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Abstract The toolbox builds on Matlab and performs lin-
ear and quadratic statistical classification. It implements
methods published in the recently appeared monograph [5].
Several of the reported methods are not widely known, pro-
vide solution to a more general tasks than before, and give
a new systematic insight to the classical pattern recognition
tasks. The toolbox is intended to demonstrate and help to un-
derstand algorithms for synthesis of linear or quadratic dis-
crimination functions, mimimax learning, and unsupervised
learning. There is a small new contribution reported in im-
plementation of the generalized Anderson’s task.

1 Introduction

The classification toolbox is being created as a diploma thesis
at the CTU Prague. It is supposed to demonstrate the linear
and quadratic decision rules described in the recently pub-
lished pattern recognition monograph [5] (which will be fur-
ther references as the Book). Feature-based statistical pattern
recognition methods from the Book were of interest for us.
The developed toolbox focuses to linear discriminant func-
tions including its generalization by nonlinear data mapping.
The issue of learning decision rules in the statistical pattern
recognition framework is covered in the toolbox as well.

The toolbox should help to understand relevant algorithms
from the Book better and to demonstrate their functionality.
The visualisation of the process leading to the solution and
experimentation feasibility is stressed for this reason. The
toolbox is not optimized for specific tasks deliberately.

A substantial attention was devoted to thegeneralized
Anderson’s task. Besides implementing the algorithms de-
scribed in the Book we attempted to improve the method a
little.

The toolbox is built on top of the Matlab, version 5.2. The
reason for this choice is that Matlab provides many useful

∗This research was supported by the Czech Ministry of Education under
the grant VS96049 and the Research Topic JD MSM 212300013 Decision
and Control for Industry.

tools for data visualization, calculation with matrices, and
the user interface independent on the operating system. The
demonstrator environment is provided that allows the user
to choose different algorithms, compare their behavior, pro-
vides tools to control the algorithm run interactively, creates
synthetic input data or uses real ones.

2 Linear discriminant function, generalized
Andersons’s task, task formulations

LetX be a multidimensional linear space. The result of ob-
ject observation is a point in the (feature) spaceX. Let k be
an unobservable statek. Let us start with only two possible
statesk ∈ {1, 2} for simplicity. It is assumed that conditional
probabilitiespX|K(x | k), x ∈ X, k ∈ K are multidimen-
sional Gaussian distributions. Mathematical expectationsµk
and covariance matricesσk, k = 1, 2, of these distributions
are not known. The only knowledge available is that param-
eters(µ1, σ1) belong to a certain known set of parameters
{(µj , σj) | j ∈ J1}, similarly for (µ2, σ2). Both upper and
lower indices were used. Parametersµ1 aσ1 denote real but
unknown statistical parameters of an object in the state 1. Pa-
rameters{µj , σj} for a certain upper indexj represent one
pair from possible pairs of values.
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Figure 1: Generalized Anderson’s task in 2D feature space.
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Let us illustrate the mentioned case in Fig.1, where five
ellipses denote five Gaussian variables. Let us ignore the sep-
arating lineq for a moment. Let, for instance,J1 = {1, 2, 3}
andJ2 = {4, 5}. This assignment means that object is in a
first state characterized by random vector with first or second
or third distribution but it is not known which of them it is.
A similar situation is for the second state and fourth and fifth
distribution.

There are two classes of objects. Each class is described
by a mixture of Gaussian distributions. Components of two
mixtures are known. Only weights in the mixture are un-
known. The task is to determine the statek whenx is ob-
served under the described partial knowledge of the apriori
statistical model. It is shown in the Book that the studied
task should be formulated as a statistical decision task with
unknown intervention. In our particular case, we look for a
strategyq:X → {1, 2}, that minimizes the value

max
j∈J1∪J2

ε(j, µj , σj , q) , (1)

whereε(j, µj , σj , q) is a probability of the phenomenon that
the Gaussian random vectorxwith mathematical expectation
µj and covariance matrixσj fullfils either constraintq(x) =
1 for j ∈ J2 or q(x) = 2 for j ∈ J1. The Book states that
the statistical decision task reduces to search for minimax
solution in a space of mixture weights.

We are interested in the solution of the formulated task
under an additional constraint on the decision strategy (dis-
criminant function)q. The requirement is that the discrimi-
nant function should be linear, i.e. a hyperplane〈α, x〉 = θ
and

q(x) =

{
1 , if 〈α, x〉 > θ ,
0 , if 〈α, x〉 < θ ,

(2)

for a certain vectorα ∈ X and theθ. The expression in angle
brackets〈x, y〉 denotes scalar product of vectorsx, y.

