. Biological systems read, store and mod-
ify genetic information by molecular recognition. Because
each DNA strand carries with it the capacity to recog-
nize a uniquely complementary sequence through base pair-
ing (A↔T, C↔G) [5], the process of recognition, orhy-
bridization, is highly parallel, as every nucleotide in a large
sequence can in principle be queried at the same time.
Thus, hybridization can be used to efficiently analyze large
amounts of nucleotide sequence. The primary approaches
include array-based technologies that can identify specific
expressed gene products on high density formats, including
filters, microscope slides and microchips [2]. Common to
all array-based approaches is the necessity to analyze digital
images of the array. The ultimate image analysis goal is to
automatically assign a quantity to every array element giv-
ing information about the hybridization signal (spot fitting).
Figures1 and2 show a typical array image generated in the
course of a oligonucleotide fingerprint (ONF) experiment:
The high density medium is a filter (nylon membrane) com-
prising a total of 57600 cDNA [5] spots which were spotted
in different spotting cycles by a robot arm carrying a matrix
of needles. Detailed information about the spotting proce-
dure can be found in [7]. The intensity of every spot corre-
sponds to the amount of label remaining after hybridizing a

Figure 1: Genetic Spot Array Image. The white rectangle indicates
the region belonging to the zoomed right image shown in Fig.2

liquid containing the labelled probes and subsequently wash-
ing off probe not bound to the genetic material. For details
about the physical imaging process refer to [4]. The grid
fitting provides coarse inital locations of the spots and is de-
scribed in detail in [1]. The goal of spot fitting is to provide
an accurate estimate of the volume, i.e. the amount of genetic
material of every spot. It must cope with the following three
major problems:

1. Noise and outliers: Sometimes gross errors like artifacts
which do not comprise gene expression information can
occur (Fig.3a).

2. Overlapping spots: Spots with high intensity may inter-
fere with neighboring spots (Fig.3b).

3. Various spot shapes: Depending on the type of the ex-
periment different spot shapes are possible. We therefore
cannot always assume a parametric spot model (Fig.4).
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Figure 2: Genetic Spot Array Image. Zoomed image correspond-
ing to the white rectangel of Fig.1

(a) Artifacts (b) Overlapping spots

Figure 3: Spot fitting problems

Noordmans and Smeulders [8] provided a general ap-
proach for the detection and characterization of overlapping
spots. This approach is restricted to parametric models and
is non-robust. In this paper we desribe both a parametric and
a non-parametric approach for spot fitting.

2 Parametric Spot Fitting

The grid fitting provides us with approximate locations for
every spot in the image. With this information we can assign
a set of image (pixel) intensities to each spot using the prior
size of a spot. On this local set of points around each spot
one can perform a parametric fit. A parametric fit assumes a
given analytic model where its unknown parameters are to be
determined. In either case the procedures have to be robust.
Since the initial spot locations provided by the grid fitting are
quite accurate we can use M-estimators [6] as robust fitting
procedures.

2.1 The Gaussian spot model

LetS = {(pi, zi), pi ∈ R2, zi ∈ R} be a set of points corre-
sponding to a spot wherezi denotes the intensity at location
pi. An initial analysis has shown that most of the spots can

Figure 4: Spots with uncommon shapes

be characterized fairly accurately by a Gaussian shape. The
Gaussian function is denoted as

G(p, µ,Σ) = e−
1
2 (p−µ)′Σ−1(p−µ) (1)

with µ ∈ R2 andΣ ∈ R2×2 (2 × 2 matrix). Our Gaussian
spot model is

Z(p,A,B, µ,Σ) := A G(p, µ,Σ) +B (2)

with following parameters:

1. A is the amplitude of the Gaussian model corresponding
to the “height” of the spot.

2. µ is the mean of the Gaussian model corresponding to the
“center” of the spot.

