
Czech Pattern Recognition Workshop 2000, Tomáš Svoboda (Ed.)
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Abstract We propose new approach to constructing object
models in parametric eigenspace based on stereo pairs. For
each object pose, two images are taken from different viewing
positions separated by a fixed baseline, and concatenated be-
fore they are projected into eigenspace. Experimental results
indicate that the stereo approach is superior to its conven-
tional counterpart in terms of accuracy of the estimated pose
parameters.

1 Introduction

In the object recognition community, eigenspace methods
have been a very active research topic during the last few
years and have led to a variety of successful applications, in-
cluding face recognition [7], illumination planning [4] and
visual inspection [6]. The key idea is not to build an explicit
object model, but rather to automatically construct a low di-
mensional object representation from a set of raw brightness
images. Since similar views of the same object tend to be
highly correlated, these views can be efficiently compressed
using Principal Component Analysis (PCA, [1]). After the
covariance matrix of the different object views has been com-
puted, each view can be represented as a linear combination
of the eigenvectors corresponding to the largest eigenvalues)
of the covariance matrix (typically, 10-20 eigenvectors are
sufficient). The coefficients of this linear combination (which
are normally obtained be projecting the input image onto the
eigenvectors) are the eigenspace representationof the object
view. Compression techniques that exploit the correlation
between signals (e.g., images) by transforming these signals
into a low dimensional space, which is spanned by the direc-
tions carrying the most information, are usually referred to
as subspace methods; eigenspaces are just a special case of
this more general paradigm that uses linear PCA in order to
determine the “most informative” directions.

In contrast to explicit 3D (CAD) object models, the
eigenspace representation captures not only geometrical
(pose, orientation), but also photometric (e.g., reflectance,
texture) properties of the object (appearance based object
representation) [5]. If these appearance properties are de-
scribed quantitatively by a set of continuous parameter val-
ues, the eigenspace projections of different object views can

Figure 1: Bivariate parametric manifold describing the Garfield toy
figure under various pan (�) and tilt (�) angles. For visualization
purposes, only the projections onto the first three eigenvectors are
shown. See section 3 for details.

be thought of as lying on a multidimensional parametric
manifold (parametric eigenspace representation). An ex-
ample of such a parametric manifold can be seen in Fig. 1.
Eigenspace representations of intermediate views not con-
tained in the training set can be obtained by interpolation,
e.g., by using bicubic splines [5] or a Radial Basis Function
neural network [3].

This work proposes a new approach to constructing ob-
ject models in parametric eigenspace. For each object pose,
two images (a so called stereo pair) are taken from different
viewing positions separated by a fixed baseline. As shown
in section 3, the use of stereo pairs leads to increased per-
formance as compared to the conventional mono approach in
terms of accuracy of the estimated pose parameters.

The rest of this paper is organized as follows. In section 2,
we introduce the concept of parametric eigenspaces in gen-
eral and its extension to parametric stereo eigenspaces. Ex-
perimental results, which compare the stereo with the con-
ventional (i.e., mono) approach w.r.t. parameter estimation
accuracy, are given in section 3, followed by conclusions in
section 4.
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2 Parametric Eigenspaces

Principal Components Analysis (PCA) [2, 1] is a well known
technique in computer science and statistics for linear fea-
ture extraction and dimensionality reduction. The key idea
is, given a set of observations drawn from a multivariate dis-
tribution P, to identify the most informative directions (i.e.,
those with the largest variance) of this distribution. These
directions are called the principal components of the distri-
bution and can be found using KLT (Karhunen-Loéve Trans-
form, see section 2.1 below). The actual feature extraction
step for a given sample vector x is performed by projecting
x onto the principal components, resulting in a new feature
vector y.

As explained in more detail below, the principal compo-
nents of a distribution P are given by the the eigenvectors of
its covariance matrix. Thus, PCA has three important prop-
erties:

� The new features (i.e., the components y i of y) are “syn-
thetic” features derived from the original data. Thus, in
general, they will not correspond to observable physical
quantities.

� Since the eigenvectors diagonalize the covariance matrix,
the new features yi are uncorrelated (independent, if P is
a normal distribution).

� A new feature yi is obtained as projection of x onto the
eigenvector (principal component) e i. The relative impor-
tance of the feature yi is given by the standard deviation
along the eigenvector ei, which is in turn given by the cor-
responding eigenvalue vi. Thus, dimensionality reduction
can be achieved by projecting a data vector x only onto the
eigenvectors with the largest corresponding eigenvalues.

2.1 Eigenspace model

Given N observations1
x1; : : : ;xN 2 <

n an estimate of the
covariance matrix � of the underlying distribution is given
by

�̂ =
1

N � 1

NX

i=1

(xi �m)(xi �m)T ; (1)

where m 2 <
n
;m = 1

N

PN

i=1 xi is the estimated mean
vector.

