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Abstract We have developed here the approach for visual-
ization of a set of parameters characterized by their correla-
tion matrix. The approach integrates two methods for data
mapping: Sammon’s mapping and the self-organizing map
(SOM). They are based on different principles, and, there-
fore, they supplement each other when used jointly. Some
(sometimes sufficient) knowledge on a set of parameters may
be obtained by using individual methods. In most cases, how-
ever, the necessity and efficiency of their joint use is unques-
tionable, – this allows us to observe the same data set from
various standpoints and to extend our knowledge on the ob-
ject of investigation.

1 Introduction

Any set of similar objects (cases, vectors) may be often char-
acterized by common parameters (variables, features). The
term “object” may cover, e.g. people, equipment, or produce
of manufacturing. Any parameter may take some values. A
combination of values of all parameters characterizes a con-
crete object from the whole set. The values obtained by any
parameter depend on the values of other parameters, i.e. the
parameters are correlated. There exist groups (clusters) of
parameters characterizing different properties of the object.
The correlation matrix of parameters may be calculated by
analysing the objects that compose the set. The problem is to
discover knowledge on the groups (clusters) of parameters in
the correlation matrix.

The following real correlation matrices (see references
in [6]) became classic: the matrix of 8 physical parameters
measured on schoolgirls; the matrix of 11 parameters char-
acterizing the development of agriculture in two Canadian
provinces, the matrix of 33 parameters of a tractor driver; the
matrix of 24 psychological tests on pupils of the 7th and 8th
forms in Chicago; the matrix of 11 frequencies that influence
human mentality; the matrix of 10 geological parameters.
However, recent research and technology development ap-
plications produce correlation matrices and discover knowl-
edge via their analysis, too (see, e.g., [16] for correlation be-
tween 7 environmental variables, describing the distribution
of ground by commune and by activity type in the intercity
transport design in Belgium, and [11] for the matrix of 6 pa-
rameters characterizing the ethylene production technology).

The approach investigated in this paper is oriented to the

analysis of correlation matrices and to the visual presenta-
tion of a set of parameters using the nonlinear Sammon’s
mapping and Kohonen’s artificial neural network – the self-
organizing map. The performance of our approach is illus-
trated by the visual analysis of four correlation matrices. The
first two matrices have the known “ideal” partition of pa-
rameters into groups. The third and forth matrices store the
correlation of environmental parameters that describe the air
pollution in Vilnius city [22] and the development of coastal
dunes and their vegetation in Finland [10]. These two prob-
lems are very urgent because they are of ecological nature: a
visual presentation of data stored in the correlation matrices
makes it possible for ecologists to discover additional knowl-
edge hidden in the matrices and to make proper decisions.

2 Representation of a Set of Parameters by a
Set of Vectors ofSn

Denote the correlation matrix of parametersx1, . . . , xn by
R = {rxixj , i, j = 1, n}. Hererxixj is a correlation coef-
ficient of parametersxi andxj . A specific character of the
problem of parameter clustering lies in the fact that the pa-
rametersxi andxj are related more strongly if the absolute
value of the correlation coefficient|rxixj | is higher, and less
strongly if the value of|rxixj | is lower (see [3]). The minimal
relationship between the parameters is equal to 0. The rela-
tionship is maximal when the correlation coefficient is equal
to 1 or−1.

Let Sn be a subset of ann-dimensional Euclidean space
Rn containing vectors of unit length, i.e.Sn is a unit sphere,
‖Y ‖ = 1 if Y ∈ Sn. The application of two matrices

1) |R| = {|rxixj |, i, j = 1, n} and
2)R2 = {r2

xixj , i, j = 1, n}
in clustering of parameters is investigated in [5] both
theoretically and experimentally: a system̃Y of vectors
Y1, . . . , Yn ∈ Sn, corresponding to the system of parame-
tersx1, . . . , xn, was analysed on the basis of the matrix of
cosines between pairs of vectors from the systemỸ by using
a modification of thek-means algorithm of Sp̈ath [20] (sub-
routine KMEANS) adapted to analyse the cosine matrix. Let
us describe this approach more in detail.

