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Abstract We consider the task of filtering the noise from
images and other types of inputs which are assumed to be
piecewise continuous and piecewise monotone. We show that
nonlinear diffusion of the data, a powerful filtering method,
is too restrictive for such a case, leading to piecewise con-
stant functions. We claim that the piecewise monotonicity
can be enhanced by nonlinear diffusion of first partial deriva-
tives of the input data. The method is developed in this pa-
per; we introduce the algorithms and present experimental
results.

1 Introduction

Consider the following situation: letf be a piecewise con-
tinuous real function defined on a rectangleA = [0, xmax]×
[0, ymax] ⊂ R2. Moreover, letf bepiecewise monotone, i.e.
the domainA can be partitioned intoK connected subsets
Ak, k = 1, . . . ,K, such thatf is continuous and monotone
onAk:

f(x1, y) ≤ f(x2, y) ∀(x1, y), (x2, y) ∈ Ak, x1 < x2

or f(x1, y) ≥ f(x2, y) ∀(x1, y), (x2, y) ∈ Ak, x1 < x2

(1)

f(x, y1) ≤ f(x, y2) ∀(x, y1), (x, y2) ∈ Ak, y1 < y2

or f(x, y1) ≥ f(x, y2) ∀(x, y1), (x, y2) ∈ Ak, y1 < y2

(2)

The functionf is sampled and represented by a 2D array of
valuesfi,j :

fi,j = hi,j ∗ f + n, xi = i ·∆x, yj = j ·∆y (3)

wherehi,j is the sampling kernel for positionxi, yj , and
∆x,∆y the sampling intervals in the directions of axesx
andy, respectively. Some noisen is added to the samples
during the discretization process.
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In the discrete case the piecewise monotonicity assump-
tion can be restated as follows: ifK is the smallest number of
connected setsAk needed to partition the function domain so
that the discrete functionf is continuous1 and monotone on
eachAk, we require thatK is much smaller then the number
of pixels in the image. The discretization noise may violate
this monotonicity assumption; the gradient of the noisy sam-
ples fi,j will change its orientation much more often than
that of the original function. Our task is to restore the de-
sired function properties, filter the noise, smooth or simplify
the sampled functionf so as to enforce the piecewise mono-
tonicity (reduce the numberK described above) while pre-
serving important discontinuities or edges.

To give a real world example of the situation where the
piecewise monotonicity assumption could be appropriate, we
may mention the range data for 3D reconstruction in com-
puter vision. The functionf represents the distance of the ob-
jects in the scene from the camera; the distance changes grad-
ually on continuous surfaces, with abrupt changes, i.e. dis-
continuities where a different object comes into view. These
distance data are measured at discrete positionsxi, yj with
some imprecision modeled by the noisen, thus forming a
2D array (or image) of valuesfi,j .

In this paper we concentrate on the possibility to enhance
piecewise monotonicity of the data by nonlinear diffusion.
We first review the basics of nonlinear diffusion, a powerful
filtering method, in section2, and present its simplest dis-
crete algorithm in section3. Section4 discusses why classi-
cal NL diffusion is not suited for monotonicity enhancement,
and suggests to remedy the problems by moving to NL dif-
fusion of first directional derivatives of the input data. This
method is developed in sections5–7, some experiments fol-
low in section8.

1Obviously, the notion of function continuity does not exist in the dis-
crete situation. The gradient (more exactly its estimate from the discrete
data) may serve as a replacement: the smaller the gradient at a given posi-
tion, the more feasible it is to regard the function as continuous around that
position.

123 1231

http://cmp.felk.cvut.cz
mailto:mrazekp@cmp.felk.cvut.cz


Enhancing Monotonicity by Nonlinear Diffusion of Image Derivatives

2 Nonlinear diffusion

Nonlinear diffusion has deservedly attracted much attention
in the field of image processing for its ability to reduce noise
while preserving (or even enhancing) important features of
the image, such as edges or discontinuities; this can be op-
posed to linear diffusion (alias Gaussian filtering or linear
scale–space representation, see [5]) which not only removes
noise but also blurs and dislocates edges. A good introduc-
tion to NL diffusion can be found in [10, 11], Weickert in [12]
gives a rich survey of the literature. The following brief pre-
sentation is adapted loosely from Weickertet al. [13].