3. Σ is the2× 2 dispersion matrix:

Σ =
(

σ2
x σxy

σxy σ2
y

)
. (3)

4. B is the background value. The background has to be
modeled due to unspecific radioactivity. Since it is gen-
erally nonuniform across the spot image, we have to esti-
mateB for every spot with a hierarchical approach using
Gaussian image pyramids.

2.2 Relative error and Goodness of fit

In order to quantitatively assess how well the (Gaussian)
model assumption holds we have to introduce a measure for
the error. We apply an approach also used in linear regres-
sion analysis as in [3] by comparing the model to a “standard
modelZ0”:

T1 :=

1
n

n∑
i=1

(zi − Z(pi))2

1
n

n∑
i=1

(zi − z0)2

(4)

wherez0 := 1
n

∑
zi, which is the mean of the given values.

The standard modelZ0 in this case is a plane parallel to the
pi-plane at the heightz0, i.e. Z0 ≡ z0. The interpretation
of T1 is, the fit of modelZ is 1/

√
T 1 times better than the

standard model. We will callT1 the relative squared error
or for shortrelative error. In literature1 − T1 is called the
goodness of fit.

2.3 Non-robust parameter estimation

The parameters can be computed by maximum likelihood es-
timators and least square minimization.
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2.3.1 Estimating the mean and the dispersion matrix
The parameter estimation of the Gauss model is based upon
the following principle: The shape of a spot can be inter-
preted as a distribution of thex- andy-coordinates. A spot
patchS containinsn = MS · NS points pi and has the
intensitiesI(pi). Let us denote the corrected intensities as
zi := max(I(pi)− B̂, 0). Since the background can be over-
estimated especially in the first background estimation, we
correct negative values to zero. The estimateµ̂ of the cen-
terµ and the estimatêΣ of the dispersion matrixΣ are then
computed by the maximum likelihood (ML) estimators:

µ̂ =
1
T

n∑
i=1

zipi (5)

and

Σ̂ =
1
T

n∑
i=1

zi(pi − µ̂)(pi − µ̂)′ (6)

whereT is the total sum of the intensities of the patch:

T =
n∑
i=1

zi. (7)

Hence the estimatêµ of the centerµ is given by the sam-
ple average (i.e. the average with respect to the given data
set) of the coordinates weighted by the pixel intensities. Sim-
ilarly, the maximum likelihood estimatêΣ of the dispersion
matrixΣ is given by the sample average of the outer product
(pi − µ̂)(pi − µ̂)′ weighted by the pixel intensities.

2.3.2 Estimating the amplitude The estimateÂ of the
amplitudeA is computed by a least squares minimization.
Let us define the error function

E(A) =
1
2

n∑
i=1

{
A G(pi, µ̂, Σ̂)− zi

}2

. (8)

The estimate forA is computed by setting the partial deriva-
tive ofE with respect to the parameterA to zero:

∂E

∂A
=

n∑
i=1

{
A G(pi, µ̂, Σ̂)− zi

}
G(pi, µ̂, Σ̂) = 0. (9)

The solution to this equation yields the estimatorÂ:

Â =
n∑
i=1

ziG(pi, µ̂, Σ̂)

/
n∑
i=1

G(pi, µ̂, Σ̂)2. (10)

2.3.3 Quantification The brightnessV of the spot is es-
timated as the volume under the fitted Gaussian function:

V̂ = Â (2π)
√
|Σ̂|. (11)

Since the scanner is square rooting the intensities during the
scanning process we provide an estimator for the brightness
W of the spot with squared intensities. Using the fact that
G(p, µ,Σ)2 = G(p, µ, 2 · Σ), one can easily verify that

Ŵ = Â2 π

√
|Σ̂|. (12)

2.4 Robust parameter estimation

The non-robust estimators of Sect.2.3can be taken as start-
ing points for the computation of robust estimators. The
theory of robust M-estimators for multivariate distributions
with elliptically symmetric density function is studied by
Maronna [6]. We adapt these results to suit to our needs and
introduce a joint estimation for the mean, the dispersion ma-
trix and amplitude.

