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Abstract This paper presents a derivation of a fast re-
cursive filter for image restoration if degradation obeys a
linear degradation model with the unknown possibly non-
homogeneous point-spread function. Pixels in the vicinity of
steep discontinuities are left unrestored to minimize restora-
tion blurring effect. The degraded image is assumed to follow
a causal simultaneous regressive model and the point-spread
function is estimated using the local least-square estimate.

1 Introduction

Physical imaging systems, the recording medium, the atmo-
sphere are imperfect and thus a recorded image represents a
degraded version of the original scene. Similarly an image is
usually further corrupted during its processing, transmission
or storage. Possible examples are lens defocusing or aber-
ration, noisy transmission channels, motion between cam-
era and scene, etc. The image restoration task is to recover
an unobservable image given the observed corrupted image
with respect to some statistical criterion. Image restoration is
the busy research area for already several decades and many
restoration algorithms have been proposed. The simplest
restoration method is to smooth the data with an isotropic
linear or non-linear shift-invariant low-pass filter. Usual fil-
tering techniques (e.g. median filter, Gaussian low pass filter,
band pass filters, etc.) tend to blur the location of boundaries.
Several methods [16] try to avoid this problem by using a
large number of low-pass filters and combining their outputs.
Similarly anisotropic diffusion [17],[5] addresses this prob-
lem but it is computationally extremely demanding. Image
intensity in this method is allowed to diffuse over time, with
the amount of diffusion at a point being inversely propor-
tional to the magnitude of local intensity gradient. A nonlin-
ear filtering method developed by Nitzberg and Shiota [15]
uses an offset term to displace kernel centers away from pre-
sumed edges and thus to preserve them, however it is not
easy to propose all filter parameters to perform satisfactory
on variety of different images and the algorithm is very slow.

In the exceptional case when the degradation point-spread
function is known the Wiener filter [1] or deconvolution
methods [11] can be used.

Model-based methods use most often Markov random
field type of models either in the form of wide sense Markov
(regressive models) or strong Markov models. The noncausal
regressive model used in [3],[4] has the main problem in time
consuming iterative solution based on the conjugate gradient
method. Similarly Markov random field based restoration
methods [7], [6], [12] require time consuming application
of Markov chain Monte Carlo methods. Besides this both
approaches have solve the problem when to stop these iter-
ative processes. A similar combination of causal and non-
causal regressive models as in this paper was used in [13].
However they assume the homogeneous point-spread func-
tion and they identify all parameters simultaneously using
extremely time consuming iterations of the EM algorithm
which is not guaranteed to reach the global optimum. It
is seldom possible to obtain a degradation model analyti-
cally from the physics of the problem. More often a limited
prior knowledge supports only some elementary assumptions
about this process. Usual assumption, accepted also in this
work, is that the corruption process can be modeled using a
linear degradation model.

2 Image Model

SupposeY represents a true but unobservable image defined
on finite rectangularN × M underlying lattice I. The
observable data areX, a version ofY distorted by noise in-
dependent of the signal. We assume knowledge of all pix-
els elements from the reconstructed scene. For the treatment
of the more difficult problem when some date are missing
see [9], [10]. The image degradation is supposed to be ap-
proximated by the linear discrete spatial domain degradation
model

Xr =
∑
s∈Ir

hsYr−s + εr (1)

whereh is a discrete representation of the unknown point-
spread function. The point-spread function is assumed to be
either homogeneous or it can be non-homogeneous but in this
case we assume its slow changes relative to the size of an
image. Ir is some contextual support set, and noiseε is
uncorrelated with the true image, i.e.,
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E{Y ε} = 0 . (2)

The point-spread function is unknown but such that we can
assume the unobservable imageY to be reasonably well
approximated by the expectation of the corrupted image

Ŷ = E{X} (3)

in regions with gradual pixel value changes. The above
method (3) changes all pixels in the restored image and thus
blurs discontinuities present in the scene although to much
less extent than the classical restoration methods due to adap-
tive restoration model (11). This excessive blurring can be
avoided if pixels with steep step discontinuities are left unre-
stored, i.e.,

Ŷr =

{
E{Xr} if (5) holds
Xr otherwise

, (4)

where the adaptive condition (5) is

|E{Xr} −Xr | <
1
ns

∑
s

|E{Xr−s} −Xr−s | . (5)

The expectation (3) can be expressed as follows:

E{X} =
∫

x p(x) dx

=
∫ 

x1 x2 . . . xM
xM+1 xM+2 . . . x2M

...
...

