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Abstract In this paper we propose a new method to relink
graph pyramids by local relinking operations. The relinking
of graph pyramids by modifying the father-son links requires
connectivity checks for the modified receptive fields. Some of
these checks may become very complex, if the relinking is to
be performed in parallel. Our method avoids these checks.
By representing graph pyramids as bases of valuated ma-
troids, the goal of the relinking is expressed by a valuation
on the corresponding matroid. This valuation guides the lo-
cal relinking operations. The valuation attains its maximal
value if none of the local relinking operations yields higher
values. The new method is used for an adaption of graph
pyramids towards having a given receptive field.

1 Introduction

To perceive an image is to transform it [Ser82]. In order
to allow a clear distinction between transformations of im-
age structure and transformations of image contents, we first
represent the image as an attributed graph forming the base
level of a graph pyramid. A common way to construct the
base level graph is to create a vertex for each pixel and to let
the edges represent the 4-connectivity of the pixel array. The
attributes of the vertices, edges and faces are derived from
the gray values or colors of the pixels. The other levels of
the pyramid are formed by subsequent dual graph contrac-
tions [Kro95a] controlled by application defined models. A
local function, the so calledreduction function, derives the
attributes of the current level from the level below. In all
levels the attributes represent the image contents, while the
structure of the image is given by the graph without the at-
tributes. The graphs on the higher levels of the pyramid yield
more and more abstract descriptions of the underlying im-
age. However, the construction of the graph pyramid should
not be restricted to a bottom-up procedure. The alternatives
as given by a model usually induce constraints on neighbor-
hoods in the graph pyramid. Holding to the separation of
structure and contents we extend the influence of the model
by allowing

1. relinking of the pyramid without adjusting the contents,

2. contents adjustments, classification without relinking.
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Figure 1: Iterative parallel transformations on graph pyramids.

These transformations are also utilized to increase the robust-
ness of the pyramid. This paper is devoted to efficiently per-
form the relinking by iterated parallel transformations (IPT)
[Sch97]. A variable linking of regular pyramids was first de-
scribed in [BHR81]. An extension to irregular hierarchies
of graphs is shown in [Nac95]. IPT for contents adjustment
and classification, i.e.relaxation, has been applied to hierar-
chies of graphs in [WH96]. Since dual graph contraction is
an IPT towards abstraction, the IPT considered so far can be
organized in the triangle depicted in Fig. 1.

The paper is organized as follows. Section 2 is devoted
to the construction of graph pyramids by dual graph con-
traction. Section 3 points out the necessity of connectivity
checks when modifying the father-son links of a graph pyra-
mid. In Section 4 we demonstrate how to code the construc-
tion of graph pyramids in the base level of the pyramid. As
shown in Section 5, this coding gives rise to a new repre-
sentation of graph pyramids in terms of matroid bases. By
means of the new representation we arrive at a definition of
local relinking operations on graph pyramids which do not
require connectivity checks. Section 6 introduces valuations
on matroids. The valuations are utilized to guide the local re-
linking operations. In Section 7 we apply the relinking to the
adaption of graph pyramids towards having a given receptive
field. We conclude in Section 8.
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(a) (G0;G0) (b) (G1; G1) (c) (G2;G2)

Figure 2: Dual graph contraction.

2 Dual Graph Contraction

The construction of graph pyramids bydual graph contrac-
tion (see Fig. 2) is described in [Kro95a]. LetG0 = (V0; E0)
andG0 = (V0; E0) denote a pair of plane graphs, whereG0

is the dual ofG0. Dual graph contraction consists of two
steps:dual edge contractionanddual face contraction. The
dual edge contraction is specified by a spanning forestF0 of
E0, the trees of which are referred to ascontraction kernels.
In Fig. 2a the non-trivial contraction kernels ofG0 are em-
phasized. Each contraction kernelT0 of F0 is contracted to
one vertexv1 of the graphG1 = (V1; E1) on the next level of
the graph pyramid. For each vertexv0 of T0 the vertexv1 is
calledfatherof v0 andv0 is called thesonof v1. Each edge
of E1 corresponds to exactly one edge inE0, which does not
belong to a contraction kernel. LetF0 denote the set of edges
in E0, which are dual to the edges inF0. SetE1 := E0 n F0
andG1 := (V0; E1). Note thatG1 andG1 form a dual pair
of plane graphs.