In order to apply functionals that describe the quality of
vector clustering (e.g. the sum of interior dispersions of
clusters) to parameter clustering, it is necessary to deter-
mine a system of vectorsY1, . . . , Yn ∈ Sn corresponding
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to the system of parametersx1, . . . , xn so thatcos(Yi, Yj) =
|rxixj | or cos(Yi, Yj) = r2

xixj . Then the clustering of vec-
torsY1, . . . , Yn should be performed. Bearing in mind that
Y1, . . . , Yn ∈ Sn, it suffices to know cosines between any
pair Ya andYb of vectors if we need to compute their Eu-
clidean distanceρ2(Ya, Yb) = 2[1 − cos(Ya, Yb)]. The dis-
tance between the weight centre of a cluster and any vector
from this cluster may be computed in a similar manner by
the known cosines between all the pairs of vectors from the
chosen cluster, too (see [5]).

If only the matrix of cosinesK = {cos(Yi, Yj), i, j =
1, n} is known, it is possible to restore the system of vec-
tors Ys = (ys1, . . . , ysn) ∈ Sn, s = 1, n, as follows:
ysk =

√
λkαsk, k = 1, n, whereλk is thek-th eigenvalue

of the matrixK, the vector(α1k, . . . , αnk) is a normalized
eigenvector corresponding to the eigenvalueλk.

The system of vectorsY1, . . . , Yn ∈ Sn does exist, if the
matrix of their scalar products is non-negative definite. The
matrix R2 = {r2

xixj , i, j = 1, n} is non-negative definite
(see [5]). However, the non-negative definiteness of the ma-
trix |R| = {|rxixj |, i, j = 1, n} does not follow from that of
the matrixR: the matrix|R|may not be non-negative definite
if it has just one negative element.

Remark 1.The system of vectorsY1, . . . , Yn ∈ Sn, corre-
sponding to the system of parametersx1, . . . , xn, does exist
if

a) cos(Yi, Yj) = rxixj , i, j = 1, n,

when allrxixj ≥ 0, i, j = 1, n,

b) cos(Yi, Yj) = r2
xixj , i, j = 1, n,

when there exists just onerxixj < 0.

3 Background for Visual Presentation of a
Set of Parametersx1, . . . , xn

The goal of this section is to analyse possibilities of mapping
a set of vectorsY1, . . . , Yn ∈ Sn, that corresponds to the
set of parametersx1, . . . , xn, on a plane trying to preserve
the relative distances betweenY1, . . . , Yn ∈ Sn. This leads
to the possible visual observation of a layout of parameters
x1, . . . , xn on the plane.

3.1 Sammon’s mapping

There exist a lot of methods that can be used for reducing the
dimensionality of data. The analysis of relative performance
of the different algorithms in reducing the dimensionality of
multidimensional vectors starting from the paper by Biswas,
Jain, and Dubes [2] indicates Sammon’s projection [19] to
be still one of the best methods of this class (see also [1] and
[8]).

Sammon’s projection is a nonlinear projection method to
map a high dimensional space onto a space of lower dimen-
sionality. In our case, the initial dimensionality isn, and the
resulting one is 2. Denote the distance between vectorYi and
vectorYj in the original space (in our case inSn) by d∗ij , and
the distance between the same vectors in the projected space
by dij . Sammon’s algorithm tries to minimize the distortion

of projection:

E =
1

n∑
i,j=1
i<j

d∗ij

n∑
i,j=1
i<j

(d∗ij − dij)2

d∗ij
.

In fact, Sammon’s mapping is closely related to the metric
multidimensional scaling (MDS) (see [12] for details on the
metric and nonmetric MDS). It, too, tries to optimise a cost
function that describes how well the pairwise distances in a
data set are preserved. The only difference between Sam-
mon’s mapping and the metric MDS is that the errors in dis-
tance preservation are normalized with the distance in the
original space (see the distortion of projectionE above).

3.2 The self-organizing map

The self-organizing map (SOM) proposed by Kohonen (see,
e.g., [7], [13], [14], [18]) is a class of neural networks that are
trained in an unsupervised manner using competitive learn-
ing. It is a well-known method for mapping a high dimen-
sional space onto a low dimensional one. We consider here
a mapping onto a two-dimensional grid of neurons. The
method allows putting complex data into order based on its
similarity and shows a map from which the features of the
data can be identified and evaluated.

A variety of realizations of SOM have been developed
(see, e.g., [14], [15], [17], [21]). All of them produce dif-
ferent results to some extent. Therefore, we present below
additional details on our realization of SOM used in the ex-
periments.

