
Retrospective Shading Correction: Problem, Methods, and Evaluation

Dejan Tomaževic, Boštjan Likar, Franjo Pernuš
University of Ljubljana

Faculty of Electrical Engineering
Tržaška 25, 1000 Ljubljana, Slovenia

{dejan.tomazevic, bostjan.likar, franjo.pernus}@fe.uni-lj.si

Abstract In this paper we address the problem of
retrospective shading correction, which is a necessary
pre-processing step in many tasks of image analysis. Eight
algorithms are implemented and compared. The
performance of the algorithms was analysed firstly; on
three sets of differently structured synthetic shaded and
shading-free images, and secondly; on two sets of real
microscopical images acquired by two different
acquisition set-ups. The results show that the entropy
minimisation (EMI) method outperforms the other
methods in terms of the reduction of true intensity
variations and preservation of intensity characteristics of
the shading-free images. The strength of EMI is especially
apparent when applied to images containing large-scale
objects.

1. Introduction

Shading or intensity inhomogeneity is a phenomenon,
manifesting itself as an intensity gradient across the filed
of view not present in the original scene. Because shading
is a smoothly varying function of location it normally has
only a minor impact on the visual image interpretation or
manual analysis. However, it may have an adverse effect
on automatic image processing and analysis. In such cases,
the correction of shading is a necessary pre-processing
step.
In microscopy, shading [7] can be either object-
independent or object-dependent. In the first case, shading
arises from imperfections in the image acquisition process
and may be corrected by calibration methods. In the later
case, shading emerges from imperfect object preparation,
such as variable slice thickness in transmission microscopy
or a non-planar surface in reflectance microscopy. In this
cases it can be corrected only retrospectively, i.e., by using
the information of the acquired images.
Over the last decades, a number of retrospective shading
correction (RSC) methods were proposed in the literature
[1,2,3] but little has been done to evaluate and compare
their performances. The lack of sound experimental

evaluation makes it difficult to assess the state of the art,
particularly those aspects of a problem still requiring
improvement. The essential elements of framework for
comparison of algorithms are problem definition,
objective performance measures, and large sets of images
with ground truth.
In this paper we evaluate and compare eight shading
correction methods. For evaluation three sets of simulated
and two sets of real images were used. A RCS method to
be effective should correct the shading when present, but
should not corrupt the shading-free images. The
performance of RSC algorithms was quantitatively
measured by the change of the coefficient of intensity
variations in different object classes. All images used in
this paper are available via: http://biprog.fe.uni-lj.si
/shading/images

2. Methods

In this section we formulate the problem of shading
correction and provide an overview over the retrospective
shading correction methods.

2.1. Problem formulation
The formation of an image N(x,y) is an interaction
between objects in real space, illumination, the optical
system, and the sensor. In transmission microscopy, the
interaction between an object and illumination may be
described by the absorption model:
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while in reflectance microscopy, the interaction is
described by the reflectance model:

),(),(),( yxRyxIyxN = (2)

I(x,y) represents the illumination, D(x,y) is the object
thickness, and λ(x,y) and R(x,y) are the imaged absorption
and reflectance, respectively, of an object.
If I(x,y) and D(x,y) do not depend on (x,y), i.e., I(x,y)=I
and D(x,y)=D, a shading-free image U(x,y) is acquired:



N(x,y)=U(x,y). Otherwise, the relation between an
intensity inhomogeneous acquired image N(x,y) and its
corresponding shading-free image U(x,y) may be well
described by the following linear model:
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where SM(x,y) and SA(x,y) are the multiplicative and the
additive shading components, respectively [2]. These two
components also encounter the shading caused by the
optical system and the sensor. Shading correction is
concerned with deriving the shading-free image U(x,y)
from the acquired image N(x,y). If the shading components
SM(x,y) and SA(x,y) are known, shading correction may be
achieved by inverting the linear model (Eq. 3):
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The shading correction problem is often oversimplified by
assuming that only one of the shading components, either
SM(x,y) or SA(x,y), is involved in the corruption of the
image U(x,y). In such a case, shading correction is
performed either as:
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or as:
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where C is the normalisation constant needed to restore the
desired grey level range. If shading is object-independent,
SM(x,y) or/and SA(x,y) may be obtained by the acquisition
of one or two additional calibration images (e.g. by
recording an empty or defocused microscopical field and
by taking an image with the shutter closed) [8]. However,
object-dependent shading requires a retrospective
correction, i.e., the shading components SA(x,y) or/and
SM(x,y) must be derived from the acquired image N(x,y).