...
...

xNM−M+1 xNM−M+2 . . . xNM


NM∏
r=1

p(xr |X(r−1)) dx1 . . . dxNM (6)

where

X(r−1) = {Xr−1, . . . , X1} (7)

is a set of noisy pixels in some chosen but fixed ordering. For
single matrix elements in (6) it holds

E{Xj} =
∫

xj

NM∏
r=1

p(xr |x(r−1)) dx1 . . . dxNM

=
∫

Xj

j∏
r=1

p(Xr |X(r−1)) dX1 . . . dXj

=
∫

E{Xj |X(j−1)}
j−1∏
r=1

p(Xr |X(r−1))

dX1 . . . dXj−1

= EX(j−1){EXj{Xj |X(j−1)} } (8)

Let us approximate after having observedx(j−1) the

Ŷj = E{Xj}

by the

E{Xj |X(j−1) = x(j−1))

wherex(j−1) are known past realization forj. Thus we sup-
pose that all other possible realizationx(j−1) than the true
past pixel values have negligible probabilities. This assump-
tion implies conditional expectations approximately equal to
unconditional ones, i.e.,

Then the expectation (8) is

E{Xj} ≈ E{Xj |X(j−1)} , (9)

and

Ŷ = E{X} ≈ (10)
E{X1 |x(0)} . . . E{XM |x(M−1)}

E{XM+1 |x(M)} . . . E{X2M |x(2M−1)}
...

...
...

E{XNM−M+1 |x(NM−M)} . . . E{XNM |x(NM−1)}


Suppose further that the noisy image can be represented by
an adaptive causal simultaneous autoregressive model

Xr =
∑
s∈Icr

asXr−s + εr , (11)

whereεr is a white Gaussian noise with zero mean and a
constant but unknown varianceσ2. The noise is uncorrelated
with data from a causal neighbourhoodIcr . The model adap-
tivity is introduced using the standard exponential forgetting
factor technique in parameter learning part of the algorithm.
The model can be written in the matrix form

Xr = γZr + εr , (12)

where

γ = [a1, . . . , aη] , (13)

η = card(Icr) (14)

andZr is a corresponding vector ofXr−s. To evaluate con-
ditional mean values in (10) the one-step-ahead prediction
posterior densityp(Xr |X(r−1)) is needed. If we assume
the normal-gamma parameter prior for parameters in (11) (al-
ternatively we can assume the Jeffreys parameter prior) this
posterior density has the form of Student’s probability den-
sity

p(Xr|X(r−1)) =
Γ(β(r)−η+3

2 )

Γ(β(r)−η+2
2 ) π

1
2 (1 + ZTr V

−1
z(r−1)Zr)

1
2 λ

1
2
(r−1)

(
1 +

(Xr − γ̂r−1Zr)Tλ
−1
(r−1)(Xr − γ̂r−1Zr)

1 + ZTr V
−1
z(r−1)Zr

)− β(r)−η+3
2

,

(15)
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with β(r)− η+ 2 degrees of freedom, where the following
notation is used:

β(r) = β(0) + r − 1 = β(r − 1) + 1 , (16)

β(0) > 1 ,

γ̂Tr−1 = V −1
z(r−1) Vzx(r−1) (17)

Vr−1 = Ṽr−1 + I ,

Ṽr−1 =

(
Ṽx(r−1) Ṽ Tzx(r−1)

Ṽzx(r−1) Ṽz(r−1)

)
, (18)

Ṽx(r−1) =
r−1∑
k=1

X2
k , (19)

Ṽzx(r−1) =
r−1∑
k=1

ZkXk , (20)

Ṽz(r−1) =
r−1∑
k=1

Zk Z
T
k , (21)

λ(r) = Vx(r) − V Tzx(r) V
−1
z(r) Vzx(r) . (22)

If β(r − 1) > η then the conditional mean value is

E{Xr|X(r−1)} = γ̂r−1Zr (23)

and it can be efficiently computed using the following recur-
sion

γ̂Tr = γ̂Tr−1 + (1 + ZTr V
−1
z(r−1)Zr)

−1 V −1
z(r−1) Zr

(Xr − γ̂r−1Zr)
T . (24)

3 Optimal Contextual Support

The selection of an appropriate model support(Icr) is im-
portant to obtain good restoration results. If the contextual
neighbourhood is too small it can not capture all details of the
random field. Inclusion of the unnecessary neighbours on the
other hand add to the computational burden and can poten-
tially degrade the performance of the model as an additional
source of noise. The optimal Bayesian decision rule for min-
imizing the average probability of decision error chooses the
maximum posterior probability model, i.e., a modelMi cor-
responding to

max
j
{p(Mj |X(r−1))} .