The task (1) satisfying condition (2) minimizes the mean
classification error and can be rewritten as

{α, θ} = arg min
α,θ

max
j∈J1∪J2

ε(j, µj , σj , q(x, α, θ)) . (3)

This is a generalization of the known Anderson’s and Ba-
hadur’s task [1] that was formulated and solved for a sim-
pler case, where|J1| = |J2| = 1. Schlesinger proposed the
mentioned generalized formulation and calls itgeneralized
Anderson’s task.

The generalized Anderson’s task comprises two special
cases that are important. The first one, theoptimal sep-
aration of finite point sets, where the covariance matrices
σj , j ∈ J1 ∪ J2 are identity matrices. The finite point set
X̃ = x1, x2, . . . , xn from the spaceX should be divided
into two subsets̃X1 andX̃2 separated by a hyperplane. The
hyperplane should be as distant as possible from both sub-
setsX̃1 andX̃2. Actually, a vectorα and a thresholdθ are
looked for that (a) for allx ∈ X̃1 fulfills 〈α, x〉 > θ, (b) for
all x ∈ X̃2 fulfills 〈α, x〉 < θ, and maximizes the value

min

(
min
x∈X̃1

〈α, x〉 − θ
|α|

, min
x∈X̃2

θ − 〈α, x〉
|α|

)
. (4)

The second special case, called thesimple separation of fi-
nite point set, simplifies the previous case further. The sub-
setsX̃1, X̃2 should be separated by any hyperplane, i.e. the
condition (4) is ignored.

A separation of a finite set of points is an important step
in the attempt to solve the generalized Anderson’s task. If
its solution only up to arbitrarily smallε is searched for is
such a task calledε-solution. It is shown in the Book that it
is a breakthrough to the linear discrimination. A substantial
attention is devoted to in this paper.

The Book analyses the formulated tasks thoroughly. Let
us sketch the main ideas here. The good news is that the
minimized criterion (4) is unimodal. This allows to optimize
using “hill climbing methods” without danger of ending up
in local extreme. There are two bad news that relate to the
criterion. It is neither convex nor differentiable. Thus the
gradient does not exist and the fact that the gradient in the
extreme equals to zero cannot be used. The Book shows how
the Perceptron [4] and the algorithm proposed by Russian
mathematician Kozinec [3] solves the most special task – the
simple separation of a finite point set. For the more general
task (generalized Anderson’s task), the optimal separation of
infinite point sets, it is proven in the Book that an optimiza-
tion of a quadratic function on a convex polyhedron suffices,
i.e. the convex optimization can be used. The solution was
originally proposed in [6].

3 Toolbox overview

Let us present the structure of the toolbox and list the imple-
mented algorithms first to give the reader the overview. In-
dividual methods will be described in the sequel. If they are
treated in detail in the Book they are just sketched here. If
we had to make choices not described in the Book we devote
to their description more space.

1. Linear discriminant function.

• Separation of the finite sets of the points.

– Perceptron.

– Kozinec‘s algorithm.

– ε-solution.

– Linear Support Vector Machine.

– Fisher’s classifier [2].

∗ Modified Perceptron.

∗ Modified Kozinec‘s algorithm.

• Generalized Anderson‘s task.

– Original Anderson‘s solution.

– ε-solution.

– General solution (both method from the Book and
its improvement).

– Methods of the generalized gradient optimization.

2. Quadratic discriminant functionpart provides functions
for nonlinear data maping that allow a synthesis of the
quadratic discriminant function using the linear decision-
making methods.
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File: data2.mat, # of points K = 64

Figure 2: Linear separation of the finite set of points in a 2D feature
space.

3. Learning algorithmspart comprises both unsupervised
and minimax learning.

4 Sketch of the methods implemented in the
toolbox and described in the Book

4.1 Linear discriminant function

The linear discriminant function constitutes a substantial part
of the toolbox. Both the algorithms for separating finite and
infinite sets of points are implemented. The latter are also
known as linear decision on the mixture of normal distribu-
tions.

4.1.1 Separation of finite sets of the points The separa-
tion of the finite sets of the points comprises both the algo-
rithms for nonoptimal separation(as Perceptron, Kozinec‘s
algorithm) and the algorithms foroptimal separation(as
Schlesinger’sε-optimal separation). Besides the algorithms
described in the Book the Vapnik’s linear Support Vector Ma-
chine [7] was added to the toolbox as it provides another ap-
proach to the task as compared to iterative algorithms de-
scribed in the Book. Matlab optimization toolbox allowed us
to implement the Support Vector Machine algorithm simply
and efficiently.

Fig. 2 illustrates separation of the finite points in the two-
dimensional feature space.

Mentioned iterative algorithms for separating finite sets
can be used to create theFisher’s classifiersas well. Let
us notice that the construction of theFisher’s classifieris an
equal problem as solving the finite sets of non-equalities. The
toolbox implements algorithms that findFisher’s classifiers
using the modifiedPerceptronandKozinec’s algorithm.