2.2. Retrospective shading correction techniques
2.2.1.  Linear filtering. Linear filtering [1,2] assumes that
only the additive component SA(x,y) is present in the image
N(x,y) and that it can be determined by low-pass filtering
(LPF) of the acquired image:
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Shading correction is then performed by using Eq. 5.
2.2.2. Homomorphic filtering. This technique [2,4]
involves low-pass filtering of the logarithm of the acquired
image and thus derives solely the multiplicative shading
component SM(x,y):
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Eq. 6 is then used to correct the image N(x,y).
A key to the efficient correction by both methods is in the
selection of an appropriate low-pass filter by which the
spectra of shading and shading-free data are to be
separated.
2.2.3. Morphological filtering. The assumption behind
morphological filtering is that objects of interest are

limited in size and smaller than the scale of background
variations, and that the background is everywhere either
darker or lighter than the objects [2]. If this assumption
holds, greyscale morphology operators [5] may be used to
filter out the objects and thus obtain an estimation of the
background. This may represent either SA(x,y) or SM(x,y)
and Eq. 5 or 6, respectively, is used for correction. The
size of the structuring element should be slightly larger
than the size of the objects that are to be filtered out.
2.2.4. Fitting a shading model. By selecting a number of
points in the background or in an object class, a list of
intensity values and locations can be acquired. The
intensity variation over the image background or object
class may be obtained by least-squares fitting of a function
F(x,y) to the intensity values at the pre-selected points.
Most often the function F(x,y) is a second order
polynomial [1,3]:
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The function F(x,y) may either represent SA(x,y) or SM(x,y)
and Eq. 5 or 6, respectively, is then used for shading
correction. Alternatively, two parametric functions can be
used. For example, the function FD(x,y) may be fitted to
intensity values at points belonging to a dark object class,
while FB(x,y) is fitted to intensity values of a bright object
class. In this case, both shading components may be
derived:
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where F  denotes the mean value of the function F(x,y) in
the image domain.
A crucial step in this approach is the selection of the
representative points [1]. Manual selection of points,
which is subjective and time-consuming, calls for an
automatic approach. A straightforward way in this
direction is to subdivide the image into a grid of smaller
rectangles. In each rectangle a point is then selected,
which has the mean, median, minimum, or maximum grey
value. In the same way two points may be selected in each
rectangle, for example, the minimum and maximum, and
used for fitting two functions. The robustness of fitting
may be improved by detecting and removing the points
that show significant inconsistency with respect to the
fitting function.
2.2.5. Entropy minimisation. In the method recently
proposed by Likar and Pernuš [3], it is assumed that
shading (Eq. 3) increases the level of uncertainty in the
image, which is quantitatively expressed by entropy.
Shading correction, which is a search for the optimal
corrected image Uo(x,y), is performed by modelling the
shading components SM(x,y) and SA(x,y) by the second
order polynomials and varying their parameters until the
entropy H  of the image U(x,y) (Eq. 4) reaches a
minimum:
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3. Experiments and results

In this section we first describe the procedure for
computer generation of artificial images and outline the
acquisition set-ups for capturing real microscopical
images. Next, we specify the implementation details of the
shading correction methods and show their performances
on artificial and real microscopical images.

3.1. Artificial images
Three sets of twenty differently structured artificial images
were generated. The images in all three sets were 400x400
pixels, 8 bit. Those from the first set contained small
(mean area = 100 pixels) dark and bright objects over a
uniform background, the images from the second set
contained dark and bright medium-sized (mean area =
2000 pixels) objects separated by thin brighter segments,
while the images in the third set contained larger (mean
area = 20000 pixels) objects belonging to four different
classes. To each object class a different amount of noise
was added with standard deviations ranging from 5 to 10
grey levels.