2.4.1 Estimating the mean

µ̃ =
n∑
i=1

w1(ei)zipi

/
n∑
i=1

w1(ei)zi (13)

where

w1(x) =
ψ(x)
x

(14)

with Tukey’s biweight as theψ - function:

ψ(x) =

{
x
(

1−
(
x
a

)2)2

, |x| ≤ a
0 , |x| > a

(15)

e.g.a = 4 andei as the studentized error for each point

ei := ei(Ã, B̂, µ̃, Σ̃) := (Ã G(pi, µ̃, Σ̃)− zi)/σ (16)

with unknown spreadσ.

2.4.2 Estimating the dispersion matrix

Σ̃ =
1
T

n∑
i=1

w1(ei)2zi(pi − µ̃)(pi − µ̃)′ (17)

with T as the total sum of the intensities of the patch (Eq.7).

2.4.3 Estimating the amplitude

Ã =

n∑
i=1

w1(ei)ziG(pi, µ̃, Σ̃)

n∑
i=1

w1(ei)G(pi, µ̃, Σ̃)2

. (18)

This amplitude estimation is the result of an error-
minimization problem with the help of aρ-function [6] as
follows:

R(A) ==
n∑
i=1

ρ(ei) → min (19)

will yield a scale invariant M-estimator̃A for A. Differenti-
ating equation19with respect toÃ results in

n∑
i=1

ψ

(
A G(pi, µ̃, Σ̃)− zi

σ

)
∂
(
A G(pi, µ̃, Σ̃)− zi

)
∂A

= 0.

(20)
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2.4.4 Parameter computation The equations for̃µ (13),
Σ̃ (17) andÃ (18) can be solved by the weighted least square
iteration:

µj+1 =
n∑
i=1

w1(eij)zipi

/
n∑
i=1

w1(eij)zi (21)

Σj+1 =
1
T

n∑
i=1

w1(eij)2zi(pi − µj)(pi − µj)′ (22)

Aj+1 =

n∑
i=1

w1(eij)ziG(pi, µj ,Σj)

n∑
i=1

w1(eij)G(pi, µj ,Σj)2

(23)

with
eij = (Aj G(pi, µj ,Σj)− zi)/σj (24)

and

σj = mediani∈I∗
|Aj G(pi, µj ,Σj)− zi|

0.6745
. (25)

whereI∗ = {i|G(pi, µj ,Σj) < c}, e.g. c = 1.6 ∗ u0.95

whereu0.95 denotes the 0.95 quantile of the standard normal
distribution.

2.5 Managing overlapping spots

In order to save resources the genetic material is spotted
with high density with the consequence that spots may over-
lap. Especially spots with high intensity may interfere with
neighboring spots, see Fig.3b. The problem when fitting a
model is that it will be biased towards the overlapping neigh-
bor yielding a dislocation of the fitted model and a too high
quantification. One possible method is to correct the input
intensities for a spot by subtracting overlapping neighboring
models. However, usually too much is subtracted due to the
overlapping situation, such that an iteration process between
subtracting neighbor models and refit is needed. Another
possible approach the usage of robust estimators. Intensities
which are too high due to overlapping are regarded as outliers
and are subsequently downweighted. In our paper we use a
combination of the two schemes: In a first step a robust fit is
performed, then the background estimation is improved and
finally a robust refit is performed on the data with subtracted
neighboring models.

Subtracting neighboring models Let G = {gij |i ∈
{1, . . . , IG}, j ∈ {1, . . . , JG}} be the set of spots. For each
spotgij let us assume we have computed a modelZij(p, q)
with the parametersq ∈ Rk and coordinatep ∈ R2. Con-
sider theMS × NS image patchSij = Sij(p) for gij . In
order to take overlapping spots into account we can recom-
pute the modelZij by using the modified spot patch

S∗ij = Sij −
∑

k,l∈{−1,0,1},(k,l) 6=(0,0)

Zi+k j+l (26)

i.e. subtracting neighboring spot models. Further we set the
modelsZij := 0 for i ∈ {0, IG + 1} ∨ j ∈ {0, JG + 1} to

deal with the special cases of border points. One could iterate
this procedure for every spotgij over the whole image. One
then gradually obtains better models for every spot, stopping
when the parameters of the model for each spot stabilize.