Usually, the neurons are connected to each other via rect-
angular or hexagonal topology. In this paper, we consider the
rectangular case, only (see Figure1 for example of SOM of
size 4 × 4: circles denote neurons; indices of neurons are
given inside the circles). The rectangular SOM is a two-
dimensional array of neuronsM = {mij , i = 1, kx, j =
1, ky}. Herekx is the number of rows, andky is the num-
ber of columns (in Figure1, both kx and ky are equal to
4). All neurons adjacent to a given neuron can be defined
as its neighbours of a first order, then the neurons adjacent
to the first order neighbour, excluding those already consid-
ered, as neighbours of a second order, etc. For example, the
first order neighbours ofm23 arem12,m13,m14,m22,m24,
m32,m33,m34; the remaining neurons are the second order
neighbours. The dimension of the vectors, which will be
presented as inputs to train the network, isn. Each com-
ponent of the input vector is connected to every individ-
ual neuron. Thus, there is a connection between the neu-
ron of the network and every component of the input vec-
tor. The weights of these connections form ann-dimensional
synaptic weight vector (the codebook vector). Thus, any
neuron is entirely defined by its location on the grid (num-
ber of row i and columnj) and by the codebook vector,
i.e. we can consider a neuron as ann-dimensional vector
mij = (m1

ij ,m
2
ij , . . . ,m

n
ij). In this way, each vector (neu-

ron)mij represents a part ofSn becauseY1, . . . , Yn ∈ Sn,
but in most cases the vectormij itself does not belong toSn,
i.e.mij /∈ Sn.
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Figure 1: The rectangular SOM.

The map is trained in an unsupervised manner using com-
petitive learning. Learning starts from the vectorsmij ini-
tialized randomly. The starting values ofmij are selected
so that cosines between their pairs be positive – just like be-
tween the pairs of vectors from the training set{Y1, . . . , Yn}.
At each learning step, an input vectorY is drawn from the
training set{Y1, . . . , Yn} and passed to the neural network.
The Euclidean distance from this input vector to each vector
mij is calculated and the vector (neuron)mc ∈ {mij , i =
1, kx, j = 1, ky} with the minimal Euclidean distance toY
is designated as a winner. Denote the row, wheremc is lo-
cated, byic, and the column byjc, i.e. c is a combination of
two numbers –ic andjc. The components of the vectormi

are adapted according to the rule

mij ← mij + hcij(Y −mij),

wherehcij is the learning rate, which is maximal for the win-
ning neuron, and decreases with the neighbourhood order
and the learning steps. After a large numberv of learning
steps, the network has been organized andn-dimensional in-
put vectors have been mapped – each input vector is related
to the nearest neuron (vector)mij .

Let us introduce a term “learning iteration”. The learn-
ing iteration consists ofn learning steps: the input vectors
from Y1 to Yn are passed to the neural network in consec-
utive order. The whole learning process consists ofv itera-
tions (v = 200 was used in the experiments). In our case,
such a partition of the learning process into learning itera-
tions is sensible because of a small numbern of input vectors
Y1, . . . , Yn.

hcij =
α

αηcij + 1
, α = max(

v + 1− e
v

, 0.01),

whereηcij is the neighbourhood order between the neurons
mc andmij ; e is the number of current iteration (e ∈ [1, v]).
The set of possible neighbours ofmc is restricted: we recal-
culate the vectormij if

ηcij ≤ max[αmax(kx, ky), 1].

Note that0 < hcij ≤ 1, hcij = 1 in the first learning
iteration wheni = ic andj = jc, only.

Using the SOM-based approach above we can draw a ta-
ble with cells corresponding to the neurons. The cells corre-
sponding to the neurons-winners are filled with the numbers

of vectorsY1, . . . , Yn. Some cells may remain empty. One
can decide visually on the distribution of vectorsY1, . . . , Yn
in then-dimensional space in accordance to their distribution
among the cells of the table. However, the table doesn’t an-
swer the question, how much the vectors of the neighbouring
cells are close in then-dimensional space.

3.3 Combination of the self-organizing map and
Sammon’s mapping

Two methods for data mapping are discussed above. They
are based on different approaches to mapping the data set.
We try below to apply them together.