Fig. 3 shows the obtainedFisher’s classifierfor finite
sets of the points in two dimensions. Hyperplanes dividing
classes are shown as dashed lines. Full lines correspond to
class vectors that determine the classifier.

4.1.2 Generalized Anderson‘s task Substantial part of
the toolbox is devoted to solution of the generalized Ander-
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Figure 3: Fisher’s classifier.
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Figure 4: Generalized Anderson‘s problems.
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Figure 5: Separation of the finite point sets.

son’s task. The more detailed description will be given in
Section5. The usage of the generalized Anderson’s task is
illustrated in Fig.4 for two classes. The first class is deter-
mined by three Gaussian distributions and the second class
by two distributions. The position of the separating hyper-
plane is determined, said informally, by pushing the hyper-
plane by growing ellipsoids in a certain way.

4.2 Quadratic discriminant function

The synthesis of a linear discriminant function is well under-
stood in the literature. Many algorithms are available includ-
ing those implemented in our toolbox. In general, the linear
separation of points in the feature space does not suffice and
the nonlinear separation hypersurface should be used instead.
In some cases, it is of advantage to re-map the original fea-
ture space nonlinearly to a new space where the separation
by a hyperplane is again possible. The new feature space has
often higher dimension.

In our toolbox, the re-mapping is implemented for a
quadratic discriminant function which is important in pat-
tern recognition. For instance, the Bayesian strategy leads to
the quadratic discriminant function. When a linear separa-
tion is found, the parameters of the linear hyperplane can be
transformed to the parameters of the original feature space
with the quadratic separating rule. The classification can
be performed in both the original feature space using of the
quadratic separation or in the re-mapped feature space using
the linear hyperspace.

Fig. 5 shows the example where the quadratic discrimi-
nant function is applied to the data that are not linearly sepa-
rable.

4.3 Learning algorithms can improve the statistical
model

Learning algorithms can be used when there is not enough
apriori knowledge about the classified objects. The statisti-
cal model of classes of recognized objects is expressed by
the probabilityp(x|k) which represents dependence between
the observationx and the object statek. The probability
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Figure 6: Unsupervised learning algorithms. Each ellipse shows
the statistical model for one particular class,µ gives the center of
the ellipse andσ determines the shape.

p(x|k) is needed, for example, when the optimal Bayesian
strategy is to be found. The toolbox allows to complete miss-
ing knowledge by learning.

4.3.1 Unsupervised learning algorithms A general
class of unsupervised algorithms that learn the statistical
model directly from unclassified data set is introduced in the
Book. These algorithms classify the data set iteratively using
Bayesian approach first. Thelearningusing maximum like-
lihood estimate is performed on the outcome. The clustering
algorithm ISODATA(called alsok-means) and theempiri-
cal Bayesian approachby H. Robbins belong to this general
class, for example. The Book proves theconvergence of the
learning processto the local or to the global maximum.

The learning algorithm finding parameters of the statis-
tical model assuming normal distribution and apriori known
number of classes is implemented in the toolbox. Algorithms
for both cases, i.e. for statistically independent and depen-
dent features are included. Fig.6 demonstrates the obtained
solution in the case of 4 classes and independent features.
Ellipses are streched in the directions of axesx, y.

4.3.2 Minimax learning Described unsupervised learn-
ing algorithms, based on the maximal likelihood estimate,
expect training data of a random nature and deteriorate their
behavior severely if this condition is not fulfilled. If the
random data are not available, the algorithms based on the
minimax learningshould be used instead. These algorithms
search for the statistical model using nonrandom training set
that describes the recognized classes well. The task is to find
such a statistical model for which the data represent the given
classes well, i.e. have high value ofp(x|k).

The algorithm implemented in the toolbox seeks a statisti-
cal model for one class with a normal distribution and corre-
lated features. Notice that this task is equivalent to the search
for a minimal ellipsoid that contains all data points from the
training set.
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Figure 7: Minimax learning algorithm finds the statistical model
for on clas only.

Fig. 7 demonstrates the minimax learning. The upper part
illustrates the found ellipsoid. The lower part shows two
curves indicating the quality of the solution. The Book is
referred to for a more detailed description.

5 Solution of the generalized Anderson’s task

Algorithms implemented in the toolbox that solve thegener-
alized Anderson’s taskare described in this section. Recall
that the generalized Anderson’s problem was formulated in
section2. Besides sketching the solution to it that is pro-
posed in the Book we attempted to explain the algorithms
implemented in the toolbox and to improve the solution a lit-
tle.

5.1 Equivalent task formulation enabling simpler
solution

The original generalized Anderson’s task can be easily trans-
formed to the equivalent one that is more suitable for the
analysis. The aim is to place the decision boundary〈α, x〉 =
θ into the origin of coordinates, i.e.〈α, x〉 = 0.