The approach with the robust estimators will find good fits
without “iterating over the whole image” as done in the first
method. In addition, spots with shapes which are not covered
directly by a model as the ’volcano shape’ in Fig.4 can be
treated because the robust estimator will react less sensitive
to abnormities or gross errors like artifacts (see Fig.3a).

3 Semi-parametric Spot Fitting

A semi-parametric approach can describe the spot shape
more accurately in the case of deviations from the model as-
sumptions, which is the case in Fig.4. However, overlap
handling will be difficult, because a semi parametric fit will
lack an intrinsic declension of the tails of a parametric model.

3.1 Algorithm

The basic idea of this method is to reduce dimensionality of
given data using prior knowledge. Assuming that the spot
has elliptically symmetric shape the fit is computed in the
following steps:

A. Find the spot center We first perform a Gaussian
fit computing M-estimators for̃µ and Σ̃ as described in
Sect.2.4.1and Sect.2.4.2 . µ̃ is our center. Since the M-
estimator of the location is robust it will also deal with spots
with uncommon shapes. Passing a line perpendicular to the
x, y-plane through̃µ gives us the axisa.

B. Transform the points The estimated dispersion matrix
Σ̃ gives us an ellipse inx, y-plane. Lete1 and e2 be the
two eigenvalues of̃Σ, (without loss of generalitye1 ≥ e2),
v1 andv2 the corresponding eigenvectors andε be the half-
plane spanned byλ1a+ λ2v1; λ1 ∈ R, λ2 ∈ R+

0 . Consider
the one parametric family of ellipses with the principle axis
directionsv1 andv2, and diametersλe1 andλe2, λ ∈ R+

0 and
centerµ. The family covers thex, y-plane without intersec-
tion, each point in thex, y-plane lies exactly on one ellipse.
We “rotate” the given points(pi, zi) following the path cor-
responding topi into the half-planeε yielding a point cloud
qi in 2-space (see Fig.11f. The first coordinate can be easily
computed by:

e1 · |p|2/
√
e2

1(p · v1)2 + e2
2(1− (p · v1)2) (27)

the second is the unchangedz-coordinate.

C. Compute a profile We introduce a simplified, effi-
cient and robust version of curve approximation for scattered
points suited to our purpose. First we computem points
ci = (xi, yi), i = 1, . . . ,m well describing the shape of
curve to be computed. Consider the vertical parallel strip
with y-axis andx ≡ maxxi as borders. We then segment
the strip intom commensurate parallel strips and compute
ci = mediankrki, whererki are those pointsqk lying in the
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ith strip, see Fig.11f. We further cut off tails of the pro-
file by gradually lowering the profile points down to zero in
the last quarter, because 1) especially at the tail there may be
some overlapping situation and 2) generally there are fewer
points at the tail. For our purpose it is enough to interpo-
late the pointsci by a polygon and to perform asmoothing
scheme on the profile points, e.g. by replacing each point
with a weighted sum of its neighbors. Alternatively one can
compute a spline interpolating the pointsci for the profile
curve.

D. Compute Volume The profile curve is rotated following
the elliptical paths as in step B.

3.2 Quantification

Let ci = (xi, yi), i = 1, . . . ,m be the profile points as in-
troduced in the previous paragraph. The brightnessV of the
spot is then estimated by taking

V̂ =
e2

e1
· 1

3

m∑
i=2

(x2
i−1 + xi−1xi + x2

i )π(yi − yi−1). (28)

The brightnessW of the spot with squared intensity is

Ŵ =
e2

e1
· 1

3

m∑
i=2

(x2
i−1 + xi−1xi + x2

i )π(y2
i − y2

i−1). (29)

If one desires good results one should use known numerical
integration schemes as (composite) Simpson’s rule.