The self-organizing map provides structured information
about the set of the analysed vectors – several elements (neu-
rons) of the two-dimensional rectangular grid are activated
(become winners), while the remaining elements are not ac-
tivated. The activated elements of the grid may be consid-
ered as points on the plane. The number of row and column
characterizes any of these elements, i.e. the location of these
elements is fixed on the plane by the nodes of the rectangular
grid. But the elements are characterized byn-dimensional
vectors, too. A natural idea comes to apply the distance-pre-
serving projection method to additional mapping of vectors-
winners in SOM. Sammon’s mapping may be used for such
purposes.

Following Sammon [19] who suggested that clustering
could be used as a front-end to his mapping algorithm, Kaski
in [12] makes an assumption (without its theoretical or ex-
perimental background) that an especially useful combina-
tion seems to be first to reduce the amount of data by SOM,
and then to display the reference vectors (winners) with some
distance-preserving projection method (e.g. Sammon’s map-
ping) to gain an additional insight. We will follow this
scheme and experimentally compare the results of Sammon’s
mapping of the vectors that correspond to the parameters
characterized by their correlation matrix and of the winners
in SOM.

4 Visual Presentation of Sets of Parameters
Having Known “Ideal” Partition

4.1 Data sets

The experiments were carried out on the basis of two correla-
tion matrices with the known “ideal” partition of parameters
into groups.

The first experiment was carried out using the correla-
tion matrixR8 of 8 physical parameters measured on 305
schoolgirls [4], [9]: height, arm span, length of forearm,
length of lower leg, weight, bitrochanteric diameter, chest
girth, chest width. Wide investigations of these classical test
data divided parameters into two groups:A1 = {x1, . . . , x4}
andA1 = {x5, . . . , x8}. The parameters of the first group
characterize shapeliness, while the parameters of the second
group characterize plumpness of girls. It is an “ideal” parti-
tion of parameters.

The second experiment was carried out using the correla-
tion matrixR24 of 24 psychological tests on 145 pupils of the
7th and 8th forms in Chicago [4], [9]. There are five groups
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of tests:
1) spatial perception{x1, . . . , x4},
2) verbal tests{x5, . . . , x9},
3) the rapidity of thinking{x10, . . . , x13},
4) memory{x14, . . . , x19},
5) mathematical capabilities{x20, . . . , x24}.
The tests of the fifth group characterize a general develop-

ment of the tested person. They do not characterize separate
parts of his intellect. Thus, classifying all the tests into four
groups the algorithms distribute the tests of the fifth group
among the other four groups. The investigations in [4] sub-
stantiate considering the partition
A1 = {x1, . . . , x4, x20, x22, x23},
A2 = {x5, . . . , x9},
A3 = {x10, . . . , x13, x21, x24},
A4 = {x14, . . . , x19}

as an “ideal” one.
Elements of both the matricesR8 andR24 are positive.

Therefore, their values were not squared for analysis (see Re-
mark 1).

4.2 Visualization by using Sammon’s mapping

In Figure2, we present Sammon’s mapping results of vec-
tors Y1, . . . , Yn ∈ Sn calculated on the basis of matrices
R8 (Figure 2a) andR24 (Figure 2b) using the approach of
Section 2. In fact, Figure2 shows the layout of parameters
x1, . . . , xn on the plane. The indices of parameters are given
at the points showing a place of the parameter on the plane.

Mapping of parameters on the basis ofR8 gave good re-
sults, – we can visually observe two clusters (see Figure 2a).
But it is impossible to evaluate the number of clusters in
Figure 2b (parameters are characterized byR24). However,
more correlated parameters are shown to be nearer to one
another.

The experiments show that, in general, it is not sufficient
to use Sammon’s mapping (or any other method of this class)
for visualization of a set of parameters.

4.3 Visualization by using SOM

Two sizes of SOM were used in the experiments:3 × 3 and
4× 4.

In Tables 1 and 2, the mapping results are presented (Ta-
bles 1a and 2a forR8, and Tables 1b and 2b forR24). A cell
of the table means a neuron. Indices of the input vectors (in
fact, parameters) nearest to the neuronmij are listed in the
i-th row andj-th column, i.e. only the cells corresponding to
the neurons-winners are not empty.