The eigenspace model 
 = hN;m; E; V i com-
prises the mean vector m, a set of eigenvectors E =

fe1; : : : ; ekg; ei 2 <
n of �̂ and corresponding eigenvalues

V = fv1 : : : vkg; vi 2 <, that can be obtained by eigende-
composition (or singular value decomposition)

� = ���T
; (2)

where � 2 <
n;n contains in its columns the eigenvectors

e1 : : :en of � and � is a diagonal matrix with the associated
eigenvalues. � is the basis of the Karhunen-Lóeve Trans-
form (KLT). The KLT rotates the image vectors into a co-
ordinate system, in which the image vector components are

1An x � y image X 2 <
x;y can be written as an image vector x 2

<
n=xy by lexicographic ordering of the image pixels

decorrelated. The transformed image vector y is given by
y = �T (x�m). The original image vector x can be re-
constructed using the inverse transform x = �y +m.

When the number of observations is small compared to
the dimensionality of image vectors (i.e. N < n) the rank
of �̂ is at most N � 1 and estimating the complete set of
eigenvectors of� is not possible. However, in the eigenspace
model (which is based on Principal Component Analysis)
only the k < N �1 largest2 eigenvectors are retained. These
principal eigenvectors can be estimated (using �̂) even when
N is much smaller than n.

The principal component feature vector ~y 2 <
k is given

by the first k principal components of y which are the pro-
jections onto the principal eigenvectors (~y = �t

k (x�m),
where we denote the submatrix of � containing the first k
eigenvectors by �k 2 <

n;k = he1 : : : eki). This truncated
representation corresponds to an orthogonal projection of x
onto the subspace spanned by e1; : : : ; ek.

In general the original image vector x cannot be recon-
structed completely from ~y but only approximated using the
inverse transform ~x = �~y +m. The residual reconstruction
error �2 (x) is equivalent to the Euclidean distance between
x and its projection ~x and is to the sum of the squared com-
ponents of y that have been omitted in ~y:

�
2 (x) = k~x� xk

2
=

nX

i=k+1

y
2 = k~xk

2
�

MX

i=1

y
2 (3)

The PCA is optimal in the sense that the expected residual
reconstruction error for the set of observations fx1; : : : ;xNg
is minimized. It is given by E(�2 (x)) =

Pn

i=k+1 vi. Hence,
the minimum error is obtained by discarding all but the k

largest eigenvectors. The number of eigenvectors k that are
used in the eigenspace model 
 can be chosen according to
a specified fraction of energy in the eigenvalue spectrum that
has to be retained.

2.2 Parametric Stereo Eigenspaces

By explicitly taking into account various parameters that
govern an object’s appearance (for instance, the viewing
angle or position w.r.t. camera system) when building its
eigenspace model, these parameters can be retrieved later to-
gether with the object’s identity in eigenspace. As demon-
strated by Nayar et al. [6], such parametric eigenspace mod-
els can even be used for simple, image driven effector con-
trol.

Our hypothesis is that the accuracy of the estimated pose
parameters can be increased by providing additional visual
information that helps to discriminate between similar poses.
Thus, for each object pose, two images (also called a stereo
pair) are taken from different viewing positions separated by
a fixed baseline. These two views are then concatenated to
form a single stereo image vector. Refer to Fig. 4 for an
example of a stereo pair.

2by ”largest” eigenvectors we denote the eigenvectors with the largest
corresponding eigenvalues
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Note that, although stereo vectors have twice the size of
mono image vectors , the resulting eigenspace representa-
tions (the eigenspace projections of the reference views) are
of size jRjnf in both approaches, whereby jRj is the num-
ber of reference vectors, n is the eigenspace dimension and
f is the size of a floating point number. Thus, after the im-
age vectors have been transformed into eigenspace, there is
no difference in memory or run-time requirements between
both approaches; the only additional run-time overhead in-
curred by the stereo approach is due to normalization and
projection of the input image pairs.

3 Experiments

For our experiments, we used toy figures of Garfield, Ke-
mal and Fozzy bear (see Fig. 2). The camera was mounted
rigidly on the gripper of an A465 robot. Training and test im-
ages were generated by moving the camera center along the
surface of a sphere centered around the actual figure with the
optical center pointing towards the figure. We used the pan
(�) and tilt angle (�) of the camera w.r.t. the spherical object
coordinate system as pose parameters. Stereo pairs at pose
(�i; �i) were taken by shifting the camera 15mm along its
positive and negative X-axis, starting from pose (� i; �i), re-
spectively, while keeping the orientation of the camera fixed.

Figure 2: The three toy figures of Garfield, Kemal and Fozzy Bear
used in the experiments.

This setup differs from the more conventional approach,
in which the camera remains stationary, while the object is
moved (typically, on a turntable). By making use of an ac-
tive, effector mounted sensor, however, we can obtain object
views under up to three degrees of controlled rotational free-
dom and thus build a more general object model. The setup
used in the experiments is illustrated in Fig. 3.

