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Abstract During the last decades a lot of applied struc-
tural recognition problems came to light which might be re-
duced to consistent labelling problems. The consistent la-
belling problem and its appropriate fuzzy and probabilistic
modifications became a proper formalism for a unified for-
mulation of such problems regardless of their specific applied
contents. On the other hand there is no formal construction
for a unified solution of these problems because they proved
to be not polynomially solvable.

Despite of the complexity of the whole class of labelling
problems there are rather wide subclasses of applied interest
which are polynomially solvable. In this paper we describe
several examples of such subclasses of labelling problems.
All these subclasses have a common property: It is possible
to introduce several mechanisms of equivalent transforma-
tions of the problems. The algorithm solving a problem has
then the form of succesive equivalent transformations of the
initial problem until it turns into a problem with a quite evi-
dent solution.

1 Survey of the known problems and their
generalized formulation

1.1 Consistent labelling problem

Structural recognition is the analysis of complex objects
composed of several parts. A comlex object is considered
as a finite setT consisting of simple objectst. Every simple
object t ∈ T may stay in some statek from a finite set of
statesK. A complete description of a complex objectT is
a functionf : T → K assigning each simple objectt ∈ T
its statef(t) where the object stays. The functionf will be
called alabelling, whereas elements of the setK are called
labels.

Suppose the labellingf satisfies some a priori restrictions,
given by a local-conjunctive predicate of second order [5].
That mean a subsetΩ ⊂ T × T of pairs object-object is
given and a functiong(t1, t2) : K ×K → {0, 1} is assigned
to each object pair(t1, t2) ∈ Ω. The valueg(t1, t2, k1, k2)
determines whether the objectt1 may stay in the statek1

when the objectt2 stays in the statek2. The whole labelling

f : T → K is called consistent if∧
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
= 1 . (1)

Let us suppose that some observations were made for each
objectt ∈ T independently, resulting in additional, a poste-
riori information about the state of each object. This infor-
mation narrow the set of possible states for each object and
is denoted by functionsq(t) : K → {0, 1}. The valueq(t, k)
defines, whether the statek is contained in the reduced set of
states or not.

The consistent labelling problem [1] consists in answer-
ing the question, whether the a posteriori information about
the states of the objects is consistent with the a priori infor-
mation, i.e. the problem consists in calculating the quantity

∨
f∈KT

[( ∧
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

))
∧

∧
(∧
t∈T

q
(
t, f(t)

))]
(2)

and seeking for a labellingf∗ for which

G(f∗) =
( ∧

(t1,t2)∈Ω

g
(
t1, t2, f

∗(t1), f∗(t2)
))
∧

∧
(∧
t∈T

q
(
t, f∗(t)

))
= 1 . (3)

The designationKT in expression (2) means the set of all
possible functionsf : T → K .

The following notions and assumptions will be necessary
for the further considerations. The setΩ is called the struc-
ture of the complex objectT . Without loss of generality we
will assume that the setT is completely ordered so that for
every pair of objectst1 6= t2 either t1 < t2 or t2 < t1 is
fulfilled. We will also assume that every pair(t1, t2) of the
structureΩ satisfies the inequalityt1 < t2.

1.2 Minimax labelling problem

The consistent labelling problem may be slightly generalized
so that functionsg(t1, t2) andq(t) are not binary, but real val-
ued functions. The quality of a labeling functionf is defined
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then as the number

G(f) = min
[

min
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
;

min
t∈T

q
(
t, f(t)

)]
. (4)

The minimax labelling problem consists in calculating the
quality of the best labelling

max
f∈KT

min
[

min
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
;

min
t∈T

q
(
t, f(t)

)]
(5)

and in looking for the best labelling

f∗ = arg max
f∈KT

min
[

min
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
;

min
t∈T

q
(
t, f(t)

)]
. (6)

1.3 Maxsum labelling problem

Quite a different labelling problem arises when the quality of
labelling is not defined by the expression (4) but by the sum

G(f) =
∑

(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
+
∑
t∈T

q
(
t, f(t)

)
.