4 Spot Detection Limit

A spot fitting algorithm should decide whether a location
contains a spot before performing a fit. Imagine having in-
put intensities with perfect zero values, computing the mean
would lead to a division by zero or leading to a singular dis-
persion matrix. This can happen rather often since the first
background estimation is overestimating the background.

One could use our test for goodness of fit as spot detection
by testing the “Zeromodel”Zzero ≡ 0 being ’d-appropriate’
or not, using the test statistic:

T1 := d2 ·

n∑
i=1

z2
i

n∑
i=1

(zi − z0)2

(30)

e.g.d2 = 2. However, the results were not satisfying because
the values did not well separate spot locations and non spot
locations. We use instead

T2 := medianzi > d (31)

for spot detection whered = log(2)·V ∗/(MS ·NS) andV ∗ is
the minimum volume a location carries where a spot still can
be expected. The interpretation is that if the volume of a loca-
tion V isgreaterthanV ∗, we expect that there is a spot. The
easiest way to estimate the volume isMS ·NS ·

∑
zi, leading

to T2a :=
∑
zi > V ∗/(MS · NS). To overcome noise and

outliers for example due to overlaps we would like to use the
median. Assuming thatzi is exponentially distributed which
comes close to our situation, thelog(2) ≈ 0.6931 times the
median estimates the mean. Replacing the mean by the me-
dian yieldsT2.

5 Experimental Results

5.1 Artifacts

Consider the patch in Fig.5a. The prior spot locations after
the grid fitting are shown in Fig.5b. The spot(3, 3) in the
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Figure 5: Given patch with artifact

center is distorted by an artifact. As can be seen in Fig.6a,
a simple Gaussian fit will fail, because the location is biased
towards the location of the artifact. The robust Gaussian fit
can overcome the outlier. Figure6b shows the result after 6
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Figure 6: Gaussian fit and robust Gaussian fit for spot(3, 3)

iterations. The label “vol.” denotes the volume of the spot
and “qvol.” denotes the volume with squared intensities.

5.2 Overlapping Spots

We demonstrate how the robust Gaussian fit works on im-
age data with overlapping spots. Figure7a shows a5 × 5
block originating from an ONF image with low resolution.
Figure7b shows the prior spot locations after the grid fitting.
Before a fit is performed a spot detection limit as introduced
in Eqn.31 is computed with limitV ∗ = 30000 correspond-
ing to d = 400. In Fig. 8a the white marks indicate the
detected spots. Fig.8b shows a 3D plot of the block. Almost
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Figure 7: Block with overlapping spots

all locations are classified correctly including location(5, 1),
where a neighboring spot is interfering from the left. Loca-
tion (2, 1) is falsly detected as a spot, because two neigh-
boring spots are overlapping. Spot (3,1) is an ordinary spot
with no interfering neighbors, the robust estimator stops af-
ter 3 iterations without any big changes. Spots(1, 3), (2, 5)
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Figure 8: Detected spots and 3D plot of image data

and(3, 3) have up to three overlapping neighbors, here the
robust estimator can recover the original spot location quite
well, especially for(1, 3) and (3, 3). Spot(1, 3) is plotted
in Fig. 9a. The non-robust Gaussian fit is biased towards
the neighboring spots, whereas the location of robustly fit-
ted Gaussian spot is more plausible. Spots(1, 4), (2, 3) and
(2, 4) have over four overlapping neighbors and are therefore
difficult cases, but still some improvements can be done. The
non-robust and robust Gaussian fits are plotted in Fig.9b.

After the first robust Gauss fit we refit on every location
with subtracted neighborhood models. The centers computed
during the first fit are taken as the a priori centers for the
second fit. When taking a look at the new patches with
subtracted neighbors (see Fig.10a) one will notice that the
patches are now less distorted than the previous patch and
are more “spot like” – an indication that the situation has im-
proved.