Parameters were distributed among the cells of the tables
(among the nodes of SOM). The results in Table 1b may
serve as a good example of application of SOM for clus-
tering: we see four clusters which are separated by empty
cells and contain the parameters like in the “ideal” partition
given in Section 4.1. Results in Tables 1a, 2a, and 2b need
an additional analysis.

4.4 Combined mapping

Sammon’s mapping has been applied to the winners in SOM
(to the vectorsmij that correspond to non-empty cells in Ta-

a)

b)

Figure 2: Sammon’s mapping results: a) 8 parameters, b) 24 pa-
rameters.

bles 1 and 2). The results are presented in Figures3 and4
(Figures 3a and 4a forR8, and Figures 3b and 4b forR24).

The results of combined mapping give the answer to the
questions, which remained open after the application of SOM
alone. In Figures3 and4, we can observe interlocation of
clusters. It means that we can visually determine, which
groups of parameters are more neighbouring, and which are
less ones. From Table 2b one can make a decision that the
parametersx1,x13 andx21 are similar. Figure 3b, however,
refutes such a proposition. Figures 3a, 4a, and 4b give a
possibility to visually observe the interlocation of parame-
ters both inside the clusters and on the whole.

In addition to the results of Figure 3b obtained applying
Sammon’s mapping to the winners of3× 3 SOM, Figure 4b
indicates that some clusters of parameters have a tendency of
division into subclusters (the results of Figure 4b are obtained
applying Sammon’s mapping to the winners of4× 4 SOM).
The conclusion on possible cluster division with growing the
dimension of SOM cannot be applied to the results in Figures
3a and 4a. However, the tendency of cluster division may
be observed in the respective Tables 1a and 2a. This shows
the advantage of simultaneous presentation of both the SOM
(table) and the results of combined mapping (figure) to the
investigator.
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Table 1: 3× 3 SOM.

a)
8 2,3

5,6,7 1,4

b)
14,15,16,17,18,19 10,11,12,13,21,24

1,2,3,4,20,22,23 5,6,7,8,9

Table 2: 4×4 SOM.

a)

4 2,3
7 1

5 6 8

b)

10,11,12,24 17,18 14,15,16
13,21 19

1
2,3,4 20,22,23 5,6,7,8,9

5 Visual Presentation of a Set of
Environmental Parameters

5.1 Data sets

The experiments were carried out on the basis of two corre-
lation matrices of environmental parameters.

The first experiment was carried out using the correlation
matrixR10 of 10 meteorological and environmental parame-
ters that describe the air pollution in Vilnius city [22]:

• x1, x2, andx3 are the concentrations of carbon monoxide
CO, nitrogen oxidesNOx , and ozoneO3;

• x4 is the vertical temperature gradient measured at a 2–8
m height;

• x5 is the intensity of solar radiation;

• x6 is the boundary layer depth;

• x7 is the amount of precipitation;

• x8 is the temperature;

• x9 is the wind speed;

• x10 is the stability class of atmosphere.

The second experiment was carried out using the correla-
tion matrixR16 of 16 environmental parameters that describe
the development of coastal dunes and their vegetation in Fin-
land [10]:

• x1 is the distance from the water line;

• x2 is the height above the sea level;

• x3 is the soilpH;

a)

b)

Figure 3: Combined mapping (3× 3 SOM + Sammon’s mapping)
a) 8 parameters, b) 24 parameters.

• x4, x5, x6, and x7 are the contents of calcium (Ca),
phosphorous (P ), potassium (K), and manganese (Mg);

• x8 andx9 are the mean diameter and sorting of sand;

• x10 is the northernness in the Finnish coordinate system;

• x11 is the rate of land uplift;

• x12 is the sea level fluctuation;

• x13 is the soil moisture content;

• x14 is the slope tangent;

• x15 is the proportion of bare sand surface;

• x16 is the tree cover.

The measurements of parameters were performed in dif-
ferent sample plots and a correlation matrix was computed.
MatricesR10 andR16 contain both positive and negative cor-
relation coefficients. Therefore, their squared values were
used in forming the set of vectorsY1, . . . , Yn ∈ Sn corre-
spondent to the set of parametersx1, . . . , xn (see Remark 1).