Figure 1. Top row: The examples of shaded artificial images
from the set of small (left), medium (middle), and large (right)
sized objects. Bottom row: The examples of real microscopical
images of AgSe alloy (left) and muscle fibers (right).

To simulate the effect of shading, the absorption model of
image formation (Eq. 1), which is more complex than the
reflectance model, was implemented and applied to each
of the shading-free image. The illumination I(x,y) was
modelled by a smooth cosine function:


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while the thickness D(x,y) was modelled by a second order
polynomial. The parameters of the polynomial and ω, ε,
x0, and y0 were selected randomly for each image. In this
way, three sets of shading-free and corresponding shaded
copies were obtained. Typical examples of shaded
artificial images from each set are illustrated in Figure 1.

3.2. Real images
Two sets of twenty microscopical images were used. The
first set contained images of silver and selenium alloys
(AgSe) acquired by the reflectance technique, while the
second set contained muscle fibre images obtained by the
transmission technique (Figure 1).
The first set (AgSe alloys) was obtained by an Olympus
BX-40 microscope, Sonny SSC-M370 CCD camera, and a
Matrox Meteor frame grabber (680x512 pixels, 8bit). The
second set (muscle fibres) was acquired 7 years ago by an
Opton photomicroscope, while the photographs were
captured recently by a Sony XC-77CE CCD video camera,
equipped with Ultrak CCTV lens 25mm-1.4f, and digitised
by a Matrox Meteor frame grabber (760x512 pixels, 8 bit).
A typical image of each set is illustrated in Figure 1.

3.3. Implementation details
We implemented eight methods for retrospective shading
correction, i.e., linear filtering (LF), homomorphic
filtering (HF), morphological filtering with additive
correction (MFA), morphological filtering with
multiplicative correction (MFM), fitting a second order
polynomial and additive correction (FA), fitting a second
order polynomial and multiplicative correction (FM),
fitting two second order polynomials and applying both
additive and multiplicative correction (FB), and the
entropy minimisation method (EMI).
In the LF and HF method the filtering was performed in
the frequency domain by the convolution with a Gaussian-
shaped filter with standard deviation σ.
In the MF method the combination of opening and closing
operation was used for the first set of artificial images and
for the AgSe images, while only closing was implemented
for the second set of artificial images and for the muscle
fibre images. The structuring element in opening and
closing was a square of size LO and LC, respectively. Prior
to shading correction, the outcome of morphological
filtering was convolved with a uniform-squared mask of
size LC.
In the FA, FM, and FB method, the images were
subdivided into a gird sub-images, each GxG pixels large.
In the FA and FM method, local medians were used as the
representative points in the first set of artificial images and
in the AgSe images, while local maxima were used for the
same task in the second set of artificial images and for the
muscle fibre images. In the FB method local minima and
local medians were used as representative points for fitting
the two models in the images of the first set of artificial
images and AgSe images, while local maxima were used
instead of local medians for the same purpose in the
second set of artificial images and in the set of muscle
fibre images. When the FA, FM, and FB methods were
applied to real microscopical images, the following two-
step procedure for removing the inconsistent points was
used:
1. Fit the function F(x,y) to the set S of selected points,

determine the differences di between the derived



model and each selected point, and compute the
corresponding standard deviation σd.

2. If σd is larger then a pre-selected σv: Remove the
point with the largest distance di from the set S and go
to the first step; else: Stop.

The EMI method was implemented as described in [3]
with no modifications.
All methods except EMI require a selection of a certain
number of parameters on which their performances
depend. The optimal parameters were found after
substantial experimentation so that all algorithms were
treated equally. The implementation parameters that
yielded the best performances of each method are
summarised in Table 1. Because none of the methods,
except the EMI, could correct the shading present in the
third set of artificial images, no parameters are given for
this set. The same holds for the LF and HF methods when
applied to muscle fibre images.