When investigating the goodness of fit and the patch
shapes, the first robust fitting resolved the overlaps at spos
(1, 3) (see Fig.10a) and(3, 3) very well. The results for
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(a) Initial spot fitting for spot (1,3)
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(b) Initial spot fitting for spot (2,3)

Figure 9: Initial non-robust and robust Gaussian spot fitting

the spots (1,4) and (2,5)are good, the results for (2,3) (see
Fig.10b) are acceptable, and the results for (2,4) are not good
enough. Generally, on can say that the robust estimation will
perform well up to four overlapping neighbors while more
than four will make problems. This is can be explained by
the fact that highest possible breakdown point of a robust es-
timator isε∗ = 0.5. If more than 50% of the input datas are
false the situation cannot be recovered directly by a robust
estimator. An overview of the fitted models can be seen in
Fig. 10.

5.3 Uncommon Shapes

Figures11a and b show a volcano spot with an overlap from
the right hand side. An ordinary Gaussian fit would be bi-
ased to the right neighbor, but a robust estimator recovers
the location easily (Fig.11c). Performing a robust Gauss fit
on both sides we subtract the neighborhood spot model from
the patch receiving the corrected data (see Fig.11d). After a
Gaussian refit the initial volume estimation can be observed
in Fig. 11e but the estimated volume is not very reliable due
to the high relative error rate. Using the center and disper-
sion we performed a semi parametric fit (see Fig.11f). We
smoothed the profile points by replacing each point (except
at the border) with the weighted sum over the left, the point
itself and right neighbor with the weights 3,6, and 2. The
left neighbor received higher weights, because the points on
the left hand side are more reliable since they are closer to
the center. The goodness of fit improved and a more reliable
quantification is done. We also compared the algorithms to
each other by plotting the percentage of data covered by the
strip with the two offset profile curves as borders yielding a
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Figure 10: Detected spots and 3D plot of image data

performance curve, see Fig.12. A quick ascending curve in-
dicates that the method is performing well, because the data
points are covered early. As one can see the semi-parametric
fit is better than the Gaussian fit.

5.4 Entire Image

We demonstrate the result of the spot fitting for the image in
Fig. 2 containg a total of40 × 60 = 240 spots. After the
grid fitting we have the prior locations of every spot and ap-
ply the first background estimation routine to be ready for the
first run. A major issue is the detection limit. It determines
whether the location possibly contains a spot of interest. Pre-
tending we do not know much about the volume of a spot we
setV ∗ = 0 using the detection limit Eqn.31. The algorithm
will then fit at every location. After a second backgound esti-
mation and a second run the fits from the first run are refined.
The reconstructed image can be seen in Fig.13. An analysis
showed that most of the spots have a volume between 10000
and 20000 – locations with a volume lower than 10000 pos-
sibly contain no spots. With this knowledge we setV ∗ to
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Figure 11: Volcano spot with overlapping neighbor

10000 and rerun our program. This time no singular loca-
tions are detected. In Fig.14we plotted the relative error for
each spot location. Some locations have a significant error
over 1.0. This is due to a bad fit as the result of fitting a model
to location containing no spot. A location without a spot can
still pass the detection limit when neighboring spots are in-
terfering. We therefore perform a post processing procedure
by simply rejecting a model with too high error, e.g. relative
error greater that 0.4. In general, a relative error smaller than
0.1 indicates a very good, smaller than 0.2 a good fit, while
at values bigger than 0.4 or 0.5 the fit should be rejected.

5.5 Complexity

Table1 shows the CPU-time costs for each method per fit in
flops. The values should be interpreted as follows:

Resolution→ Low Res. 7x7 High Res. 16x16
Method↓ flops/per fit flops/per fit

Gauss fit 10.000 47.000
Semi parametric fit 2.000 15.000

Table 1: CPU-time in flops, Re. = Resolution
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Figure 12: Semi-parametric fit

Figure 13: Reconstructed spot image of the spot image in Fig.2

1. A (non robust) Gaussian fit in low resolution requires ap-
proximately 10.000 flops.

2. A robust Gaussian fit withk iterations requires approxi-
mately(k + 1) × 10.000 flops (1 fit for the initial guess
andk remaining fits for each iteration).