5.2 Visualization by using Sammon’s mapping

In Figure5, we present Sammon’s mapping results of vec-
torsY1, . . . , Yn ∈ Sn calculated on the basis of matricesR10

(Figure 5a) andR16 (Figure 5b) using the approach of Sec-
tion 2.
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a)

b)

Figure 4: Combined mapping (4× 4 SOM + Sammon’s mapping):
a) 8 parameters, b) 24 parameters.

5.3 Visualization by using SOM

The SOM of size4×4 was used in the experiments. In Tables
3a and 3b, the mapping results are presented (Table 3a for
R10, and Table 3b forR16). Table 3a indicates that there are
at least four clusters of parameters in the first set of param-
eters. Table 3b indicates at least three clusters in the second
set. These are the lower bounds for the number of clusters.
What are the upper bounds? The combined mapping should
be used in search for the answer.

Table 3: 4×4 SOM.

a)

7 1,2 4
10

3,9 6 5,8

b)

8,9 14 1,2,16
15 5 3

7
10,11,12 13 4,6

5.4 Combined Mapping

The results of combined mapping are presented in Figure6
(Figure 6a forR10, and Figure 6b forR16). We can visu-

a)

b)

Figure 5: Sammon’s mapping results: a) 10 parameters, b) 16 pa-
rameters.

ally observe four clusters in Figure 6a and at least four clus-
ters in Figure 6b. However, in Figure 6b the fourth cluster
{x1, x2, x3, x16}may be divided into two ones – the soilpH
x3 can form a separate cluster.

6 Conclusions

We have developed here the approach for visualization of
a set of parameters characterized by their correlation ma-
trix. The proposed approach integrates two methods for data
mapping: Sammon’s mapping and the self-organizing map
(SOM). They are based on different principles, and, there-
fore, they supplement each other when used jointly. Some
(sometimes sufficient) knowledge on a set of parameters may
be obtained by using individual methods (see Figure 2a –
Sammon’s mapping, and Table 1b – SOM). In most cases,
however, the necessity and efficiency of their joint use is un-
questionable, – this allows us to observe the same data set
from various standpoints and to extend our knowledge on the
object of investigation.

In general, if we have a data matrixZ = {zij , i =
1, t, j = 1, n} for the analysis, wheren is the number of
parameters,t is the number of objects (i.e. we observet dif-
ferent combinations of values of parametersx1, . . . , xn), and
t >> n, i.e. the value oft may be hundreds or thousands,
our approach to decrease the dimensionalityt via mapping
contains the following items:
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a)

b)

Figure 6: Combined mapping (4× 4 SOM + Sammon’s mapping)
a) 10 parameters, b) 16 parameters.

1. Building a correlation matrixR of dimensionsn × n for
n parameters on a basis of the matrixZ.

2. Finding a set of vectorsY1, . . . , Yn ∈ Sn correspondent
to the set of parametersx1, . . . , xn.

3. Graphical presentation of the set of vectorsY1, . . . , Yn ∈
Sn using Sammon’s mapping, SOM, or the combined
mapping.
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Appendix 1. Correlation matrix }8,1,,{8 == jirR
ji xx  of physical parameters

i\j 1 2 3 4 5 6 7 8
1 1.000 0.846 0.805 0.859 0.473 0.398 0.301 0.382
2 0.846 1.000 0.881 0.826 0.376 0.326 0.277 0.415
3 0.805 0.881 1.000 0.801 0.380 0.319 0.237 0.345
4 0.859 0.826 0.801 1.000 0.436 0.329 0.327 0.365
5 0.473 0.376 0.380 0.436 1.000 0.762 0.730 0.629
6 0.398 0.326 0.319 0.329 0.762 1.000 0.583 0.577
7 0.301 0.277 0.237 0.327 0.730 0.583 1.000 0.539
8 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000