(7)

In this case the problem consists in looking for the best la-
belling

f∗ = arg max
f∈KT

[ ∑
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
+

+
∑
t∈T

q
(
t, f(t)

)]
. (8)

A special case of the maxsum problem is well known and
widely used: IfT = {1, 2, ..., n}, and the structureΩ is
an one-dimensional chain, i.e. includes only the pairs of the
form (i, i + 1), i = 1, 2, ..., n − 1. The problem (8) can
be solved in this case by dynamic programming [6] and is
widely used in lots of applied recognition problems.

The problem becomes essentialy more complex when the
structureΩ is more complex than a chain. Consequently
more powerful mathematical tools than dynamic program-
ming are required in order to solve such problems.

1.4 Analysis of Markov random objects

The functionsg(t1, t2) andq(t) can be treated as statistical
parameters of a Markov random complex object. Then cer-
tain statistical problems arising in recognition of such objects
are reduced to the calculation of the probability [3, 7]

∑
f∈KT

[( ∏
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

))
×

×
(∏
t∈T

q
(
t, f(t)

))]
. (9)

1.5 Generalized formulation of the problems

All problems discussed above, can be formulated uniformly
by use of the following formal construction.

Let T be a finite set of objects,K be a finite set of labels
and f : T → K be a labelling. LetW be a set endowed
with two operations:⊕ : W ×W →W and⊗ : W ×W →
W . The operations have to fulfil the following properties of
commutativity, associativity and distributivity

a⊕ b = b⊕ a,
a⊗ b = b⊗ a,
a⊕ (b⊕ c) = (a⊕ b)⊕ c,
a⊗ (b⊗ c) = (a⊗ b)⊗ c,
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

(10)

It is supposed furthermore thatW has identity elements for
each of the operations i.e. elements1⊗ ∈ W and0⊕ ∈ W
exist, for which equalitiesa ⊕ 0⊕ = a, a ⊗ 1⊗ = a and
a⊗ 0⊕ = 0⊕ hold for anya ∈ W . To say it in another way,
the setW endowed with the operations⊕ and⊗ forms an
algebraic structure of a semiring [2].

Let Ω ⊂ T × T be a second order structure on the set
T , g(t1, t2) : K × K → W be functions assigned to pairs
(t1, t2) ∈ Ω and q(t) : K → W be functions assigned to
objectst ∈ T . These functionsg(t1, t2) andq(t) define the
qualityG(f) ∈W of a labellingf as the number[ ⊗

(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)]
⊗
[⊗
t∈T

q
(
t, f(t)

)]
.

(11)

The problems formulated above consist in calculating the
number ⊕

f∈KT

G(f) . (12)

The problems (3), (6) and (8) require also to look for a la-
bellingf∗ that fulfils

G(f∗) =
⊕
f∈KT

G(f) . (13)

The consistent labelling problem is a special case of the prob-
lem (12) and (13) where operations(⊕,⊗) are the logical op-
erations(∨,∧). A minimax labelling problem is formed with
operations (max,min), maxsum labelling problems (7) and
(8) correspond to operations (max,+), and finally, statistical
problems correspond to summation and multiplication in the
conventional sense of these words.

In the following sections we describe the solution of some
subclasses of the formulated problems. Every subclass un-
der consideration corresponds to either a certain subclass of
structuresΩ or a certain subclass of functionsg(t1, t2) : K×
K →W .

2 Simple nets. Equivalent transformations of
parallel and sequential branches of the
structures

If the structure of the problem is a so-calledsimple net, a gen-
eral algorithm for solving the problem (12) can be formulated
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for every choice of the operations⊕ and⊗.1 A simple net is
defined in the following recurrent way.

1. A structureΩ consisting of a single pair(t1, t2) of objects
is a simple net.

2. Inserting of a new object. Let Ω form a simple net on
T , let t be an object ofT andt′ be some new object not
contained inT . Then the structureΩ∪ {(t, t′)} on the set
T ∪ {t′} is also a simple net.