This modification adds one more feature space dimension
and one constant feature to each feature vector. The Gaussian
distributionN(µ, σ) will transform into higher dimension so
thatµ′ = {µ1, µ2, . . . , µn, 1}. The covariance matrix has the
last column and the last row filled by zeros in the new feature
space now, since the last coordinate is constant. The decision
boundary in the original space and decision boundary in new
space are related byα′ = {α1, α2, . . . , αn,−θ}. We shall
use only the transformed featuresµ′j ,σ′j in the sequel and
thus primed coordinates can be omitted, i.e.µj , σj , α will be
used instead.

Thanks to the transformation, the linear hyperplane pass-

ing through the origin of coordinates can be found. More-
over, the setJ2 can be reflected symmetrically to the origin
and sets of GaussiansJ1 and J2 are merged into one set.
Vectorsµ′j are introduced

µ′j =

{
µj , for j ∈ J1,
−µj , for j ∈ J2

The covariance matrices do not change. The original sets
of GaussiansN(µj , σj), j ∈ J1 andN(µj , σj), j ∈ J2, are
transformed into the one set of GaussiansN(µ′j , σ′j), j ∈ J .
Further on, primes can be omitted for simplicity again.

After the changes, thenew optimization criterioncan be
written for the generalized Anderson’s task as

α = arg min
α

max
j∈J

ε(α, µj , σj). (5)

Several characteristics of the function

max
j∈J

ε(α, µj , σj)

are proved in the Book that allow to design an elegant solu-
tion of the task. Here, only the principal characteristics will
be reminded.

The solution is based on the geometric imagination when
to each Gaussian distributionN(µj , σj) corresponds a set
of points circumscribed by the multidimensional ellipsoid
E(µj , σj). The set of points fullfils the unequation〈(µ −
x), σ−1(µ− x)〉 ≤ r2.

The book proves that the errorε(α, µj , σj) decreases
sharply if the radius of the ellipse is increased, i.e. the dis-
tance between the decision hyperplane and the ellipsoid cen-
ter. That is the reason why we attemt the decision hyper-
plane in such a way that the radius of the smallest ellipsoid
restricted by the hyperplane were the biggest. This leads to
maxmin optimization.

When increasing ellipsoids we attempt to find a position
when the hyperplane is pushed by ellipsoids that any any
change of hyperplane position would decrease the size of one
(the closest) ellipsoid.

We will need a contact pointxj0 between ellipsoid
E(µj , σj) and a hyperplane passing origin that is given by
a normal vectorα. The contact point is determined as

xj0 = µj − 〈α, µ
j〉

〈α, σjα〉
σj α .

We will need a radiusr(α, µj , σj) of the ellipsoidE(µj , σj)
which is determined by the decision hyperplane. Radiusr is
determined after substitution as

r(α, µj , σj) =
〈α, µj〉√
〈α, σjα〉

,

Fig. 8 illustrates the idea.
Thanks to the relation between theε(α, µj , σj) and the

distancer(α, µj , σj), the criterion (5) can be modified to a
form suited to the minimization better

α = arg max
α

min
j∈J

r(α, µj , σj) .
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Figure 8: Geometrical illustration of the distance between the mean
valueµj and the contact pointxj0 that helps to define optimization
criterion.

The good news is that the optimized function
minj∈J r(α, µj , σj) has one extreme only (it is unimodal).
The bad news is that it is not differentiable.

In the Book, the next important fact is presented in the
theorem about the necessary and sufficient conditions speci-
fying the solution to the generalized Anderson’s task. If the
convex hull of set of the contact pointsxj0, j ∈ J0 contains
the origin of the coordinates then an arbitrary vectorα′, that
is not collinear with the vectorα, satisfies

max
j∈J

ε(α′, µj , σj) > max
j∈J

ε(α, µj , σj) ,

where setJ0 contains indices of the distributions that have
the bigger error for givenα, i.e. (j | j ∈ J0) =
arg minj∈J r(α, µj , σj).

The proof of the above mentioned theorem, as given in the
Book, provides an algorithm that solves the generalized An-
derson’s task. The algorithm outline is given there as well.
Several subtask are mentioned in the Book and it is not speci-
fied which one ought to be used. We had several choices that,
of course, determine the final properties of the algorithm. We
shall describe those ones we picked up.

5.2 The outline of the algorithm solving the generalized
Anderson’s task

Input of the algorithm is given by the sets of Gaussian dis-
tributions, characterized with mean valuesµj and covari-
ance matricesσj . Gaussian distributionN(µj , σj), j ∈
J1 determines the first class and Gaussian distribution
N(µj , σj), j ∈ J2 determines the second class.