Table 1. Implementation parameters

Artificial images Real images

Method Parameters Set 1 Set 2 Set 3 AgSe Muscle
LF σ 30 80 NAP 50 NAP
HF σ 40 80 NAP 50 NAP

MFA LO, LC 13, 27 -, 50 NAP 10, 20 -, 120
MFM LO, LC 13, 27 -, 50 NAP 10, 20 -, 120
FA G ,σv 50, - 50, - NAP 50, 5 80, 5
FM G, σv 50, - 50, - NAP 50, 5 80, 5
FB G, σv 50, - 50, - NAP 50, 5 80, 5
EMI - - - - - -

NAP - No Appropriate Parameters

3.4. Performance evaluation
Each method was tested on shading-free and shaded
artificial images and on real images. The performances of
shading correction methods were evaluated both
qualitatively and quantitatively. Qualitatively, the
performance was determined by visually evaluating the
results of shading correction. The methods, which yielded
completely useless results on a particular set of images,
regardless of the parameters used, were not quantitatively
evaluated.
Quantitatively the performance of each method was
expressed by the reduction/increase of intensity variations
within the objects of the same class after shading
correction. For this purpose the coefficient of variations,
defined as the standard deviation divided by the mean grey
value, was calculated before and after correction for two
different object classes, both in the sets of shading-free
and shaded images. Such a test requires a shading-tolerant
segmentation of object classes, which was trivial in the
case of artificial images. For the real microscopical images
a coarse segmentation was conducted by manually
pinpointing the centres of the individual objects, i.e. dark
spots (selenium), background regions (silver), dark fibres
and bright fibres. The radii of circular regions were

visually established so that they were completely inside
the objects that they represented.
The results of shading correction methods, applied to the
first two sets of artificial shaded and shading-free images,
and the two sets of real microscopical images, were
expressed by the percentage of reduction of the coefficient
of variations and illustrated by box-whiskers diagrams,
showing the minimum, maximum, median, and 1st and 3rd

quartile of the distribution of twenty samples.

Figure 2. The change of the coefficient of variations after
shading correction of shaded (top) and shading free (bottom)
artificial images from the first set.
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3.5. Results
The top diagram in the Figure 2 shows the changes of the
coefficients of variations of the dark objects and
background in the shaded artificial images of the first set,
while the corresponding changes in the shading free
artificial images are presented in the bottom diagram.
Similarly, Figure 3 shows the changes of coefficient of
variations in the shaded and shading-free artificial images
from the second set. In Figures 2 and 3 the distributions of
changes of the coefficients of variations, which would be
obtained by an ideal method, are given. These changes
were computed from the shaded and corresponding
shading-free images.
In Figure 2, it can be observed that nearly all methods
reduce the intensity variations within dark objects and
background. No significant distinction between the eight
methods was found, although the LF, MFA and FA
methods yielded an increase of dark objects intensity
variations in 4, 6, and 8 images, respectively. The FB and



EMI methods yielded the distributions of changes of
coefficient of variations that were the most similar to the
ideal distribution. In the bottom diagram (Figure 2), one
can see that only the FA, FM, FB, and EMI methods do
not change the intensity variations of the shading-free
images.
Figure 3 shows that on medium-sized objects the FB and
EMI methods performed the best, i.e., yielded the highest
reduction of the intensity variations of the dark and bright
objects. The MFA and FA methods significantly increased
the intensity variations of dark objects in the shaded
images. For the EMI method the distributions of changes
of coefficient of variations is the most similar to the ideal
distribution. All methods, except EMI, when applied to the
shading-free images, increased the intensity variations.

Figure 3. The change of the coefficient of variations after
shading correction of shaded (top) and shading free (bottom)
artificial images from the second set.
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The EMI method was the only one that yielded good
corrections of the large-structure images from the third set,
although it failed in four out of twenty shaded images,
most likely because of finding a local instead of the global
entropy minimum. The median change of variations
achieved was -54.8% and -31.1% for dark and bright
objects, respectively. The EMI method, applied to the
large-structured shading-free images, did not induce
additional intensity variations.

