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Tomá̌s Werner, Toḿǎs Pajdla, and Martin Urban

Czech Technical University
Center for Machine Perception
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Abstract The paper presents a system for 3D reconstruc-
tion from multiple uncalibrated unorganized images. A num-
ber of alternative reconstruction techniques can be combined
together by the means of a simple language. A complete re-
construction procedure is defined by a program in this lan-
guage. Such an approach allows to choose a suitable recon-
struction method for the situation at hand and thus obtain
useful results even if a one-step reconstruction would not be
possible due to occlusion and errors in image data.

1 Introduction

This paper1 presents a system for 3D reconstruction from
multiple uncalibrated and unorganized images. By unorga-
nized, we mean that neighborhood relations between views
are not known as e.g. in a linear image sequence, but the
input is a set of images taken from arbitrary locations about
which nothing is known.

The system for has the following features:

1. Graphic User Interface allows manual marking of (i) cor-
respondences and (ii) planar polygons from which texture
is taken [1]. Automatic search for correspondences is not
considered.

2. The reconstruction procedure is defined as a program in
a simple language. The program describes how the basic
building block algorithms are combined together.

3. The reconstruction computation consists of a number of
basic building blocks which include algorithms for es-
timation of multifocal tensors from image correspon-
dences, estimation of projection matrices from the mul-
tifocal tensors, computation of scene points by triangula-
tion, gluing another view or reconstruction to an existing
reconstruction, factorization, bundle adjustment, stratifi-
cation of projective reconstruction to quasi-affine, affine,
or Euclidean reconstruction, etc.

4. A VRML model of the 3D reconstruction with correctly
mapped texture can be build.

1 This research was supported by the Czech Ministry of Education un-
der the grant VS96049, by grant OCAMS No. 4/11/AIP CR, and by the
Research Programme J04/98:212300013 Decision and control for industry.

2 Used Notation

Projective space of dimensiond is denoted byPd. Let a
scene consist ofN 3D scene points. They are indexed by
indexn = 1, . . . , N in subscript. Then-th scene point lies
in P3 and is represented by 4-vector of homogeneous coor-
dinatesXn.

Let the scene be observed byK cameras. The cam-
eras/views are indexed by indexk = 1, . . . ,K in superscript.
Thek-th camera is represented by its3×4 camera projection
matrixPk.

Let us measure image points, which are represented by
3-vectorsukn of homogeneous coordinates, and that are pro-
jections ofn-th scene point ink-th image. The image points
ukn may have not been measured for each pair[n, k] due to
e.g. occlusions. The measurement presence variableπkn is
non-zero iff image pointukn has been measured. However,
if the extension to missing data case is straightforward, the
formulae will be mostly presented as ifukn were available for
all pairs[n, k].

Projection equation describes the process of projecting a
scene point by a camera:

ρknukn = PkXn (1)

whereρkn 6= 0 is a scale factor.

3 Language Describing Reconstruction
Procedure

To compute a projective reconstruction from allK views,
the building block algorithms are combined together by the
means of a language. The exact reconstruction procedure is
specified by the user as a sentence in this language. Here are
some generic examples of the reconstruction commands:

• ’ [1; 3]’ means projective reconstruction from views 1,3 via
fundamental matrix,
• ’ [1; 3, 5]’ means projective reconstruction from views

1,3,5 via trifocal tensor,
• ’ [1; 2, 3] + 4’ means gluing view 4 to a reconstruction,
• ’ [1; 2, 3] + [2; 4]’ means fusing two projective reconstruc-

tions, and
• ’euclids([1; 2, 3])’ means Euclidean stratification from di-

agonalK.
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Here is an example of a more complex command:

bundle(euclids(fact([1; 3, 4] + 5)) + ([2; 6, 7, 8] + 9))

In the next two sections, the used algorithms will be de-
scribed in more detail.

4 Projective Reconstruction

The goal of projective reconstruction is to computePk and
Xn from the measured image pointsukn so that (1) holds.

It is an important result (e.g., [4]) that Pk andXn can be
determined only up to a 3D-to-3D projectivity. It is because
we can rewrite the right-hand side of (1) to

PkXn = (PkH−1)(HXn) = P′kX′n (2)

whereH is a4× 4 matrix with rank four, describing the 3D-
to-3D projective transformation. The factors in parentheses
on the right-hand side can be considered as a new and valid
projective reconstruction. MatrixH cannot be determined
without further knowledge about the cameras or the scene.
The estimation ofPk andXn up to an unknownH from ukn
is called projective reconstruction.