Result of the algorithm is the decision hyperplane given
by the normal vectorα and the thresholdθ. The mean clas-
sification error is given by the criterion (1) and the algorithm
minimizes it.

1. (Transformation of the distribution) The Gaussian distri-
butionsN(µj , σj), j ∈ J1∪J2, are transformed in such a
way that the hyperplane parameters{α, θ} are found that
satisfy

(α, θ) = arg min
α,θ

max
j∈J1∪J2

ε(j, µj , σj , (α, θ)) .

The obtained set of Gaussian distributions
N(µ′j , σ′j), j ∈ J , for which we findα′ satisfies

α′ = arg min
α′

max
j∈J

ε(α, µ′j , σ′j) .

The mean valuesµ′j , j ∈ J are calculated as

µ′j =

{
{µj1, µ

j
2, . . . µ

j
n, 1} for j ∈ J1 ,

−{µj1, µ
j
2, . . . µ

j
n, 1} for j ∈ J2 .

Covariance matricesσ′j , j ∈ J are computed as

σ′j =


σj1,1 . . . σj1,n 0

...
...

...
σjn,1 . . . σjn,n 0

0 . . . 0 0

 , for j ∈ J1 ∪ J2 .

The obtained variablesα′, µ′j andσ′j after the transfor-
mation will be written without primes in the sequel to sim-
plify the notation, i.e.α, µj andσj .

2. (Algorithm initialization). Such a vector is found that all
scalar products〈α1, µ

j〉, j ∈ J were positive.

If suchα1 does not exist then the algorithm exits and in-
dicates that there is not a solution with an error< 50%.

3. (Iterations). The improving direction vector∆α is found
which satisfies

min
j∈J

r(αt + k ·∆α, µj , σj) > min
j∈J

r(αt, µ
j , σj) , (6)

where0 < k, k ∈ R, r(α, µj , σj) is the radius indirectly
proportional to the uncertainty of the Gaussian distribu-
tionN(µj , σj), andt is the iteration number. The distance
can be written as

r(α, µj , σj) =
〈αt, µj〉√
〈αt, σjαt〉

.

If no vector∆α satisfying (6) is found then the current
vectorαt solves the task. Go to the last step5.

4. (The new solutionαt+1 is searched for as a point lying
on a line segment between the old solutionαt and the im-
proving direction∆α with smallest error)The positive
numberk is looked for which satisfies

k = arg min
k

max
j∈J

ε(αt + k ·∆α, µj , σj) . (7)

A new vectorαt+1 is calculated as

αt+1 = αt + k ·∆α .

If a quality change is smaller than a given limit∆r, i.e.

|rtmin − rt−1
min| < ∆r ,

then go to step5 else continue in iterations by jumping to
step3.
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5. (End of the algorithm). The inverse transformation is per-
formed as in the step1. The vectorαt should be primed
again asα′ = αt. The solution of the task in the original
n-dimensional space writes as

α = {α′1, α′2, . . . , α′n} ,
θ = −α′n+1 .

The algorithm exits in two cases. The first possibility is in
the step3 when the improved direction is looked for. It oc-
curs if a deviation between the optimal and found solution is
given by the precision of the algorithm finding the improving
direction.

The second possibility can occur when a change in the
solution quality is smaller than prescribed threshold after the
optimization is performed in the step4. Ideally, this case
case should not occur but due to numerical reasons during
optimization it is possible. Occurrence of this case means
that the algorithm “got stuck” in some improving direction
∆α so that current solutionαt does not need to be optimal.
This case is undesirable and thus we intended to find suitable
method that finds improving direction in the step3and avoids
an event treated by the step4.

5.3 Three subtasks where choices were made

The algorithm solving the general Anderson’s task as de-
scribed in Section5.2 consists of several subtasks. We had
to make some choices when implementing the toolbox. We
suggested a few modifications or improvements. These are
described below.

The first subtask concerns the need to findα that satis-
fies 〈α, xj0〉 > 0, j ∈ J0. Any algorithm that sepparates
finite sets of the points can be used. We have chosen the
linear Support Vector Machinesince it finds the optimal so-
lution directly without troubles with numerical instabilities.
The calculation is also the fastest of all algorithms we im-
plemented. We could use an efficientoptimization toolbox
included in Matlab as well.

The second subtask corresponds to the step3 of the al-
gorithm described in Section5.2. It calculates the improved
∆α. Several possibilities how to compute it are described in
the Book. We suggest a modification here that was superior
to original methods, in our experiments at least.

The third subtask we had to solve is the optimization of
the criterion (7) as used in the step4 of the algorithm in Sec-
tion 5.2. A complicated function of one real variable has to
be minimized.

Solutions to subtasks that were implemented in the tool-
box are described below.