We take the filter of Cattéet al. [3], a regularization of the
pioneering Perona–Malik model [7], as a typical represen-
tative of a well founded nonlinear diffusion process. With
this scheme, the filtered image is found as a solution to the
equation

∂tu = ∇ ·
(
g(|∇uσ|2)∇u

)
(4)

with the original imagef as the initial state, and the reflecting
boundary conditions,

u(x, 0) = f(x), (∂tu) · n = 0 on∂Ω (5)

wheren denotes the normal to the image boundary∂Ω. In
words, the equation (4) expresses the fact that the value of
u(x, t) changes with time according to the flow to and from
the neighbourhood ofx; this flow depends on the image gra-
dient∇u and its amount is controlled by the functiong of the
smoothed gradient∇uσ (smoothing makes the filter insensi-
tive to noise at scales smaller thenσ); no flow passes through
the image boundary.

The diffusivity functiong(s) is typically constructed to be
positive everywhere but rapidly and monotonically decreas-
ing for s > 0; to give an example, the diffusivity

g(s) =

{
1 for s < 0

1− exp
(
−3.315
(s/λ)4

)
for s ≥ 0

(6)

was used in [13]. The parameterλ in this formula can be
understood as a threshold of function continuity: ifs � λ,
g(s) is almost one and the position of such a small gradi-
ent s = |∇uσ| is considered to belong to a continuous re-
gion where diffusion (or smoothing) is encouraged. On the
other hand,g is close to zero fors � λ, almost no diffu-
sion takes place at positions of a larger gradient. This way
the small-scale noise in otherwise homogeneous regions is
removed, whereas important discontinuities between regions
remain stable over long periods of the diffusion process.

The positivity ofg guarantees that the solutionu(., t) con-
verges to a constant fort→∞. To obtain nontrivial results,
a finite stopping timeT has to be set.

3 Discrete nonlinear diffusion

To be suitable for numerical computations with sampled
data, the continuous equation (4) has to be discretized. Let
us start in one dimension only, where the equation (4) reads

∂tu = ∂x
(
g(|∂xuσ|2)∂xu

)
. (7)

For discrete datauki (approximatingu at positionxi =
i·∆x and time instanttk = k·τ , with τ the discretization time
step and∆x the spatial grid size), replacing the derivatives
by finite differences, the equation (7) becomes

uk+1
i − uki

τ
=

∑
j∈N (i)

gkij
∆x2

(uki − ukj ) (8)

whereN (i) is the set of the neighbours of pixeli andgkij is
the diffusivity belonging to the connection between pixelsi
andj at timetk.

The equation (8) is called the explicit discretization
scheme of (7). It can be summarized into the following it-
erative formula:

uk+1 =
(
I + τA(uk)

)
uk, (9)

whereτ is a discrete time step,I is the identity matrix and
A(uk) contains the diffusivity information:

ai,j =


gkij

∆x2 for j ∈ N (i)

−
∑
n∈N (i)

gkin
∆x2 for j = i

0 otherwise

(10)

(note that only the elementsai,j of A for which eitherj ∈
N (i) of i = j are nonzero; in 1DA is tridiagonal). For
two-dimensional datau another term appears:

uk+1 =
(
I + τAx(uk) + τAy(uk)

)
uk (11)

andAx(uk) andAy(uk) are matrices containing information
about the diffusivities between individual pixels in the direc-
tions of axesx andy, respectively2.

The explicit (or Euler) discretization scheme used in this
section is the most straightforward but requires a small time
stepτ (and thus more iterations) in order to be stable; more
efficient and more complicated, absolutely stable procedures
like the semi-implicit scheme and the additive operator split-
ting have been introduced in [13].

4 Monotonicity enhancing NL diffusion

Being smoothed more inside homogeneous regions, the func-
tion u solving the equation (4) tends to piecewise constant as
the timet increases. This is illustrated on a simple function in
figure1; the ‘horizontalization’ of an increasing function can
be observed first near the ends of continuous function seg-
ments. While nonlinear diffusion yields impressive results
on some images and may be particularly useful for robust im-
age segmentation, the model assuming piecewise constancy
is unsuitable for noise removal from most natural scenes.