A good algorithm for automatically computing projec-
tive reconstruction should (i) cope with any configuration
of scene/cameras that theoretically enables computing a pro-
jective reconstruction, (ii) recognize configurations that do
not enable it, (iii) treat all points and cameras equally, (iv)
tollerate sufficiently large amount of noise in image measure-
ments, and (v) cope with missing image measurements (zero
πkn). As the evidence why designing such an algorithm is dif-
ficult let us notice that the algorithm has to cope equally well
with three different scene/cameras configurations shown in
Figure1.

Thus far, no algorithm with the above properties is known.
However, practical and efficient algorithms are known for
computing (i)Pk from ukn for 2, 3, and 4 views, (ii)X from
Pk anduk, and (iii) P from Xn andun. We describe them
in the rest of this section. We propose semi-automatic way
for computing the projective reconstruction: these basic al-
gorithms works automatically but the way in which they are
combined so that the complete projective reconstruction is
achieved is specified by the user.

4.1 Reconstruction from 2 views

Projective reconstruction from views 1 and 2 is done via de-
composing fundamental matrixF12, estimated by an 8-point
algorithm [2], to P1 andP2. In 8-point algorithm, as well as
in solving other linear equation systems, the suitable normal-
ization ofukn is done [3].

A simple and unusual algorithm is used for decomposing
F12. For any two pointsu1

n,u
2
n we haveu1>

n F12u2
n = 0,

hence for any scene pointXn it is X>nP1>F12P2Xn = 0.
P1,P2 can always be transformed so thatP1 = [I3|03].
Then the constraint forP2 is simply that[

F12P2

0>4

]

reconstructed
object

reconstructed
object

reconstructed
objects
(houses)

camera centers

camera centers

configuration 3

configuration 2

configuration 1

Figure 1: Qualitatively different configurations of scene/cameras
for 3D reconstruction. In configuration 1, approximately the same
part of the scene is visible from all the viewpoints. In configuration
2, the viewpoints are all around the reconstructed object. Differ-
ent parts are visible from different viewpoints, however, the whole
geometry can be estimated accurately because different scene parts
are connected thanks to the fact that the viewing curve is closed.
This would be even more obvious in a 2-D extension of configura-
tion 2. Configuration 3 demonstrates walking on the streets, where
the distant parts of the scene are connected only very loosely. Ac-
cumulation of errors in geometry is inevitable.

be a skew-symmetric matrix. This yields a linear under-
determined equation system forP2. From the solution space,
someP2 with a full rank is chosen.

4.2 Reconstruction from 3 views

It is done via estimation and decomposition of trifocal tensor
[4, 5].

4.3 Reconstruction from more than 3 views with one
common view

If the views 1, . . . ,K,K > 3, can be divided inK − 1
triplets(1, 2, 3), (1, 3, 4), . . . , (1,K, 2) such that trifocal ten-
sor can be estimated from each triplet, projective reconstruc-
tion from these views is computed by the following method
[9]: (i) Estimate trifocal tensor for each triplet independently,
(ii) recover the epipoles from adjoining tensors, (iii) estimate
P1, . . . ,PK from u1

n, . . . ,u
K
n simultaneously using the re-

covered epipoles.
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4.4 Reconstructing a scene point from image points
and camera matrices

Let us have image pointsuk in k = 1, 2, . . . ,K images, and
projection matricesPk. We want to estimate scene pointX
satisfyingρkuk = PkX. By eliminatingρk, we can write

[uk]×PkX = 03

where[u]× is a 3 × 3 skew-symmetric matrix such that for
eachu,v it is [u]×v = u× v where× denotes vector prod-
uct. This is an overdetermined linear system forX.

4.5 Estimating camera matrix from corresponding
scene and image points

Let us have corresponding pairs[Xn,un] for n = 1, . . . , N .
We want to estimate camera matrixP such thatρnun =
PXn holds. After some rearranging it is

[un]×

X>n 0>4 0>4
0>4 X>n 0>4
0>4 0>4 X>n

p>

q>

r>

 = 03 (3)

wherep>,q>, r> are rows ofP. This is an over-determined
linear system forP.