5.4 Search for an improved direction∆α

The vector∆α must ensure that the error decreases in this
direction, i.e.

min
j∈J

r(αt + k ·∆α, µj , σj) > min
j∈J

r(αt, µ
j , σj) , (8)

wherek is any positive real number. It is proved in the Book
that the vector∆α satisfying the condition (8) must fulfill

〈∆α, xj0〉 > 0, j ∈ J0 . (9)

The setJ0 contains the distributions with biggest error, i.e.

{j | j ∈ J0} = arg min
j∈J

r(α, µj , σj) .

5.4.1 Approach A – Immediate use of∆α definition
The set of contact pointsxj0, j ∈ J0 should be found first.
The improvement must satisfy〈∆α, xj0〉 > 0, j ∈ J0. Algo-
rithms that separate finite sets of the points as mentioned in
Section4.1.1were used. The approach follows directly from
the definition of∆α. However, the results were the worst
among all approaches we tested.

5.4.2 Approach B – Direction improving the error
caused by the worst distribution The direction∆α is
searched so that the error corresponding to the worst distribu-
tionN(µj , σj), j ∈ J0 decreases the quickest. This direction
equals to the direction where the negatively taken derivative
of the error functionε(α, µj , σj), j ∈ J0 is the biggest. The
vector∆α fullfils

∆α = arg max
∆α

min
j

−∂ε
(
α+ k · ∆α

|∆α|

)
∂k

 .

or in other form

∆α = arg max
{∆α| |∆α|=1}

min
j

〈
∆α,

xj0√
〈α, σj .α〉

〉
.

If xj0√
〈α,σj ·α〉

is denoted as vectoryj then we can write

∆α = arg max
∆α

min
j

〈∆α, yj〉
|∆α|

,

that is equivalent to the optimal separation of finite sets of the
points using a hyperplane. We used the linear Support Vector
Machine.

5.4.3 Approach C – Local approximation with Gaus-
sian distribution with identity covariance matrix The
improved direction∆α is searched for that satisfies

∆α = max
∆α

min
j∈J

〈∆α, xj0〉
|∆α|

, (10)

where vectorsxj0 are vectors given by

xj0 = µj − rmin√
〈α, σj · α〉

σj · α ,

wherermin is the radius of the smallest ellipsoid and the
pointxj0 is the closest point between the hyperplane and the
ellipsoid for all Gaussian distributionsN(µj , σj), j ∈ J .
Such improving direction∆α satisfies the necessary condi-
tion (9) due to the fact thatJ0 ⊆ J . Moreover, it is the
direction in which the error decreases for all distributions
{µj , αj}, J ∈ J0 with the biggest error, i.e.

ε(α, µj , σj) < ε(α+ k ·∆α, µj , σj) , j ∈ J .
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Figure 9: The improving direction finding

If the improving direction∆α is found according to (10) then
all distributionsN(µj , σj) in the pointxj0(α, µj , σj) are ap-
proximated by the Gaussian distributionN(µj , E), whereE
denotes identity matrix, i.e. covariance matrices are identity.
Next, the optimal direction∆α is searched for this approxi-
mation. In the close neighborhood of pointsx0, j ∈ J , thus
dalphamakes the optimal improving direction. This is a spe-
cial case of the Anderson task with identity covariance matri-
ces, which was mentioned in Section2 as optimal separation
of of finite point sets. For this special case the algorithm finds
solution in one step, i.e. no iterations are needed.

Due to (10) the improving vector∆α can be found using
any algorithm separating finite sets of the points by linear
decision boundary. The linear Support Vector Machine was
used in our implementation.

Fig. 9 shows the difference between approach B and C. A
simplified 2D case is presented.

5.5 Optimization of the criterion of one real variable

Let us discuss several approaches how to solve the subtask
in step4 of the algorithm described in Section5.2. Having
finished the step3 the current solutionα and the improving
direction∆α are available. The aim is to find vector(α+ k ·
∆α) which determines the next value of the solution in the
generalized Anderson’s task. This vector has to minimize the
error of the solution given bymaxj∈J ε(αt+k ·∆α, µj , σj).

As was mentioned above, the error of the solution can be
expressed using the distancer(α + k ·∆α, µj , σj). Having
done that this subtask can be expressed as optimization of the
criterion

k = arg max
k

min
j∈J

r(α(1− k) + k ·∆α, µj , σj)) , (11)

wherek is a positive real number and the distancer(α + k ·
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Figure 10: Optimization of functionsr(α·(1−τ)+τ ·∆α, µj , σj).
The function values are on the vertical axis. The intervalτ ∈ (0, 1〉
is on the horizontal axis. The found maximumf(τ) is marked by a
dashed line.