A variety of other possible models for image filtering,
such as piecewise linear, locally monotone or locally con-
vex has been suggested in [1, 2]. The limitations of the
piecewise-constant model for noise removal using minimiza-
tion of the total variation of the image3 were observed by

2The pixels ofu must be arranged into a single column vector to allow
the matrix multiplication.

3We should remark that image restoration by minimization of some func-
tional is closely related to nonlinear diffusion and scale-space theory, see
e.g. [8, 9].
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Figure 1: Classical nonlinear diffusion approaches a (piecewise)
constant function; this phenomenon can be observed first near the
ends of growing function segments.

Chambolle and Lions in [4]. The authors there suggest to al-
leviate the problem by introducing second order terms (like
the total variation of the image gradient) into the functional
to be minimized.

In this paper we try to exploit the following simple idea:
if we differentiate the image first and run the diffusion on the
arrays of partial derivatives instead of the grey values, the
piecewise smoothing of derivatives leads (after integration)
to an image piecewise monotone, for highert approaching
a function piecewise linear. This behaviour is demonstrated
in figure4 bottom right: where nonlinear diffusion simplifies
the image into segments of similar grey levels, the proce-
dure using derivatives (the main topic of this paper) creates
patches of similartrends, which can successfully approxi-
mate a large class of images and other types of inputs and
will be preferred if the piecewise monotonicity of the data is
assumed and desired.

5 From data to partial derivatives

Consider the two-dimensional situation: a functionf(x, y) is
sampled and represented by valuesfi,j at positions(xi, yj),
xi = i ·∆x, yj = j ·∆y, i = 1, . . . ,Ni, j = 1, . . . ,Nj ; the
samples (pixels)fi,j form an image, our input data.

The partial derivatives of the original function in the di-
rection of axesx, y, respectively, can be approximated from
the discrete image by differences of the neighbouring pixels,
forming two arraysv andw:

∂f(x, y)
∂x

∣∣
xi,yj

≈ vi,j ≡
fi+1,j − fi,j

∆x
, (12)

i = 1, . . . ,Ni − 1, j = 1, . . . ,Nj
∂f(x, y)
∂y

∣∣
xi,yj

≈ wi,j ≡
fi,j+1 − fi,j

∆y
, (13)

i = 1, . . . ,Ni, j = 1, . . . ,Nj − 1.

The arraysv, w must satisfy some requirements in order
to represent the partial derivatives of a real function. In the
continuous domain, the integral of a function gradient along
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Figure 2: Geometry of the discrete image: the partial derivatives of
the datau in the direction of axesx, y are approximated by finite
differences forming arraysv andw, respectively.

any closed curve is zero,∮
C
∇f(r) · dr = 0. (14)

In the discrete image any closed curve is composed of the
elementary closed curves passing through four pixels4 as il-
lustrated in figure2, and the observation (14) transforms into

∀i, j : ei,j ≡ wi,j + vi,j+1 − wi+1,j − vi,j = 0. (15)

While this constraint is satisfied automatically by (12)–(13),
we have to be more careful about it during the diffusion pro-
cess.

6 The diffusion algorithm

The continuous equations for nonlinear diffusion have been
discretized in section3. Simply rewriting (11) usingv, w
instead ofu, we obtain the following set of equations:

vk+1 =
(
I + τAx(vk, wk) + τAy(vk, wk)

)
vk (16)

wk+1 =
(
I + τBx(vk, wk) + τBy(vk, wk)

)
wk (17)

Here v, w are column vectors of generally different size,
(Ni − 1) · Nj , andNi · (Nj − 1), respectively; the matri-
cesA, B have also different dimensions. However, as the
connection between elementsvi−1,j andvi,j , and between
wi,j−1 andwi,j passes through a common point (ui,j in fig-
ure2), we find it reasonable to assign these two connections
the same diffusivity, namelygi,j . This is why the matricesA
andB depend on bothvk andwk; the equations (16), (17)
will be coupled through the common array of diffusivities
and many elements ofAx andBy will be identical (similarly
for the other pair of directions andAy,Bx, only the common
point of the connectionsvi,j — vi,j+1 andwi,j — wi+1,j

does not coincide with any input datumu, and we will de-
note the diffusivity of that positiongi+ 1

2 ,j+
1
2
).