4.6 Gluing separate views to an existing reconstruction

We use a simple algorithm to compute a reconstruction from
k + 1 views, having already a reconstruction fromk views.
E.g., let us have image correspondencesu1

n, . . . ,u
K
n from

which P1,P2,P3 have been computed via trifocal tensor.
ThenP4 can be estimated in two steps: (i) FromPk andukn
wherek = 1, 2, 3, reconstruct those scene pointsXn that are
visible in at least two views of the views 1, 2, 3. (ii) Estimate
P4 from u4

n.
HavingP4, we again reconstruct thoseXn that are visible

in at least two views of the views 1, 2, 3, 4. Iterating the pro-
cess fork = 5, . . . ,K, the reconstruction from allK views
is computed.

4.7 Fusing other reconstructions with existing
reconstruction

Another way how to compute a reconstruction from more
than 4 views is done in two steps: (i) compute reconstructions
from different sets of views, (ii) transform them to a com-
mon projective coordinate system. E.g., assumeP1,P2,P3

computed from views1, 2, 3 via trifocal tensor, andP′4,P′5

computed from views4, 5 via fundamental matrix. These
matrices are related via a projectivityH (4 × 4 matrix) as
follows:

ukn ' PkXn, k = 1, 2, 3 (4)

ukn ' P′kX′n, k = 4, 5 (5)

whereX′n ' HXn,P′k ' PkH−1. TransformingPk and
P′k to a common system is done in four steps: (i) Recon-
structXn from ukn andPk for k = 1, 2, 3, (ii) reconstruct
X′n from ukn and P′k for k = 4, 5, (iii) estimateH from
the systemX′n ' HXn, and (iv) transformP′k to Pk as
P′k ' PkH−1.

In this example, the two sets of views{1, 2, 3} and{4, 5}
have no view in common. What if the two sets have views
in common? E.g., in case when there are two reconstruc-
tions from views1, 2, 3 and 3, 4, we have one more con-
dition P′3 ' P3H−1, which is added to the linear system
X′n ' HXn.

4.8 Enhancing an existing reconstruction by
factorization

(1) can be written for alln andk in matrix form as

[ρknukn] = [Pk][Xn] (6)

where [ρknukn] is a 3K × N joint image matrix,[Pk] is a
3K × 4 joint camera matrix [8], and [Xn] is a 4 × N ma-
trix. If ukn are perturbed by noise, the equality does not hold
accurately. Then, the matrix[Pk][Xn] has rank four, yet the
matrix [ρknukn] generally does not. The point of the factoriza-
tion algorithm is to force the matrix[ρknukn] to have rank four
by, e.g., SVD.

We use factorization for enhancing an existing reconstruc-
tion rather than for computing it directly fromukn. The ex-
isting reconstruction is used to find the initial estimate ofρkn.
The missingukn are either re-projected asPkXn or the fac-
torization is done only for a subset of points visible in all
images.

4.9 Bundle adjustment

Optimal estimate ofPk andXn from ukn is the maximum
likelihood estimate. Let us denote byξ(u) the 2-vector of
coordinates that was measured in actually captured image –
i.e., for usual cameras it isξ(u) = [u, v]>/w whereu =
[u, v, w]>. If the noise enters the measurement in images
and if ξ(ukn) can be considered as stochastic variables with
isotropic variances, the maximum likelihood estimate is the
solution of the following optimization problem:

arg min
Pk,Xn

∑
πkn 6=0

||ξ(ukn)− ξ(PkXn)||2 (7)

where ||.||2 denotes Euclidean norm. The solution can be
found by non-linear search (we use Levenberg-Marquardt),
takingPk,Xn obtained by some other method as initial esti-
mate. In actual implementation, we minimize only overPk.
Each time when the residual function is to be evaluated,Xn

is computed fromPk andukn.

5 Stratifying Projective Reconstruction

We assume that image measurementsukn have been obtained
by projecting some real existing scene pointsX̄n by some
real existing cameras with matrices̄Pk. When applying a
3D reconstruction algorithm to the image measurements, we
would like to compute the original scene structureX̄n and
camerasP̄k. However, without further knowledge we can
reconstruct the scene and the cameras only up to a projectiv-
ity. That is, we obtain scene pointsXn and camera matrices
Pk which differ fromX̄n andP̄k by an unknown projective
transformation:

σkPk = P̄kH−1 (8)
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λnXn = HX̄n (9)

Once havingXn,Pk, we can use further knowledge about
scene structure or cameras to stratify the projective recon-
struction to something closer to reality – quasi-affine, affine,
or Euclidean reconstruction. In other words, stratifying a
projective reconstruction means using an additional knowl-
edge to restrict the space of possibleH.