The second step, calleddual face contraction, is speci-
fied by contraction kernelsF1 in G1. In Fig. 2b the contrac-
tion kernels ofG1 are emphasized. Analogous to dual edge
contraction, we generateG2 and setG2 := (V1; E2) with
E2 := E1 nF1. Each vertex inG2 has exactly one son inG1,
i.e. the vertex itself. The graphsG2 andG2 form another
dual pair of plane graphs. In [Kro95a] the role of dual face
contraction is confined to the removal of faces bounded by
less than three edges. In the following we will drop this re-
striction in order to apply the theory of matroids in a general
way. Subsequent parallel edge [face] contraction steps may
be summarized by a single edge [face] contraction step.

Each vertex in the graph pyramid represents a connected
set of base level vertices, the so calledreceptive field. The
receptive field of a base level vertex contains exactly the
vertex itself. For each vertexvk on the levelk � 1 the
receptive fieldRF (vk) is defined by all vertices in the
base level of the pyramid which lead tovk by climbing the
pyramid from sons to fathers:

G

G

Gv

G6

4

2

0

Figure 3: The vertices forming the receptive field ofv are enlarged.

RF (v0) = fv0g for v0 2 V0;
RF (vk) =

S
(RF (vk�1) j vk�1 is son ofvk); k > 0:

In Fig. 3 the odd levels are omitted. Note that the re-
ceptive fields in the graph pyramid do not overlap, since all
vertices (except the apex) have exactly one father.

3 Modifying Father-Son Links

How can a graph pyramid be rebuilt by local relinking op-
erations? The father-son links can all be represented be-
tween subsequent even levels of the graph pyramid (Fig. 3).
In [Nac95] the relinking was performed by assigning new
parents to sons. The new father must always be adjacent to
the old father in the level of the fathers. This condition, how-
ever, is not sufficient for the new father-son links to represent
a valid graph pyramid. Figs. 4a and 4b show that
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� the sons of the new father are not necessarily connected in
the level of the sons and that

� the remaining sons of the old father may be disrupted by
the assignment of one son to a new father.

The conditions for a relinking operation to yield one of the
above cases are checked easily. This checking can also be
combined with a parallel application of the relinking opera-
tions [Nac95].

More severe problems occur, when levels higher than the
level of the fathers are present in the graph pyramid. Fig. 5
illustrates that the receptive fields of vertices above the level
of the fathers may also be disrupted. Checking whether a
relinking operation causes this kind of disruption involves
multiple pyramid levels. Furthermore, complex algorithms
are required to check, whether multiple relinking operations
may be performed in parallel. This is due to the fact, that
the compatibility of relinking operations cannot be described
locally [Nac95].

4 A new Coding for the Construction of
Graph Pyramids

In the following we will assign labels to the edges in the base
level of a graph pyramid, which specify the construction of
the graph pyramid.

Let G0 andG0 denote a pair of plane graphs and assume
P = (G0; G1; : : : ; G2n) andP = (G0; G1; : : : ; G2n) to be
graph pyramids constructed on top of the pair(G0; G0) by
dual graph contractions. We also assume that the apexG2n

is a graph with one vertex and zero edges. LetGi = (Vi; Ei)
for all 0 � i � 2n. The domain of all graph pyramids with
the above properties is denoted byD(G0; 2n). For each edge
e 2 E0 let l(e) denote the maximal level ofP which contains
e, i.e.

l(e) := maxfj j e 2 Ej nEj+1g: (1)

The construction of the graph pyramid is determined by the
above assignment of labels fromL := f0; 1; 2; : : :g to the
edges inE0 (similar to [Kro95b]). The assignments are ex-
pressed by subsets ofE0 � L. Let B denote a subset of
E0 � L. We set

E0(B) := fe 2 E0 j 9j with (e; j) 2 B andj � 0 mod2g:
(2)

If B = f(e; l(e)) j e 2 E0g, wherel(�) from (1) refers to
the construction of a graph pyramid, thenB is calledbuildup
plan. For a buildup planB the following holds:

B1 8e 2 E0 91 j 2 L with (e; j) 2 B and

B2 E0(B) forms a spanning tree ofG0.