∆α, µj , σj) is given by

〈(α+ k ·∆α), µj〉√
〈(α+ k ·∆α), σj · (α+ k ·∆α)〉

. (12)

The found valuek belongs to the infinite interval(0,∞).
Thanks to the special property of the optimized function the
maximization on the infinite interval can be avoided. Since
the distancer(α, µj , σj) depends on the direction of the vec-
tor α and does not depend on its absolute value, it holds

r(α, µ, σ) = r(c · α, µ, σ) , (13)

wherec is an arbitrary positive number. Hence we can re-
write the argumentα+ k ·∆α of ther to the form

1
1 + k

· α+
1

1 + k
k ·∆α , 0 < k <∞. (14)

This is equivalent to

α · (1− τ) + τ ·∆α , 0 < τ ≤ 1 . (15)

The maximization on the infinite(0,∞) interval to the maxi-
mization on the finite interval(0, 1〉 was transformed. Let us
denote the original optimization problem as

τ = arg max
0<τ≤1

f(τ) , (16)

where the functionf(τ) is equal to

min
j∈J

〈(α · (1− τ) + τ ·∆α), µj〉√
〈(α · (1− τ) + τ ·∆α), σj · (α · (1− τ) + τ ·∆α)〉

.

(17)
The functionf(τ) has only one extreme and it is not differ-
entiable as well as the radiusr(α, µj , σj). Refer to the Book
for the proof.
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Fig. 10 shows a set of the functionsr(α · (1 − τ) + τ ·
∆α, µj , σj) on the intervalτ ∈ (0, 1〉. The maximum of the
min f(τ) is marked by a dashed line.

Below we shall list the algorithms we tested. All of them
are implemented in the toolbox.

5.5.1 Function maximization by sampling of the in-
dependent variable This algorithm finds the valueτ in
which the functionf(τ) reaches its maximum. Theτ is de-
termined in such a way that a deviation between the optimal
valueτ∗ and the found valueτ is smaller than a prescribed
precision,|τ∗ − τ | ≤ ετ .

When finding the maximum, the original interval
〈τbeg, τend〉 is split into〈τbeq, τmid〉 and〈τmid, τend〉 accord-
ing to a given ratiod. The ratio given by Fibonacci series is
used instead of common bisection of an interval. We have
a triplet (τ tbeg, τ

t
mid, τ

t
end) in each stept of the algorithm,

which satisfies

f(τ tbeg) ≤ f(τ tmid) ≥ f(τ tend) . (18)

The new triplet is calculated as follows. The bigger interval
from the(τ tmid − τ tbeg) and(τ tend − τ tmid) is split into two
ones in given ratiod. The algorithmic description is

1. If (τ tmid − τ tbeg) > (τ tend − τ tmid) then we calculate
τ = τ tbeg + d · (τ tmid − τ tbeg) and evaluate the expres-
sion f(τ tmid) > f(τ). If the expression is satisfied then
we assign

τ t+1
beg = τ ,

else
τ t+1
end = τ tmid ; τ t+1

mid = τ .

2. If (τ tmid − τ tbeg) ≤ (τ tend − τ tmid), then we calculate
τ = τ tmid + d · (τ tend − τ tmid) and evaluate the expres-
sion f(τ tmid) > f(τ). If the expression is satisfied we
assign

τ t+1
end = τ ,

else
τ t+1
beg = τ tmid ; τ t+1

mid = τ .

The condition (18) holds after performing the mentioned
steps as the functionf(τ) is unimodal. This procedure is iter-
ated until the desired precision is reached, i.e(τend−τbeg) <
∆τ .

The division ratiod(t) is determined in each stept accord-
ing to the Fibonacci seriesF (t) given recursivelyF (1) = 1,
F (2) = 2, F (t) = F (t− 1) + F (t− 2).

The algorithm is useful for solving the generalized Ander-
son’s task. Hundreds of steps were sufficient.

5.5.2 Function maximization by sampling of the func-
tion value The value of the variableτ is searched in which
the functionf(τ) reaches its maximum. Theτ is determined
so that difference between the optimal functional valuef(τ∗)
and the found valuef(τ) is smaller than a given precision,
|f(τ)− f(τ∗)| ≤ εf .

The value of the independent variableτ lies inside the
interval T = (0, 1〉. At the beginning, the algorithm has

to determine the upper limitfup and the lower limitflow
satisfying the following: suchτ ∈ T exists thatf(τ) ≥ flow
and does not existτ ∈ T thatf(τ) ≥ fup. In each step, the
algorithm checks whether such aτ ∈ T exists that fulfills
f(τ) ≥ fmid = 1

2 (flow + fup). If it is true the lower limit
increases toflow = fmid else the upper limit decreases to
fup − flow ≤ εf .

The key problem is how to evaluate expressionf(τ) ≥ c
and if it holds how to determine interval of validityτ ∈ T .
The function (17) has to be analyzed. More detailed analysis
including the solution can be found in the Book.