This knowledge can come in various forms: 3D coordi-
nates of some scene points, perpendicularity or parallelity
of some scene lines or planes, knowing all or some intrinsic
calibration parameters of the cameras, etc. We will describe
some stratification algorithms in this section.

5.1 Decomposing projective transformation

A general 3D-to-3D projective transformationH can be
uniquely decomposed as follows:

H = HPHAHE =

[
I3 03

ω> 1

] [
K 03

0>3 1

] [
R −Rt
0>3 1

]
(10)

HP represents an element of a 3D projective group fac-
torized by 3D affine group. Vector[−ω> 1]> represents the
plane that is at infinity in the original scene.HP has 3 DOF.
Once we knowHP , we know the scene up to an affine trans-
formationHAHE , that is, we have obtained affine scene re-
construction.

HA represents an element of a 3D affine group factor-
ized by 3D Euclidean group. Upper triangular matrixK de-
scribes what remain of a general 3D-to-3D affine transfor-
mation when Euclidean transformation is removed from it.
Namely,K describes anisotropic scaling (3 diagonal entries)
and a skewing of coordinate axes (3 off-diagonal entries). Al-
gebraically, factoring affine group by Euclidean group is QR-
factorization of matrixKR. HA has 6 DOF. Once we know
HP andHA, we know the scene up to a Euclidean transfor-
mationHE , that is, we have obtained Euclidean scene recon-
struction.

HE represents an element of a 3D Euclidean group. Ro-
tation matrixR (RR> = I3) represents rotation and vector
t translation.HE has 6 DOF – 3 forR and 3 fort. Once
we knowHPHAHE , we know the scene in absolute world
coordinates.

Any projective reconstruction can be transformed by
some projective transformation such that one camera pro-
jection matrix equals[I3|03]. Assume further the original
camera matrices in the form

P̄k = Kk
[
Rk| −Rktk

]
(11)

It can be easily verified that if e.g.P1 = [I3|03] and (11)
holds, it is

K = K1, R = R1, t = t1 (12)

5.2 Affine stratification from known plane at infinity

Knowing at least 3 scene points that are at infinity in the orig-
inal scene allows finding plane at infinity in the projective
reconstruction, represented by vector[−ω> 1]>, and thus
recoveringHP . These points can be found as intersections
of planes or lines that are known to be parallel in the original
scene.

5.3 Stratification from diagonal matrix of intrinsic
calibration parameters

This stratification comes from the algorithm due to Pollefeys
and van Gool [7]. From (8), (10) and (11) we have

1
σk

Kk
[
Rk| −Rktk

]
= Pk

[
KR −KRt
ω> 1

]
(13)

By multiplying the equation by matrix̄Ω = diag([1 1 1 0]>)
from the right and multiplying each side by the transpose of
itself from the right we obtain

(σk)−2KkKk> = Pk

[
K
ω>

] [
K> ω

]
Pk> (14)

In many practical situations we can assume that (i) all
cameras have zero skew and aspect ratio equal to 1, and (ii)
the principal points are approximately known for all cameras.
Then,Kk can be transformed (transforming image points ac-
cordingly) toKk = diag([fk fk 0]>). Substituting this to
(14) and assumingP1 = [I3|03] yields

(σk)−2KkKk> = Pk


(f1)2 0 0 f1ω1

0 (f1)2 0 f1ω2

0 0 1 ω3

f1ω1 f1ω2 ω3 ω>ω

Pk>

(15)
Now, the fact thatck12 = ck13 = ck23 = 0 and ck11 = ck22,
where(σk)−2KkKk> = [ckij ], yields a linear system for 5
unknowns(f1)2, K1ω, andω>ω.

These unknowns can be computed uniquelly fromK > 2
views. ForK = 2, the non-linear constraints(f1)2, K1ω,
andω>ω must be used to select the unique solution forf1

andω.