Appendix 2. Correlation matrix }24,1,,{24 == jirR
ji xx  of psychological tests

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1.0 .318 .403 .468 .321 .355 .304 .332 .326 .116 .308 .314 .489 .125 .238 .414 .176 .368 .270 .365 .369 .413 .474 .282
2 .318 1.0 .317 .230 .285 .234 .157 .157 .195 .057 .150 .145 .239 .103 .131 .272 .005 .255 .112 .292 .306 .232 .348 .211
3 .403 .317 1.0 .305 .247 .268 .223 .382 .184 .075 .091 .140 .321 .177 .065 .263 .177 .211 .312 .297 .165 .250 .383 .203
4 .468 .230 .305 1.0 .227 .327 .335 .391 .325 .099 .110 .160 .327 .066 .127 .322 .187 .251 .137 .339 .349 .380 .335 .248
5 .321 .285 .247 .227 1.0 .622 .656 .578 .723 .311 .344 .215 .344 .280 .229 .187 .208 .263 .190 .398 .318 .341 .435 .420
6 .355 .234 .268 .327 .622 1.0 .722 .527 .714 .203 .353 .095 .309 .292 .251 .291 .273 .197 .251 .435 .263 .386 .431 .433
7 .304 .157 .223 .335 .656 .722 1.0 .619 .585 .246 .232 .181 .345 .236 .172 .180 .228 .159 .226 .451 .314 .396 .405 .437
8 .332 .157 .382 .391 .578 .527 .619 1.0 .532 .285 .300 .271 .395 .252 .175 .296 .255 .250 .274 .427 .362 .357 .501 .388
9 .326 .195 .184 .325 .723 .714 .585 .532 1.0 .170 .280 .113 .280 .260 .248 .242 .274 .208 .274 .446 .266 .483 .504 .424
10 .116 .057 .075 .099 .311 .203 .246 .285 .170 1.0 .484 .585 .408 .172 .154 .124 .289 .317 .190 .173 .405 .160 .262 .531
11 .308 .150 .091 .110 .344 .353 .232 .300 .280 .484 1.0 .428 .535 .350 .240 .314 .362 .350 .290 .202 .399 .304 .251 .412
12 .314 .145 .140 .160 .215 .095 .181 .271 .113 .585 .428 1.0 .512 .131 .173 .119 .278 .349 .110 .246 .355 .193 .350 .414
13 .489 .239 .321 .327 .344 .309 .345 .395 .280 .408 .535 .512 1.0 .195 .139 .281 .194 .323 .263 .241 .425 .279 .392 .458
14 .125 .103 .177 .066 .280 .292 .236 .252 .260 .172 .350 .131 .195 1.0 .370 .412 .341 .201 .206 .302 .183 .243 .242 .304
15 .238 .131 .065 .127 .229 .251 .172 .175 .248 .154 .240 .173 .139 .370 1.0 .325 .345 .334 .192 .272 .232 .246 .256 .165
16 .414 .272 .263 .322 .187 .291 .180 .296 .242 .124 .314 .119 .281 .412 .325 1.0 .324 .344 .258 .388 .348 .283 .360 .262
17 .176 .005 .177 .187 .208 .273 .228 .255 .274 .289 .362 .278 .194 .341 .345 .324 1.0 .448 .324 .262 .173 .273 .287 .326
18 .368 .255 .211 .251 .263 .197 .159 .250 .208 .317 .350 .349 .323 .201 .334 .344 .448 1.0 .358 .301 .357 .317 .272 .405
19 .270 .112 .312 .137 .190 .251 .226 .274 .274 .190 .290 .110 .263 .206 .192 .258 .324 .358 1.0 .167 .331 .342 .303 .374
20 .365 .292 .297 .339 .398 .435 .451 .427 .446 .173 .202 .246 .241 .302 .272 .388 .262 .301 .167 1.0 .413 .463 .509 .366
21 .369 .306 .165 .349 .318 .263 .314 .362 .266 .405 .399 .355 .425 .183 .232 .348 .173 .357 .331 .413 1.0 .374 .451 .448
22 .413 .232 .250 .380 .341 .386 .396 .357 .483 .160 .304 .193 .279 .243 .246 .283 .273 .317 .342 .463 .374 1.0 .503 .375
23 .474 .348 .383 .335 .435 .431 .405 .501 .504 .262 .251 .350 .392 .242 .256 .360 .287 .272 .303 .509 .451 .503 1.0 .434
24 .282 .211 .203 .248 .420 .433 .437 .388 .424 .531 .412 .414 .458 .304 .165 .262 .326 .405 .374 .366 .448 .375 .434 1.0