3. Inserting of a serial branch Let Ω be a simple net on
T , let (t1, t2) be a pair contained inΩ and lett′ be some
new object not contained inT . Then the structure

(
Ω \

{(t1, t2)}
)
∪{(t1, t′), (t′, t2)} onT ∪{t′} is also a simple

net.

4. Inserting of a parallel branch Let Ω be a simple net on
T , let (t1, t2) be a pair contained inΩ and lett′ be some
new object not contained inT . Then the structureΩ ∪
{(t1, t′), (t′, t2)} onT ∪ {t′} is also a simple net.

The following algorithm solves the problem (12) if Ω is a
simple net. The algorithm transforms the input data step by
step. At each step some objectt∗ is removed from the setT
as well as all pairs of objects includingt∗ are removed from
the structureΩ. The functionsq(t) for the rest of objects of
T are changed as well as the functionsg(t1, t2) for the rest
of pairs ofΩ. They are changed so, that the new problem is
guaranteed to be equivalent to the original one.

Let T , Ω, g(t1, t2) ∀(t1, t2) ∈ Ω andq(t) ∀t ∈ T be the
current set of objects, structure and functions resp. obtained
after the previous step of the algorithm. The current step con-
sits then in any of the following three operations.
1. Deleting of an objectLet t′ be an object which is con-
tained only in a single pair(t∗, t′) ∈ Ω. Then the object
t′ is removed fromT as well as the pair(t∗, t′) is removed
from Ω. The numbersq(t∗, k), k ∈ K, are changed by the
operator

q(t∗, k) ::= q(t∗, k)⊗
[⊕
k′∈K

(
g(t∗, t′, k, k′)⊗ q(t′, k′)

)]
.

(14)

The expression (14) is meant just as an operator and not as an
equality: the designationq(t∗, k) on the right side of the op-
erator means the value of the corresponding variable before
operating and the same designation on the left side means the
value of the same variable after operating.
2. Equivalent transformation of serial branches.Let t′ be
an object contained in two and only two pairs(t1, t′), (t′, t2)
and suppose furthermore that the pair(t1, t2) is not contained
in the structureΩ. Then the objectt′ is removed from the set
T as well as the pairs(t1, t′), (t′, t2) are removed fromΩ,
and the pair(t1, t2) is included inΩ. The functiong(t1, t2)

1Of course the operations have to fulfil (10).

for this included pair is defined as follows

g(t1, t2, k1, k2) =

=
⊕
k′∈K

[
g(t1, t′, k1, k

′)⊗ q(t′, k′)⊗ g(t′, t2, k′, k2)
]
.

(15)

3. Equivalent transformation of parallel branches. Let
t′ be an object contained in two and only two pairs(t1, t′)
(t′, t2) and suppose furthermore that the pair(t1, t2) is also
contained in the structure. Then the objectt′ is removed
from T , the pairs(t1, t′), (t′, t2) are removed fromΩ, and
the numbersg(t1, t2, k1, k2) are changed according to

g(t1, t2, k1, k2) ::= g(t1, t2, k1, k2)⊗

⊗
[⊕
k′∈K

(
g(t1, t′, k1, k

′)⊗ q(t′k′)⊗ g(t′, t2, k′, k2)
)]
.

(16)

It is clear that the algorithm removes just one object out of
T at each step. Consequently only one objectt∗ will remain
after |T | − 1 steps and the numbersq(t∗, k∗) will have been
calculated for this object. The solution of the problem (12) is
the number ⊕

k∗∈K

q(t∗, k∗).

The total amount of calculations necessary for the solution is
of order|T | · |K|3.

The problem (13) can be solved with an algorithm that is
very similar to just described one. For this aim some auxil-
iary data are to be saved on each step (14), (15) or (16) of the
algorithm. The collection of these saved data obtained after
all steps is the base for constructing the labelling (13).

The class of simple nets is a very small subset of all pos-
sible structures. Nevertheless, they essentially increase the
tools for structural analysis as compared with the situation
when only one-dimensional chains or acyclic structures [4]
are considered.