There are many possibilities how to assemble the infor-
mation from the smoothed, regularized versionsṽ, w̃ of the

4Assuming 4–neighbourhood, i.e. only vertical and horizontal connec-
tions are allowed.
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arraysv, w into the common diffusivitiesgi,j . Proceeding
most directly from (4) to the diffusion of derivatives, we ob-
tain the following:

g
(
|∇2uσ|2

)
= g

(
|∇ · (∇uσ)|2

)
(18)

≈ g
(
|∇ · (ṽ, w̃)|2

)
= g

(∣∣∣∣ ṽ∂x +
w̃

∂y

∣∣∣∣2
)
≈

gi,j ≡ g
(
|ṽi,j − ṽi−1,j + w̃i,j − w̃i,j−1|2

)
In the experiments presented below, the equation (6) is used
to define the functiong(·).

The complication with this approach is that derivatives
amplify high frequency components of a signal (including
noise), and the second order derivatives of the input data
which appear in formula (18) make the method more diffi-
cult to tune and unsuitable for highly corrupted inputs. In
some of our experiments we employed the following trick
successfully: steer the diffusion not with a gradient of the
partial derivatives, but with a gradient of the original data,
thus avoiding higher order derivatives. Using the arrays of
partial derivatives we can write

g
(
|∇uσ|2

)
≈ (19)

gi,j ≡ g

(∣∣∣∣ ṽi−1,j + ṽi,j
2

∣∣∣∣2 +

∣∣∣∣ w̃i,j−1 + w̃i,j
2

∣∣∣∣2
)

gi+ 1
2 ,j+

1
2
≡ g

(∣∣∣∣ ṽi,j + ṽi,j+1

2

∣∣∣∣2 +

∣∣∣∣ w̃i,j + w̃i+1,j

2

∣∣∣∣2
)

This alternative reveals a drawback, too: limited to first
derivatives only, it may neglect discontinuities of the second
derivatives and round corners of a continuous function. See
some experiments below.

There is another problem with the simple formulation of
nonlinear diffusion of partial derivatives: the equations (16)–
(17) do not guarantee that the constraint (15) is satisfied. In
the remaining part of this section we try to enforce the nec-
essary properties of the arrays of partial derivatives.

Denote byẑ = [vk, wk]T the result of the diffusion pro-
cess at timetk. We seek a solutionz as close as possible to
ẑ while obeying the constraint (15) which can be written in
matrix form as

C z = 0 (20)

whereC is a[(Ni−1)·(Nj−1)]×[(Ni−1)·Nj+Ni·(Nj−1)]
sparse matrix with four nonzero entries in each row. The
rigorous way to solve this problem would be to findz as a
projection ofẑ into the null space of matrixC; such solu-
tion would minimize the norm‖z − ẑ‖2, see e.g. [6]. How-
ever, this mathematically correct solution involves the con-
struction of an orthonormal basis of the null space ofC, and
full matrix multiplication (processes of complexitiesO(N3)
andO(N2), respectively, whereN denotes the larger of the
dimensions ofC). Already for small images, these matrix
computations become infeasible.

As a viable alternative, we choose to restore the property
(15) by the following iterative algorithm:

1. Evaluate errors

ei,j = wi,j + vi,j+1 − wi+1,j − vi,j , ∀i, j.

2. For all i, j, update the values as follows5:

vi,j = vi,j + (ei,j − ei,j−1)/c

wi,j = wi,j − (ei,j − ei−1,j)/c

with the obvious modifications at the image boundary.

3. If max |ei,j | is smaller than a given threshold, finish; oth-
erwise go to 1.

The constantc in the algorithm divides the errors into the
elements which contributed to it. The valuec = 4 is a rea-
sonable choice as four elements form eachei,j ; a slightly
higher number (c ≈ 4.3) damps down oscillations and leads
usually to a faster convergence. The complexity of one iter-
ation of this algorithm is onlyO(N) with N ≈ 2NiNj the
number of elements of the arraysv, w. Although several it-
erations are necessary (with the Lena image below, about 12
iterations were needed to satisfy the error threshold of 1 per
cent of the function range), this still compares favorably with
the complexity of the matrix method.