Conversely, letB � E0 � L. If B fulfills conditionsB1 and
B2, then it is a buildup plan. This follows from the fact, that
E0(B) forms a spanning tree inE0 if and only if

E1(B) := fe 2 E0 j 9j with (e; j) 2 B andj � 1 mod2g
(3)

forms a maximal edge set inE0, whose removal does not de-
stroy the connectivity ofG0. Hence, the edges inG0, which
are dual toE1(B) form a spanning treeE1(B) inG0 [TS92].
The contraction kernels for the dual edge contraction and the
dual face contraction may be derived from the sets

f(b; j) 2 B j b 2 E0(B)g

and
f(b; j) 2 B j b 2 E1(B)g

respectively.

5 Representation of Graph Pyramids as
Bases of Matroids

LetB denote the collection of all buildup plans for pyramids
in D(G0; 2n). Note that the elements ofB are subsets of
E0 �L. We require the edge setE0 to be non-empty. Hence
B is non-empty. The following theorem states an exchange
property for sets inB.

Theorem 5.1 Let B;B0 2 B. For eachb 2 B n B0 there
existsb0 2 B0 nB such thatB n fbg [ fb0g 2 B.

Proof: It suffices to show thatE0(B n fbg [ fb0g) forms a
spanning tree ofG0 or thatE1(B nfbg[fb0g) forms a maxi-
mal set of edges fromE0, whose removal does not of destroy
the connectivity ofG0.
� Caseb = (e; l) with l > 0: In the unique cycle of
E0(B0) [ feg there existse0 =2 E0(B) (sinceE0(B) con-
tains no cycles). Letl0 2 L denote the unique number with
(e0; l0) 2 B0 and setb0 := (e0; l0). Sincee0 =2 E0(B), it
follows thate0 6= e. This impliesb0 6= b and (because of
e0 2 E0(B0) [ feg) e0 2 E0(B0), i.e. l0 > 0. Sincee ande0

belong to the same cycle ofE0(B0) [ feg and have positive
labels, it follows thatE0(B n fbg [ fb0g) forms a spanning
tree ofE0.
� Caseb = (e; l) with l < 0: Removing the setE1(B0)[feg
fromE0 would destroy the connectivity ofG0. However, the
removal ofE1(B) does not destroy the connectivity ofG0.
Hence, there existse0 2 E1(B0) [ feg; e0 =2 E1(B). Let
l0 2 L denote the unique number with(e0; l0) 2 B0 and set
b0 := (e0; l0). Sincee0 =2 E1(B), it follows that e0 6= e.
This impliesb0 6= b and (because ofe0 2 E1(B0) [ feg)
e0 2 E1(B0), i.e. l0 < 0. Sincee; e0 2 E1(B) [ fe0g and
E1(B) [ fe0g is a minimal set of edges, whose removal de-
stroys the connectivity ofG0, it follows thatE1(B n fbg [
fb0g) is a maximal set of edges fromE0, whose removal does
not destroy the connectivity ofG0. 2

Definition 5.2 For B 2 B; b 2 B; b0 =2 B the mapping
modif(B; b; b0) := B nfbg[fb0g is called local modification
of B, if modif(B; b; b0) 2 B.

The sets inB determine an infinitematroidM := (E0 �
L; I) onE0 � L, where

I := fI � B j B 2 Bg (4)
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(a) Sons of new father disconnected.
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(b) Sons of old father disconnected.

Figure 4: Two cases of forbidden relinking (adapted from [Nac95]).
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Figure 5: Relinking yields loss of connectivity in a higher pyramid level (adapted from [Nac95]).

[Oxl92]. The sets inI are referred to asindependent sets
and the elements ofB are referred to asbases. Bases are
maximal independent sets as in the theory of vector spaces,
whereindependentmeanslinearly independent. Since a ma-
troid is completely determined by its bases, we may write
M = M(B). In [Bru69] the exchange property of Theo-
rem 5.1 is extended:

Theorem 5.3 LetB denote the collection of bases of a ma-
troid and letB;B0 2 B. For eachb 2 B n B0 there exists
b0 2 B0 nB such that
� B n fbg [ fb0g 2 B and
� B0 n fb0g [ fbg 2 B.

Theorem 5.3 implies that anyB 2 B can be adapted to
any otherB0 2 B by local modifications only. The local
modifications can always be chosen such that an element
b1 2 B1 nB2 is exchanged by an elementb2 2 B2 nB1.