3 Consistent labelling problem for arbitrary
structures. Equivalent transformation of
stars to simplexes.

The solution of labelling problems for simple nets is very
similar to the well-known transformations of parallel and se-
rial connections for electrical cirquits which are widely used
in the analysis of electric cirquits . It is well-known however
that these transformations are not sufficient for the analysis of
arbitrary cirquits. Additional rules of equivalent transforma-
tions are necessary to analyse arbitrary cirquits, namely the
star-triangle and triangle-star transformations. In this section
we will describe similar transformations of structures which
will help us to solve labelling problems not only for simple
nets but for arbitrary structures. Taking into account the set
of all possible structures we will be extorted to restrict the
class of problems in some other way.
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Let T = {1, 2, ..., n} be the set of objects,K be the finite
set of labels andf : T → K be a labelling. When construct-
ing algorithms for labelling problems in case of simple nets,
the structureΩ was restricted very strongly whereas the set of
labelsK could be arbitrary. Now we will act quite contrary:
we will allow any structure and restrict the setK of labels
rather strongly. We will assume that the setK is completely
ordered: For every pair of labelsk1 andk2 there is an interval
I(k1, k2), defined as the set labelsk′ fulfilling k1 ≤ k′ ≤ k2

if k1 ≤ k2 or fulfilling k1 ≥ k′ ≥ k2 if k1 ≥ k2. Further-
more, ifk′ ∈ I(k1, k2), the labelk′ will be called the inner
label of the triplek′, k1, k2. It is evident, that every triple of
labels has at least one inner label.

Suppose the structureΩ contain all pairs of the type
(t1, t2), t1 ∈ T , t2 ∈ T , t1 < t2 and the functions
g(t1, t2) : K × K → {0, 1} fulfil the following properties
for each pair(t1, t2) ∈ Ω: Let k1, k

′
1, k
′′
1 , k2, k

′
2, k
′′
2 be six

labels satisfying the condition

g(t1, t2, k1, k2) = g(t1, t2, k′1, k
′
2) =

= g(t1, t2, k′′1 , k
′′
2 ) = 1 .

Let furthermorek∗1 be inner label in the triplek1, k
′
1, k
′′
1 and

k∗2 be inner label in the triplek2, k
′
2, k
′′
2 . Then

g(t1, t2, k∗1 , k
∗
2) = 1 .

This condition will be called the interval restriction. It should
be mentioned that the interval restriction is fulfilled for any
functiong(t1, t2) : K ×K → {0, 1} in case of|K| = 2.

At last, let us suppose that for every objectt ∈ T a func-
tion q(t) : K → {0, 1} is defined and this function is not
restricted by any limitation.

The following algorithm solves the consistent labelling
problem if the interval conditions are fulfilled: The algorithm
executes|T |−2 steps. On every step some object is removed
from the setT and the numbersg(t1, t2, k1, k2) are changed
for the remaining pairs(t1, t2).

Let {i, i+ 1, i+ 2, ..., n} denote the current objects ofT ,
(t1, t2), i ≤ t1 < t2 ≤ n denote the current pairs of the struc-
tureΩ as well asg(t1, t2, k1, k2) denote the current numbers
for the pairs(t1, t2) ∈ Ω before executing thei-th step. The
algorithm performs the following operations in order to ex-
ecute thei-th step (These operations can be understood as a
transformation of a star into a simplex.

1. The objecti is removed from the setT .

2. The pairs(i, t), t > i are removed from the setΩ.

3. For all pairs(t1, t2), i < t1 < t2 ≤ n, new values
g(t1, t2, k1, k2) are calculated:

g(t1, t2, k1, k2) ::= g(t1, t2, k1, k2) ∧

∧
∨
ki∈K

(
g(i, t1, ki, k1) ∧ q(i, ki) ∧ g(i, t2, ki, k2)

)
.