Figure 3: The setup used in the experiments. Images of the object
were taken at equidistant grid points (�i; �i) within the parameter
interval [-22,22]x[30,50].

After exposure, the MBR (minimum bounding rectangle)

of the figure in the input image was determined and regis-
tered onto a 128x128 pixel wide window (resp. a 128x256
window for stereo pairs). Finally, the resulting 128x128
(128x256) image vectors were brightness normalized.

For each figure, images were taken at a equidistant grid
(2 degrees in each direction) within the parameter interval
[-22,22]x[30,50], thus resulting in a total of 231 mono and
231 stereo image vectors, respectively. The extreme views
together with the first eigenvectors of the Garfield mono and
stereo image set can be seen in Fig. 4.

a) b)

c) d)

e) f)

g) h)

Figure 4: Training set and eigenspace model for Garfield for the
mono (left) and stereo (right) approach. a) - b): extreme view at
pose (-22,30). c) - d): extreme view at pose (22,50). e) - f): mean
image vector. g) - h): first eigenvector.

The training set used in constructing the eigenspace model
was obtained by subsampling the original set in increments
of 4 degrees, i.e. by discarding every second parameter line;
the remaining images were assigned to the test set. A dis-
crete representation of the manifold (a so called reference
set) was then built by projecting the training set into the
eigenspace, constructing the 2-dimensional parametric man-
ifold by means of bivariate cubic spline-interpolation and
resampling it every 2 degrees along each parameter line.
The resulting reference set R thus consisted of 231 vectors
fr1; ::; r231g (an example of such a parametric manifold can
be seen in Fig. 1). For each of the three figures, both a mono
and a stereo eigenspace model and associated reference set
were built as outlined above.
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a) b) c)

Figure 5: Avg. pose estimation errors in degrees for the mono (dashed) and stereo (solid) approach for the Garfield a), Kemal b) and Fozzy c)
data set. The pose errors are plotted vs. the dimension of the eigenspace. The vertical lines indicate the standard deviation (scaled by a factor
0.5).

The pose estimation error Æi for an input image vector mi

with pose parameters (�i; �i) and eigenspace representation
vi was calculated as the distance to the parameter values as-
sociated with its nearest neighbor in the reference set R, r j :

Æi = j�j � �ij+ j�j � �ij; (4)

whereby j = argminkkrk � vik; k 2 f1::231g.
As can be seen from Fig. 5, the stereo eigenspace per-

formed consistently better than its mono counterpart on all
three data sets (numerical results for the Garfield set are also
given in Table 1). The experiments were performed for sev-
eral different eigenspace dimensions; the best results for both
approaches were typically obtained for an eigenspace dimen-
sion of 20 or 25.

As a second experiment, we built two separate mono-
eigenspaces (including the discrete manifolds) for the left
and right images of the Garfield stereo pairs; these will be
referred to as left (LSE) and right (RSE) stereo eigenspace,
respectively. A pose estimate for a stereo pair was then ob-
tained by dividing the pair into its left and right subimage and
averaging the pose estimates obtained by the LSE and the
RSE. As can be seen from the results given in Table 1, this
approach performs better than the simple mono-approach,
but still not as good as the stereo eigenspace. Note that a ben-
eficial side effect of averaging is the reduction in the variance
of the positional error. A distinct disadvantage of the aver-
aging approach is, however, that it has effectively twice the
memory and run-time requirements of the mono approach.

4 Conclusion

We have introduced the concept of parametric stereo
eigenspaces, in which each object pose relative to the ob-
server is described by two images taken from slightly dif-
ferent positions with fixed relative position and orientation.
These images are concatenated to form a single stereo image
vector before they are projected into eigenspace. Experimen-
tal results indicate that the stereo approach leads to increased
accuracy of the estimated pose parameters.

The results given in this paper are preliminary and will
have to be elaborated. In particular, we intend to conduct
experiments on a larger object data base (including different

kinds of objects and additional object poses) and with other
representations of the parametric manifold (e.g., Radial Basis
Function Neural Networks).

dim mono stereo average
avg stdev avg stdev avg stdev

5 0.72 1.65 0.27 0.98 0.52 1.02
10 0.71 1.48 0.31 1.01 0.43 0.75
15 0.71 1.41 0.27 0.78 0.44 0.87
20 0.65 1.23 0.29 0.89 0.50 0.95
25 0.63 1.21 0.32 0.88 0.51 0.89
30 0.65 1.23 0.35 0.93 0.53 0.86
35 0.67 1.21 0.41 0.99 0.54 0.85
40 0.68 1.22 0.42 1.01 0.53 0.90

Table 1: Positional error in degrees and its standard deviation for
the Garfield data set. These quantities are given for the mono, stereo
and averaging approach for eigenspace dimensions in range [5..40].
For all three approaches, the optimal number of eigenvectors lies
between 15 and 25.
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