Appendix 3. Correlation matrix }10,1,,{10 == jirR
ji xx  of meteorological and enviromental parameters

that describe the air pollution in Vilnius city

i\j 1 2 3 4 5 6 7 8 9 10
1 1.00 0.78 -0.28 0.66 0.07 -0.33 -0.05 -0.09 -0.35 0.38
2 0.78 1.00 -0.37 0.63 -0.01 -0.31 -0.05 0.24 -0.38 0.37
3 -0.28 -0.37 1.00 -0.10 0.24 0.28 -0.11 0.18 0.64 0.04
4 0.66 0.63 -0.10 1.00 0.06 -0.45 -0.14 -0.06 -0.33 0.58
5 0.07 -0.01 0.24 0.06 1.00 -0.08 -0.05 0.09 -0.07 0.17
6 -0.33 -0.31 0.28 -0.45 -0.08 1.00 0.07 -0.10 0.60 -0.52
7 -0.05 -0.05 -0.11 -0.14 -0.05 0.07 1.00 -0.01 0.04 -0.11
8 -0.09 0.24 0.18 -0.06 0.09 -0.10 -0.01 1.00 0.01 0.23
9 -0.35 -0.38 0.64 -0.33 -0.07 0.60 0.04 0.01 1.00 -0.27

10 0.38 0.37 0.04 0.58 0.17 -0.52 -0.11 0.23 -0.27 1.00

Appendix 4. Correlation matrix }16,1,,{16 == jirR
ji xx  of environmental parameters that describe

the development of coastal dunes and their vegetation in Finland

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 114 15 16
1 1.00 0.72 -0.60 -0.23 -0.02 -0.33 -0.38 -0.12 0.21 0.17 0.20 0.07 -0.02 0.02 -0.20 0.61
2 0.72 1.00 -0.36 -0.17 -0.09 -0.20 -0.22 -0.31 0.23 0.12 0.17 0.07 0.05 0.11 0.16 0.52
3 -0.60 -0.36 1.00 0.41 0.29 0.60 0.70 0.08 -0.36 -0.23 -0.22 -0.20 -0.26 -0.08 0.22 -0.39
4 -0.23 -0.17 0.41 1.00 0.20 0.79 0.70 -0.25 0.10 -0.42 -0.46 -0.26 -0.29 -0.10 -0.02 -0.07
5 -0.02 -0.09 0.29 0.20 1.00 0.17 0.47 0.35 -0.40 -0.31 -0.34 -0.29 -0.13 -0.36 0.01 0.02
6 -0.33 -0.20 0.60 0.79 0.17 1.00 0.69 -0.13 -0.02 -0.24 -0.28 -0.08 -0.19 -0.06 -0.02 -0.04
7 -0.38 -0.22 0.70 0.70 0.47 0.69 1.00 0.01 -0.20 -0.50 -0.52 -0.39 -0.47 -0.14 0.13 -0.06
8 -0.12 -0.31 0.08 -0.25 0.35 -0.13 0.01 1.00 -0.60 0.12 0.07 0.07 -0.05 -0.06 -0.15 -0.19
9 0.21 0.23 -0.36 0.10 -0.40 -0.02 -0.20 -0.60 1.00 0.27 0.30 0.25 0.30 0.02 -0.13 0.30

10 0.17 0.12 -0.23 -0.42 -0.31 -0.24 -0.50 0.12 0.27 1.00 0.96 0.91 0.69 0.18 -0.24 0.14
11 0.20 0.17 -0.22 -0.46 -0.34 -0.28 -0.52 0.07 0.30 0.96 1.00 0.76 0.64 0.21 -0.16 0.16
12 0.07 0.07 -0.20 -0.26 -0.29 -0.08 -0.39 0.07 0.25 0.91 0.76 1.00 0.67 0.15 -0.31 0.11
13 -0.02 0.05 -0.26 -0.29 -0.13 -0.19 -0.47 -0.05 0.30 0.69 0.64 0.67 1.00 -0.05 -0.06 -0.01
14 0.02 0.11 -0.08 -0.10 -0.36 -0.06 -0.14 -0.06 0.02 0.18 0.21 0.15 -0.05 1.00 -0.13 -0.02
15 -0.20 0.16 0.22 -0.02 0.01 -0.02 0.13 -0.15 -0.13 -0.24 -0.16 -0.31 -0.06 -0.13 1.00 -0.19
16 0.61 0.52 -0.39 -0.07 0.02 -0.04 -0.06 -0.19 0.30 0.14 0.16 0.11 -0.01 -0.02 -0.19 1.00