(17)

After executingn − 2 steps the array of numbersg(n −
1, n, kn−1, kn) is obtained. The solution of the problem (2)
is the number

∨
kn−1

∨
kn

[
q(n− 1, kn−1) ∧ g(n− 1, n, kn−1, kn) ∧

∧ q(n, kn)
]

(18)

The solution of the problem (3) i.e. the construction of the
labelling f∗, is obtained in the following way. If the num-
ber (18) is zero then the labellingf∗ does not exist. In the
opposite case we can choose any two valuesk∗n−1 andk∗n
fulfilling

q(n− 1, k∗n−1) ∧ g(n− 1, n, k∗n−1, k
∗
n) ∧ g(n, k∗n) = 1

and set

f∗(n− 1) = k∗n−1 and f∗(n) = k∗n .

Suppose now, that we have already assigned the values
f∗(i + 1), f∗(i + 2), ..., f∗(n) of the labelling. In order to
assign a value to the objecti we can choose anyk∗i satisfying
the condition( n∧

t=i+1

g(i, t, k∗i , kt)
)
∧ q(i, k∗i ) = 1 . (19)

Such value dead certain exists. The whole amount of com-
putation is of order|T |3 · |K|3.

It is not very difficult to modify the described algorithm in
order to solve the minimax labelling problem. The interval
condition for the minimax problem is modified in the follow-
ing way.

Let k∗1 be an inner label of the triplek1, k
′
1, k
′′
1 andk∗2 be

an inner label of the triplek2, k
′
2, k
′′
2 . Then the inequality

g(t1, t2, k∗1 , k
∗
2) ≥

≥ min
[
g(t1, t2, k1, k2), g(t1, t2, k′1, k

′
2), g(t1, t2, k′′1 , k

′′
2 )
]

must be fulfilled for each pair(t1, t2) ∈ Ω and every six-
tuple k1, k

′
1, k
′′
1 , k2, k

′
2, k
′′
2 of labels. The algorithm for the

minimax labeling problem is the same as the algorithm for
the consistent labelling problem apart from the fact that the
operation∨ must be replaced by the operation of taking the
greater of two numbers as well as the operation∧ must be
replaced by the operation of taking the smaller of two num-
bers.

4 Maxsum labelling problem

The optimization problems (7) and (8) cannot be solved by
sequential removing of variables as described in the previous
section because the function

max
k

∑
t∈T

g
(
k, f(t)

)
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cannot be performed in the form∑
(t1,t2)∈T

g
(
t1, t2, f(t1), f(t2)

)
.

Nevertheless, the problems (7) and (8) can be solved but un-
der certain much stronger restrictions than the interval re-
striction. The algorithm for solving the maxsum problems is
also based on equivalent transformations of the given prob-
lem into a form with quite evident solutions. In the previ-
ous section the transformation of the problem consisted in
removing variables. Through such elimination of variables
the initial multivariate problem was reduced to an univariate
problem that could be solved by an exhaustive testing of all
values of the remaining single variable. The solution of max-
sum problem is also based on an equivalent transformation
of the given problem. This transformation does not reduce
the dimensionality of the maxsum problem but nevertheless
transforms the initial problem into a trivial one.

4.1 Formulation of the main assumptions

Let T be an ordered set of objects,K be an ordered set of
labels andf : T → K be a labelling. LetΩ be the set of
all possible pairs of the form(t1, t2), t1, t2 ∈ T , t1 < t2.
Suppose that numbersg(t1, t2, k1, k2) are given for each pair
(t1, t2) of objects and every pair of labelsk1, k2 ∈ K. As
well suppose that numbersq(t, k) are given for each object
t ∈ T and labelk ∈ K.

The problem in question consists in looking for the la-
belling

f∗ = arg max
f∈KT

[ ∑
(t1,t2)∈Ω

g(t1, t2, k1, k2) +

+
∑
t∈T

q(t, k)
]
. (20)

In the following we will show an algorithm that solves this
problem if the functionsg satisfy the following condition:
For each pair of objects(t1, t2) ∈ Ω and every four labels
k1 ≤ k′1, k2 ≤ k′2 the following inequality must be fulfilled:

g(t1, t2, k1, k2) + g(t1, t2, k′1, k
′
2) ≥

≥ g(t1, t2, k1, k
′
2) + g(t1, t2, k′1, k2) . (21)