Note that the numberj fB2 n B1g j defines an edit dis-
tance between matroid bases and thus between graph pyra-
mids with the same base level. Unlike [Bun99], the compu-
tation of the edit distance is enormously facilitated by a one-
to-one correspondence between the edges in one base level
and the edges in the other base level.

If the construction ofP is determined by a matroid base
B, each local modification ofB induces an operation onP .
We define:

Definition 5.4 An operation on a graph pyramidP is called

local relinking operation, if it is induced by a local modifi-
cation on a matroid base that describes the construction of
P .

6 Valuated Matroids

In order to utilize local relinking operations for the adap-
tion of a graph pyramid, the choice of the operations has
to be determined by the goal of the adaption. We represent
graph pyramids as bases of matroids and use a definition in
[DW90], whereR denotes, for example, the set of reals or
the set of integers.

Definition 6.1 (Valuation on a Matroid) A valuation on a
matroidM =M(B) is a function!: B ! R which has the
following exchange property. ForB;B0 2 B andb 2 B nB0

there existsb0 2 B0 nB such that

� B n fbg [ fb0g 2 B,

� B0 n fb0g [ fbg 2 B,

� !(B)+!(B0) � !(B nfbg[fb0g)+!(B0 nfb0g[fbg).

A matroid equipped with a valuation is called valuated ma-
troid.

The following theorem [DW90] implies that valuations on
matroids can be maximized by local modifications.

4123 123



Roland Glantz and Walter G. Kropatsch

Theorem 6.2 Let B 2 B and let! be a valuation on the
matroidM = M(B). Then!(B) is maximal, if!(Bm) �
!(B) for all local modificationsBm ofB.

In order to utilize Theorem 6.2 for the adaption of graph
pyramids by local relinking operations, we have to find a
valuation on the corresponding matroid, which is maximal
if and only if the goal of the adaption is reached. Then we
apply a local relinking operation whenever it increases the
valuation.

7 Adaption of Graph Pyramids

In this section we use valuated matroids to adapt a graph
pyramidP towards having a receptive field equal to a given
connected setT of vertices from the base level ofP . If there
is no receptive field equal toT , we may still ask: How well
doesT fit into the pyramidP? This question has a narrow
metric and a wider structural aspect: If there exists a recep-
tive fieldRF in P with a small distance (Hausdorff-distance
for example) toT , we say thatT fits well intoP . The wider
structural aspect is the following: Can a good fit ofT into
P be achieved by only a few (including zero) local relinking
operations onP? This case is illustrated in Fig. 6b, where
splitting off the receptive fieldG fromRF yieldsT .

In the following, we will apply local relinking operations
to the graph pyramidP , such that one of its receptive fields
becomes equal toT . In Fig. 7a and 5d the pyramidP and the
adapted pyramidP 0 are illustrated by their receptive fields.
The setT is given by the filled circles.

SinceT is contained in the receptive field of the apex of
P , there exists a smallest receptive field ofP which coversT
completely. In particular, there exists a vertexvcovT in P such
thatT � RF (vcovT ) andT 6� RF (v) for all sonsv of vcovT .
If T = RF (vcovT ) no adaption ofP is needed. Otherwise
structural modifications are needed only in the subpyramid
of P , whose apex isvcovT .

As explained in Section 5, we may describe the adaption
of P by local modifications on the corresponding matroid
baseB. The setE0 of edges in the base level ofP is par-
titioned by the edge setsE0(B) andE1(B), as defined in
(2) and (3). The edge setsE0(B) andE1(B), in turn, are
partitioned with respect toT into three classes each. For
i 2 f0; 1g we set:

� Ei
1(B) := fe = (u; v) 2 Ei(B) j fu; vg � Tg,

� Ei
2(B) := fe = (u; v) 2 Ei(B) j fu; vg \ T = ;g,

� Ei
3(B) := Ei(B) n (Ei

1(B) [ Ei
2(B)).

AdaptingP towards containingT as a receptive field, we
focus on the following edges inE0(B):

Definition 7.1 An edgee = (w; z) 2 E0(B) conflicts with
T , if

� e 2 E0
3(B) and

� one end point ofe is contained inRF (vcovT ) n T .

Theorem 7.2 The graph pyramidP has no receptive field
equal toT ,P has edges conflicting withT .