If we assume uniform prior for all tested support sets (mod-
els) the solution can be found analytically. The most proba-
ble model given past data is the modelMi (Icr,i) for which

i = arg max
j
{Dj}

Dj = ln Γ(
β(r)− η + 2

2
)− ln Γ(

β(0)− η + 2
2

)

− 1
2

ln |Vz(r−1)| −
β(r)− η + 2

2
ln |λ(r−1)| .(25)

4 Global Estimation of the Point-Spread
Function

Similarly with (12) the degradation model (1) can be ex-
pressed in the matrix form

Xr = ψWr + εr , (26)

where

ψ = [h1, . . . , hν ] , (27)

ν = card(Ir)

and Wr is a corresponding vector ofYr−s. The unobserv-
ableν×1 image data vectorWr is approximated using (3),
(9),(23), i.e.,

Ŵr = [γ̂r−s−1Zr]
T
s∈Ir . (28)

In contrast to the model (11) the degradation model (1) is
non-causal and hence it has no simple analytical Bayesian
parameter estimate. Instead we use the least square estimate

ψ̂ = min
ψ

{∑
∀r∈I

(Xr − ψrŴr)
2

}
. (29)

The optimal estimate is

ψ̂T = V −1
Ŵ

VŴ X (30)

where the data gathering matricesVŴ , VŴ X are corre-
sponding analogies with the matrices (19),(20).

5 Local Estimation of the Point-Spread
Function

If we assume a non-homogeneous slowly changing point-
spread function, we can estimate its local value using the
local least square estimate

ψ̂r = min
ψr

{ ∑
∀r∈Jr

(Xr − ψrŴr)
2

}
. (31)

The locally optimal estimate is

ψ̂Tr = Ṽ −1
Ŵ

ṼŴ X . (32)

The matrices ṼŴ , ṼŴ X are computed from subwindows
Jr ⊂ I. This estimator can be efficiently evaluated using the
fast recursive square-root filter introduced in [8].

6 Results

The test image of the Cymbidium flower (Fig.1 ) was cor-
rupted by the white Gaussian noise withσ2 = 225 Fig.2.
The signal-to-noise ratio for this corrupted image is

SNR = 10 log

(
var(X)
σ2

)
= 13.2 dB . (33)
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The resulting reconstructed image using our method is on the
Fig.4 while the image Fig.3 shows reconstruction using iden-
tical model but without differentiating discontinuity pixels.
Visual comparison of both reconstructructed images demon-
strates deblurring effect of the presented algorithm. The sec-
ond experiment attempted was to reconstruct a uniform mo-
tion blur degradation in the vertical direction as can be seen
on the Fig.5. Fig.6 presents its reconstrusted version. Fi-
nally, the top left image on the Fig.7 shows a range image
from the Perceptron laser sensor, the top right image is its
reconstructed version while the corresponding images in the
lower row of this figure demonstrate an improvement of an
edge detector performance due to noise suppression.

Figure 1: Original Cymbidium image.

Figure 2: Corrupted Cymbidium image.

The performance of the both methods is compared on arti-
ficially degraded images (so that the unobservable data are
known) using the criterion of mean absolute difference be-
tween undegraded and restored pixel values

MAD =
1

MN

MN∑
r=1

|Yr − Ŷr| (34)

and the criterionζ which denotes the improvement in signal-
to-noise ratio

ζ = 10 log

(
µ(X)

µ(Ŷ )

)
dB (35)

Figure 3: The reconstructed Cymbidium image (all pixels recon-
structed).

Figure 4: The reconstructed Cymbidium image (method (4)).

where µ(X) is the mean-square error ofX.

Figure 5: A uniform motion blur degraded Cymbidium image.

The Tab.1 contains mono-spectral restoration results for the
Cymbidium image Fig.2 and Fig.5. Both proposed meth-
ods are superior over the classical methods using both crite-
ria (33),(34). The edge preserving version of the restoration
method demonstrates visible deblurring effect Fig.4 without
significantly affecting numerical complexity of the method.
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Figure 6: A uniform motion blur restored Cymbidium image.

Cymbidium image
method Gaussian noise motion blur

MAD ζ MAD ζ
AR model (4) 7.6 2.87 8.15 1.8
AR model (3) 7.6 2.35 8.11 1.6
median filter 16.2 -1.79 9.6 0.3

averaging 16.46 -1.86 9.7 0.35
Gaussian averaging 17.24 -2.49 9.8 0.28

Table 1: Restoration results.

7 Conclusions

The proposed recursive blur minimizing reconstruction
method is very fast robust and its reconstruction results sur-
passes some standard reconstruction methods. Causal mod-
els such as (11) have obvious advantage to have the analytical
solution for parameter estimation, prediction, or model iden-
tification tasks. However, this type of models may introduce
some artifacts in restored images. These undesirable effects
are diminished by introducing adaptivity into the model. This
novel formulation allow us to obtain extremely fast adap-
tive restoration and / or local or global point-spread func-
tion estimation which can be easily parallelized. The method
can be also easily and naturally generalized for multispec-
tral (e.g. colour, multispectral satellite images) or registered
images which is seldom the case for alternative methods.
Finally, this method enables to estimate homogeneous or
slowly changing non-homogeneous degradation point-spread
function.
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