4.2 Consistent labelling problems and relaxation
labelling

For the hereafter analysis of the problem (20) we must re-
turn to the problem of consistent labeling, i.e. calculating the
number∨

f∈KT

[( ∧
(t1,t2)∈Ω

g̃
(
t1, t2, f(t1), f(t2)

))
∧

∧
( ∧

(t∈T

q̃(t, k)
)]

(22)

and looking for a labellingf∗ that satisfies the condition( ∧
(t1,t2)∈Ω

g̃
(
t1, t2, f(t1), f(t2)

))
∧
(∧
t∈T

q̃(t, k)
)
, (23)

whereg̃(t1, t2, k1, k2) andq̃(t, k) are binary numbers. These
numbers are assumed to satisfy the following condition: for
each pair(t1, t2) ∈ Ω and every four labelsk1 < k′1, k2 < k′2
the following inequality holds:

g̃(t1, t2, k1, k2) ∧ g̃(t1, t2, k′1, k
′
2) ≥

≥ g̃(t1, t2, k1, k
′
2) ∧ g̃(t1, t2, k′1, k2) . (24)

This condition will be called monotonous interval condition.
It is stronger than the interval condition that enables the so-
lution of the problems (22) and (23) in the previous sec-
tion. Consequently, the problems may be solved by succe-
sive star-simplex transformations. But under monotonous in-
terval condition (24) the problem can be solved also with the
simpler algorithm of relaxation labelling [1].

Relaxation labelling consists in the following repeated
operations which decrease the numbersg̃(t1, t2, k1, k2) and
q̃(t, k):
1. Exclusion of a pair (t, k). Let the pair(t, k) be such that(

∃t′ > t : g̃(t, t′, k, k′) = 0 ∀k′ ∈ K
)
∨

∨
(
∃t′ < t : g̃(t′, t, k′, k) = 0 ∀k′ ∈ K

)
.

Then the variablẽq(t, k) is set to0.
2. Exclusion of a four-tuple (t, t′, k, k′). Let the pair(t, k)
be such thatq(t, k) = 0. Then for everyt′ < t and for every
k′ ∈ K the variablẽg(t′, t, k′, k) is set to0. The variables
g̃(t, t′, k, k′), t′ > t, k′ ∈ K, are also set to0.

Relaxation labelling stops if neither variablesq̃(t, k) nor
g̃(t1, t2, k1, k2) decrease. Let us denote byg̃∗(t1, t2, k1, k2)
and q̃∗(t, k) the values of the corresponding variables after
the relaxation labelling has stopped. The result of relaxation
labelling will be called a zero result ifq(t, k) = 0 for every
t ∈ T andk ∈ K and a non-zero result if

∨
k∈K q(t, k) = 1

for everyt ∈ T . It is known and quite evident that the non-
zero result of relaxation labelling is a necessary condition
for the existence of consistent labellingsf∗ satisfying the
condition (23).

It is very important for the solution of the optimization
problem (20), that under condition (24) a non-zero result of
the relaxation labelling is not only necessary but also suffi-
cient for the existence of consistent labellingsf∗. For exam-
ple, the following labelling is consistent:

f∗(t) = max
k∈K(t)

k, (25)

whereK(t) = {k ∈ K
∣∣ q̃∗(t, k) = 1}.

4.3 Trivial maxsum problems

Trivial maxsum problems of the type

f∗ = arg max
f∈KT

[ ∑
(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
+

+
∑
t∈T

q(t, k)
]

(26)

are defined via the following (in general, wrong!) algorithm
for their solution:
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1. Determine all label pairsk1, k2 which maximize the func-
tions g(t1, t2, k1, k2) and denote the result for each pair of
objects(t1, t2) ∈ Ω by the binary valued functions

g̃(t1, t2, k1, k2) =
{

1 if g(t1, t2, k1, k2) = g(t1, t2)
0 else.

whereg(t1, t2) = maxk1,k2 g(t1, t2, k1, k2).
2. Determine all labelsk which maximize the functions
q(t, k) and denote the result for each objectt ∈ T by the
binary valued functions

q̃(t, k) =
{

1 if q(t, k) = q(t)
0 else.