Proof of Theorem 7.2:
): Assume that no receptive field ofP equalsT , i.e.
RF (vcovT ) � T andRF (vcovT ) 6= T . The set of all edges
from E0(B) with both end vertices inRF (vcovT ) forms a
spanning tree ofRF (vcovT ) and thus contains an edgee =
(w; z) with w 2 T andz 2 RF (vcovT ) n T . The edgee con-
flicts with T .
(: Let e = (w; z) be an edge conflicting withT . Without
loss of generality we assumez 2 RF (vcovT ) n T . It follows
thatRF (vcovT ) 6= T . If there was a receptive field inP equal
to T , RF (vcovT ) would equalT , a contradiction.2

7.1 Algorithm for the Adaption

The adaption ofP towards containingT is done in three
steps, all of which reduce the number of edges, which con-
flict with T :

1. The number of edges inE0
1(B) is increased without af-

fecting edges inE0
2(B).

2. The number of edges inE0
2(B) is increased without af-

fecting edges inE0
1(B).

3. The labels of the remaining edges conflicting withT are
raised.

In order to perform the first two steps, we define valuations
!1 and!2. The matroid baseB is a subset ofE0 � L. An
elementx of B can be written asx = (ex; l(ex)). Forex =2
E0(B) letC(B; ex) denote the unique cycle inE0(B)[fexg
and set

lB(ex) := maxfl(e) j e 2 C(B; ex); e 6= exg: (5)

Let ey 2 C(B; ex) with ey 6= ex; l(ey) = lB(ex). In
[Kro95b] it is shown that the graph pyramid defined by
B n f(ey; l(ey))g [ f(ex; lB(ex))g equals the graph pyramid
defined byB. Fori 2 f1; 2gwe set!i(B) :=

P
x2B vali(x)

with

vali(x) :=

8>><
>>:

1 : ex 2 E1
i (B); l(ex) = lB(ex)

1 : ex 2 E0
1(B) [ E0

2(B)
�1 : ex 2 E0

i (B) [ E1
i (B); l(ex) 6= lB(ex)

0 : otherwise
(6)

Consider the casei = 1 first. The value1 is given for labeled
edges, which we want to insert between vertices ofT . The
same value is given for labeled edges that we do not want
to change anymore. The valuation!1(B) is maximal only if
the edges inE0

1(B) form a spanning tree ofT . In the case
i = 2 the roles ofT and the complement ofT are reversed.
Finally, the levels of the remaining edges conflicting withT
are raised to the highest even labellacc an edge between ver-
tices ofRF (vcovT ) can have. These local relinking operations
are guided by the valuation!3(B) :=

P
x2B val3(x) with

val3(x) :=

8<
:

1 : ex 2 E0
1 (B) [E0

2 (B)
�1 : ex 2 E0

3 (B); l(ex) 6= lacc
0 : otherwise.

(7)
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Figure 6: Metric and structural comparison of receptive fields.

(a)P

1

(b) Adaption guided by!1

3

2

(c) Adaption guided by!2 and!3 (d)P 0

Figure 7: Relinking towards a given receptive field. Modified edges are highlighted.
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Note that each local modification (guided by!1, !2 or !3)
reduces the number of edges conflicting withT by exactly
one and raises the valuation by exactly one. The effect on
the receptive fields can each time be described as detaching
a part ofRF (vcovT ). These parts are fully determined by the
edges conflicting withT .

7.2 Example

Fig. 7b shows that there are exactly two local modifications
which raise the valuation!1. The total increase of!1 thus
amounts to2. Fig. 7c shows that!2 and!3 can be raised by
2 and1 respectively. The comparison of Fig. 7a and Fig. 7d
yields that none of the receptive fields completely contained
in T or completely contained in the complement ofT have
been modified.

8 Conclusion

The new representation of graph pyramids by matroid bases
allows to define a set of local modifications, such that

� each base can be transformed into each other base by local
modifications,

� the set of bases is closed with respect to the local modifi-
cations,

� the local modifications have the potential to be applied in
parallel,

� the local modifications may be guided by global objective
functions.

Hence, the new representation allows to relink graph pyra-
mids in an iterated parallel way. We suggest the new method
for tracking and motion analysis. In connection with dual
graph contraction and contents adjustment it is also sug-
gested for graph based object recognition. Future work will
focus on efficient algorithms for the parallel relinking of
graph pyramids.
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