3. A semi-parametric fit with 5 “profile points” costs 2.000
flops in low resolution, while in high resolution 14 “pro-
file points” are computed requiring 15.000 flops.

4. A single semi-parametric fit is approximately four times
faster than a Gaussian fit in low and high resolution. How-
ever, one should keep in mind that a semi-parametric fit in
general can not be performed directly without any preced-
ing center search by a M-estimator of location.

5. Let n × n be the dimension of the input patch, i.e.n =
7/n = 16 for low/high resolution. While the comput-
ing time for the Gaussian fit will increase withO(n2),
the computing time for a semi-parametric fit will increase
with O(n2 · log(n)). The reason is that a Gaussian fit ba-
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Figure 14: Relative error of the40× 60 spots

sically sums over all data points while sorting algorithms
are needed for a semi-parametric fit.

6. On a Pentium II with 400 MHz 1.000.000 flops take ap-
proximate 7.3 sec.

7. On a Pentium II one field with80 × 120 spot locations,
moderately filled takes half to one hour in Matlab.

8. On a Pentium II one entire ONF image with240 × 240
spot locations, moderately filled takes three to six hours
in Matlab.

9. An already implemented C-version (Khoros API) of the
non-robust spot fitting with subtracting neighbors for all
spots needs only about four minutes on the same machine
(including the grid fitting).

6 Conclusion

The basic problems in spot fitting are overlapping and non
Gaussian spots. Overlaps with up to three or four neighbors
can be reliably solved by robust fitting and subtracting neigh-
boring models with a subsequent refit. For overlapping situ-
ations with more than four neighbors too few consistent data
is available for robust estimators. One should remember that
the highest possible breakdown point of a robust estimator is
ε∗ = 0.5. In such a case one should avoid any fitting and as-
sign a “standard spot model” to the spot location and do the
first fit after subtracting the neighbors. Such a “standard spot
model” can be computed by first estimating the center by M-
estimation of location, second taking a ’standard’ dispersion
matrix (the spots are approximately of equal size) and esti-
mating the amplitude by least square.

7 Outlook

We provide the following suggestions for the future work:
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Finding Better Models The parametric fit depends on its
model. We observed in our experiments – especially in high-
resolution images - spots which have no Gaussian distribu-
tion. One may adapt the Gaussian or construct an alterna-
tive model. On the other hand, it is possible to save time by
reducing the parameter space, i.e. taking only rotation sym-
metric models.

Finding alternative measures for goodness of fit and de-
tection limit We are rather satisfied with the introduced
measures for goodness of fit and detection limit. However,
one may find an alternative approach by constructing other
statistics or using a (maximum) entropy method for detec-
tion.

Contructing confidence intervals for parameters In
statistics it is common to give confidence intervals, ellipses,
etc. for the parameters or even for the model. For our prob-
lem it would be useful not only to have confidence intervals
for the parameters but also for the volume. Assuming a given
center or a perfectly determined center a confidence interval
for the volume can be directly constructed from a confidence
interval for the amplitude and dispersion matrix.

Developing machine learning algorithms When analyz-
ing a ONF-library the computer computes over 4600 Million
fits. However, the computer does not learn what is a good
fit or what is a spot. It does not learn that a certain volume
estimation cannot be possible. The computer should adapt
to new conditions and be more fault-tolerant. Robust esti-
mation, detection limit, fit acceptance depend on parameters
the prior choice of which may not stay optimal from image
to image, from library to library or even from experiment to
experiment. Furthermore, the computer could develop some
heuristics like: the Gaussian fit always overestimates the vol-
ume by 10%.

Other applications The results of this work can be adapted
to solve problems in other fields of science. Direct applica-
tion with few modifications can be done for detection and
quantification of galaxies or Braille recognition. Further-
more, the techniques introduced can used for object recog-
nition or reconstruction and robust vision.
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