At last, the initial values of the limitsflow a fup have to
be determined. The book does not provide specific solution.
We set the initial values having in mind properties of the gen-
eralized Anderson’s task as follows. The lower limit can be
set as

flow = min
j∈J

r(α, µj , σj) .

In the case that theτ satisfying

min
j∈J

r(α · (1− τ) + τ.∆α, µj , σj) ≥ min
j∈J

r(α, µj , σj)

does not exist, there is no chance to find the improving direc-
tion ∆α and the optimization cannot be successful.

On the other hand, the following holds having in mind a
geometric interpretation of the generalized Anderson’s task

min
j∈J

r(α · (1− τ) + τ ·∆α, µj , σj) ≤ max
j∈J

r(α, µj , σj) .

For the upper limit we obtain

fup = max
j∈J

r(α, µj , σj) .

Function maximization by sampling of the function value
seemed to be slightly worse in our experiments than the
method based on sampling the independent variable de-
scribed in the previous subsection.

5.6 ε-solution of the Generalized Anderson’s task

The ε-solution method finds such a decision boundaryα, θ
that corresponds to the classifier error smaller than a given
limit ε0, i.e.

max
j∈J1∪J2

ε(j, µj , σj , q(x, α, θ)) < ε0 . (19)

Previous formula definesε-solution of the Generalized An-
derson’s task.

The optimal value of the criterion (3) does not need to be
found. The algorithm is thus easier. It does not matter that
the strict optimum is not found in many practical tasks.

Classes in the Anderson’s task are determined by the set
of Gaussian distributions. The error of one Gaussian distri-
bution corresponds to the radius of the (multidimensional)
uncertainty ellipsoid lying in the halfspace given by the de-
cision hyperplane. If the maximal allowed classifier error is
known then the set of the Gaussian distributionN(µj , σj),
j ∈ J1 can be expressed by an infinite set of the points. Let
denote it asX1. Points are positioned inside the geometric
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intersection of the ellipsoids restricted by the decision bound-
ary {α, θ}. The centers of ellipsoids correspond to mean
valuesµj , j ∈ J1 and the ellipsoids shape is determined
by covariance matricesσj , j ∈ J1. An infinite setX2 for
the second class given by Gaussian distributionsN(µj , σj),
j ∈ J2 is expressed analogously.

The task can be reduced to the separation of infinite sets of
the pointsX1(r) aX2(r) provided that the maximal limit of
the classifier error is given. The idea is proven in the Book.

A finite set of points can be separated by the Kozinec’s or
Perceptron, as was described in Subsection4.1.1. Moreover,
they are able to separate infinite sets of points after small
modification. It is possible on condition the infinite sets are
creative described. The setsX1 andX2 satisfy just this con-
dition. So that modified Kozinec’s algorithm or Perceptron
are able to find solution of theε-solution of the Generalized
Anderson’s problem.

Very important feature of these algorithms is capability to
find solution in finite number of steps, if such solution exist.

6 Conclusions

The described linear and quadratic classification toolbox
is still being developed. The current version is available
for experiments at thehttp://cmp.felk.cvut.cz/
˜hlavac/Public/Pu/LinClassToolbox

I mentioned algorithms were tested on synthetically gen-
erated data sets. Experiments with real data are being pre-
pared. They should appear in the first author’s diploma thesis
that is supposed to be submitted in January 2000, i.e. before
the Czech Pattern Recognition Workshop. It is likely that we
could report about it at the workshop.

Anyway, we can summarize experience gained in experi-
ments with algorithms implemented in the toolbox. In gen-
eral, the practical experience matches to the expected prop-
erties of algorithms as described in the Book.

When implementing the generalized Anderson’s task we
had to make several choices that are not described in the
Book in needed detail. The algorithm outline, as described
in Subsection5.2, was filled by the methods their combina-
tion seemed to perform the best. Regarding the improving
direction, as specified by the step3, the local approximation
with Gaussian distribution with identity covariance matrix as
described in Subsubsection5.4.3performed the best.

The step4 of the algorithm searches for new solution be-
tween the old solution and the improving direction with the
smallest error. When doing so the optimization of the cri-
terion of one real variable should be performed. The maxi-
mization of an unimodal criterial function by sampling of the
independent variable, as described in Subsubsection5.5.1,
gave the best results.

It can be of advantage to use theε-solution to the general-
ized Anderson’s task as described in the Subsection5.6. This
occurs in practical cases when the strict optimal solution is
not needed and the solution with error smaller than any pre-
defined error suffices. If such a solution exists then the algo-
rithm finds it in a finite number of steps. Otherwise, there the
information when to stop the algorithm is not available. This

is a disadvantage, of course.
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