7 From derivatives back to data

Let us now assume that the filtered arraysv, w are available,
and that they contain correct values in the sense of condi-
tion (15). These arrays contain (redundantly) all the infor-
mation needed for the reconstruction of the imageu up to a
scalaru0 added to function values. The integration can be
performed by the following algorithm:

1. Reconstruct the first row:

û1,1 = 0

for i = 2, . . . ,Ni
ûi,1 = ûi−1,1 + vi−1,1

2. Reconstruct the columns:

for i = 1, . . . ,Ni
for j = 2, . . . ,Nj

ûi,j = ûi,j−1 + wi,j−1

3. Fix the shift of function values:

for all i, j

ui,j = ûi,j + u0

The choice of the scalaru0 influences significantly the be-
haviour of the filtering procedure as a whole. One possibility
is to select it so that the average grey value of the original,f ,
and the filtered image,u, remain equal:

u0 =
1

Ni ·Nj

 Ni∑
i=1

Nj∑
j=1

fi,j −
Ni∑
i=1

Nj∑
j=1

ûi,j

 (21)

5For simplicity, we use the same symbols for the original and updated
values, using a MATLAB-like notation; new values are on the left.
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Figure 3: Gaussian noise was added to a triangle function (a) to obtain the noisy data (b), used to test the diffusion filtering methods. The
filtering results (continuous lines) are shown together with the noisy input (dots). (c) Ordinary nonlinear diffusion,σ = 1, λ = 1, T = 10.
(d) Ordinary nonlinear diffusion,σ = 1, λ = 3, T = 10. (e) Filtering by nonlinear diffusion of first derivatives,σ = 3, λ = 0.05, T = 10.
The diffusion is controlled by the second order derivatives as described by (18). (f) Filtering by nonlinear diffusion of first derivatives,
σ = 1, λ = 1, T = 10. The diffusion controlled by first derivatives according to (19).

8 Experiments

The results of all the methods of nonlinear diffusion men-
tioned in this paper applied to a simple 1D function are
shown for comparison in figure3. In the center column the
preference of the classical nonlinear diffusion for (piecewise)
constant functions can be seen: depending on the parameters,
it either approximates the input by several steps, or bends the
function near the extrema. On the right, two results of the
nonlinear diffusion of first derivatives are shown for compar-
ison: the lower one, where the diffusion was controlled by
first derivatives, shares some properties of the ordinary diffu-
sion (rounding of the corner) but behaves better near the ends
of continuous segments. The upper one, where the diffusion
was dominated by a function of second derivatives, is able
(for carefully chosen parameters) to precisely locate the cor-
ner in the function values, i.e. the discontinuity of the second
derivative.

Figure 4 left gives an example of an image consisting
mainly of regions of slow, gradual transitions from dark to
light colors (cheek, nose) and discontinuities or edges be-
tween regions, so the piecewise monotonicity can be as-
sumed. The results of the classical nonlinear diffusion from
equation (4) and the derivative-based diffusion are shown for
comparison in the center column of figure4; both methods
perform well in removing the noise, the diffusion using first
derivatives is better at preserving the gradual transitions of
light intensities. On the right, in the plots of one line ex-
tracted from the image, you can observe in more detail how
the function values, slopes and discontinuities develop with
the diffusion time of both methods.

9 Conclusion

We have presented a method for piecewise monotone ap-
proximation which allows to remove noise and enhance the
trends while preserving important discontinuities present in
the input data. The task is accomplished by nonlinear vector-
valued diffusion of partial derivatives of image data. The
method is applicable to filtering or smoothing of sampled
functions expected to be piecewise continuous, piecewise
monotone or piecewise linear. Many images fulfill these
properties, range data for 3D reconstruction represent a par-
ticular example.

In the future we would like to analyze the method in more
detail, and develop a general mechanism which would allow
to adapt the parameters of the procedure autonomously to
obtain the best results for any given input data.
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