whereq(t) = maxk q(t, k).
3. Solve the consistent labelling problem for the functionsg̃,
q̃ i.e. search for a labellingf∗ fulfilling( ∧

(t1,t2)∈Ω

g̃
(
t1, t2, f

∗(t1), f∗(t2)
))
∧

∧
( ∧

(t∈T

q̃
(
t, f∗(t)

))
= 1 .

by computing the functions̃g∗(t1, t2, k1, k2) andq̃∗(t, k).
4. If a zero-result is obtained, the initial maxsum problem is
defined as a non-trivial one and its solution is not found.
5. If a non-zero result is obtained, the problem is trivial by
definition. In this case there exists at least one consistent
labeling and this labelling is also a solution of the maxsum
problem. One of the consistent labellings can be obtained for
example by the above-mentioned method (25).

The main idea of the solution of the problem (26) is
that under monotonous interval condition any given maxsum
problem can be equivalently transformed into a trivial max-
sum problem.

4.4 Equivalent maxsum problems

Let g(t1, t2, k1, k2) andq(t, k) be the initial numbers which
define the quality of a labelingf∑

(t1,t2)∈Ω

g
(
t1, t2, f(t1), f(t2)

)
+
∑
t∈T

q(t, k). (27)

Let ϕ(k, t, t′), k ∈ K, t′ ∈ T\{t} be some arrayΦ of num-
bers defining new functionsg′ andq′:

g′(t1, t2, k1, k2) =
= g(t1, t2, k1, k2) + ϕ(k1, t1, t2) + ϕ(k2, t2, t1)

q′(t, k) = q(t, k)−
∑

t′∈T\{t}

ϕ(k, t, t′) .

These new numbers also define the quality of a labellingf as∑
(t1,t2)∈Ω

g′
(
t1, t2, f(t1), f(t2)

)
+
∑
t∈T

q′
(
t, f(t)

)
. (28)

For each labellingf the qualities (27) and (28) are exactly the
same. Therefore the optimization problem (26) with num-
bersg(t1, t2, k1, k2) andq(t, k) is equivalent to the problem
of the same form but with the numbersg′(t1, t2, k1, k2) and
q′(t, k). The class of problems which are equivalent to some
initial problem is formed with various arraysΦ containing
the numbersϕ(k, t, t′), k ∈ K, t ∈ T , t′ ∈ T\{t}. The main
result that enables the solution of maxsum problem under the
condition (21) is that every class of equivalent maxsum prob-
lems contains at least one trivial problem.

4.5 Solution of maxsum problem

A solution of the maxsum problem is based on the following
result.

If the condition (21) is satisfied, every maxsum problem
can be transformed to a trivial problem by such numbers
ϕ(k, t, t′) which minimize the value∑

(t1,t2)∈Ω

max
k1,k2∈K

[
g(t1, t2, k1, k2) +

+ ϕ(k1, t1, t2) + ϕ(k2, t2, t1)
]

+

+
∑
t∈T

max
k∈K

[
q(t, k)−

∑
t′∈T\{t}

ϕ(k, t, t′)
]
. (29)

The problem (29) is in turn a linear optimization problem.
Really, it consists in looking for such numbersH(t1, t2),
(t1, t2) ∈ Ω, h(t), t ∈ T , ϕ(k, t, t′), k ∈ K, t ∈ T
t′ ∈ T\{t} which minimize the linear function∑

(t1,t2)∈Ω

H(t1, t2) +
∑
t∈T

h(t) (30)

under the linear restrictions

H(t1, t2)− ϕ(k1, t1, t2)− ϕ(k2, t2, t1) ≥
≥ g(t1, t2, k1, k2), (t1, t2) ∈ Ω, k1 ∈ K, k2 ∈ K; (31)

h(t) +
∑

t∈T\{t}

ϕ(k, t, t′) ≥ q(k, t) . (32)

Therefore (30) can be solved using the well known methods
of linear optimization [8]. Due to the peculiarity of the prob-
lem it is however preferable to solve it with a specific and
more appropriate algorithm which will be faster than general
optimization algorithms.
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