Figure 4. The change of the coefficient of variations after
shading correction of AgSe alloys images.
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Figure 5. The change of the coefficient of variations after
shading correction of muscle fibres images.
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The results of shading correction methods, applied to
AgSe alloy images (Figure 4), show that each of the eight
methods significantly reduce intensity variations within
both selenium (dark objects) and silver (background), and
that non of the method significantly outperforms the
others.
Figure 5 illustrates the results of six correction methods
that yielded meaningful results on muscle fibre images. It
can be seen that the FB and EMI methods outperformed
the others. This is due to the presence of both the additive
and multiplicative shading components in this set of
images. The EMI method slightly outperformed the FB
method.

Table 2. Performance (+ good, o average, - poor) of correction
methods for different image sets.

Methods
Image set LF HF MFA MFM FA FM FB EMI

Set 1 o + o + o + + +
Set 2 + + o + o + + +
Set 3 - - - - - - - +
AgSe + + + + + + + +

Muscle - - o + o + + +



With regard to their performance, we have classified the
methods into those whose performance was poor (-),
average (o) or good (+) (Table 2). As such, Table 2 may
assist the operators, facing the shading correction problem,
in choosing the appropriate method for a given task.

4. Discussion

Shading correction tries to recover the shading-free images
from the intensity inhomogeneous ones. In this paper we
implemented eight retrospective shading correction
algorithms in order to compare their performance in terms
of reduction of intensity variations. The algorithms come
from four groups; the grouping is based on conceptual
differences among the algorithms. The comparison was
carried out on three sets of synthetic shading-free and
corresponding shaded images and on two sets of real
microscopical images. The results show that none of the
algorithms, except the algorithm based on entropy
minimisation, performs consistently for all image sets.
They work well for certain images, but performed poorly
for others.

Figure 6. SM(x,y) component (left) extracted with Gaussian filter
(σ=100) from muscle fibre image from Figure 1, and the
corresponding corrected image (right).

The filtering methods (LF, HF, MFA, and MFM) are most
suitable for correcting images of small objects. In other
words, the spectra of the true image data and shading
should not overlap and can thus be separated by simple
filtering (LF and HF), or alternatively, the objects should
be small enough so that they can be removed by
morphological filtering (MFA and MFM). Even if the
above requirements are met, the operator must select a
number of parameters, such as width, size, and/or shape of
the filter or structuring element. This is not always a
straightforward task but usually requires substantial
manual tuning. Still, the filtering approach may not always
yield meaningful results, as shown Figure 6, where the
overlapping spectra of shading and true data can not be
efficiently separated. Alternatively, the morphological
filtering approach may in some cases efficiently remove
the objects from the background, even if the spectra are
overlapping. Unfortunately, this approach generally fails
on images containing large objects. An example of
morphological filtering artefacts is illustrated in Figure 7.
Fitting methods (FA, FM, and FB) performed well on
images containing small and medium sized objects. The
methods applied to artificial images required no robust
fitting, because local intensity distributions, from which
the control points were derived, were affected solely by

the simulated shading. In real microscopical images, other
anomalies are generally present and affect local intensity
distributions and automatic control point selection.
Consequently, robust fitting is strongly recommended in
real images. The proposed robust fitting of two parametric
functions (FB method) outperformed its two counterparts
that fit a single component, confirming the presence of the
two shading components in the real microscopical images
and the need of their retrospective correction.

Figure 7. Original artificial image (left), SM(x,y) component
(middle) extracted by morphological filtering (LO=100), and the
corresponding corrected image (right).

The method based on entropy minimisation (EMI) also
addresses both shading components and seems to be the
most general, as illustrated by the results of its application
to a variety of differently structured artificial and real
microscopical images. Besides, the EMI method requires
no operator-specific tuning and does not induce spurious
intensity variations to the shading free images.
In conclusion, let us cite Jain and Binford [6]: "The
importance of theory cannot be overemphasized. But at
the same time, a discipline without experiment is not
scientific. Without adequate experimental methods, there
is no way to rigorously substantiate new ideas and to
evaluate different approaches." This paper is a
contribution in this direction.
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