5.4 Stratifying to quasi-affine reconstruction

Unlike byHE andHA, transforming the original reconstruc-
tion by HP does not preserve the relation ’a scene point
lies in a convex hull of other scene points’. However, the
knowledge ofukn suffices to find a quasi-affine reconstruc-
tion which does preserve the relation. We compute projec-
tivity H that transforms a general projective reconstruction
Pk,Xn to a quasi-affine reconstruction using the algorithm
from [6]. It proceeds in two steps: (i) Multiply some ofPk

andXn by−1 so that

uk>n PkXn > 0 (16)

for all n, k. (ii) Find H satisfying the system

h>4 Xn > 0 (17)

det (H) h>4 C(Pk) > 0 (18)

whereh>4 is the 4-th row ofH andC(P) = [ci(P)] is a 4-
vector such thatci(P) = (−1)i det (Pi) wherePi is a3× 3
matrix obtained by removing thei-th column fromP. It is
assumed that the true camerasP̄k are such thatc4(P̄k) > 0.

If there are solutions for both positive and negative
det (H), then the plane which is at infinity in the true scene
may separate camera centers from the scene. If there is only
one solution, the plane is known to be outside the convex hull
of scene points and camera centers, and the orientation of the
reconstructed scene to be the same as that of the true scene.
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5.5 Inflating a reconstruction

It is useful to visualize a 3D projective reconstruction in such
a way that the visualization is at least recognized by the user
as resembling the original scene. Assuming that an oriented
projective or affine reconstruction is available and that the
original scene is not too elongated in some direction, the
following heuristic can be used: Using principal component
analysis (algebraically, SVD), transformXn by a 3D-to-3D
affine transformation such that singular values of the matrix
[xn −mean(xn)] are equal. It isxn = [Xn, Yn, Zn]>/Wn

whereXn = [Xn, Yn, Zn,Wn]>.

image the texture is taken from 3D reconstruction viewed by a virtual camera

Texture in this face is distorted in the reconstruction.

Figure 2: Texture in the reconstruction is distorted.

6 Creating a VRML Model

The reconstructed scene is visualized using a VRML viewer.
FromXn,Pk,ukn, and 3D planar polygons marked in the im-
ages, a VRML source code is generated. Visualization of re-
constructed points, non-textured or textured faces, cameras,
and image residuals is supported.

This is straightforward except the following problem.
Transformation that warps texture from an image to a 3D
planar polygon is a 2D-to-2D projectivity. In the VRML lan-
guage, the texture warping is done by the viewer software.
The 2D coordinates of vertices of the polygon in the image
together with the 3D coordinates of the corresponding ver-
tices of the polygon in the scene are specified in the VRML
source code. However, this works correctly only if the image
polygon is a front-parallel projection of the corresponding
3D polygon. If this is not satisfied, the texture is distorted
as shown in Figure2. The front face in the image on the
right hand side were divided into two triangles by the VRML
viewer, and the texture in each triangle was warped by a dif-
ferent transformation. The discontinuity along the line sepa-
rating the triangles is clearly visible.

This observation leads us to requiring the VRML specifi-
cation to be extended so that a true projective texture warp-
ing is supported. Currently, we removed the distortion by
adaptively triangulating polygons to triangles that are small
enough to keep the texture distortion under one pixel.

7 Experiments with Reconstructions from
Photographs

The described algorithms, the language interpreter, and
graphic user interface for marking correspondences (being

Figure 3: Example of resulting 3D model.

at the same time a shell for the whole system, see [1]) were
implemented as a MATLAB tool box.

We reconstructed (mostly partial) 3D models of several
indoor objects and buildings from 2 to 7 views. Images were
obtained by scanning photographs taken by a camera with a
zoom lens. Example of the resulting model is in Figure3.
Projective reconstruction was stratified to Euclidean by the
algorithm from Section5.3.

8 Summary

We present a system for reconstruction of 3D model from
uncalibrated images. The system includes GUI for marking
the correspondences, a set of algorithms for computing pro-
jective reconstruction, combining different reconstructions,
and stratifying projective reconstruction using further knowl-
edge. These algorithms can be combined to a reconstruc-
tion procedure using a simple language. The system is open
for new algorithms, which rapidly appear due to research
progress.

In the paper, the practically useful latest-knowledge algo-
rithms are described in a concise and unified manner. Also
several novel ideas are presented.

All algorithms treat all three components ofukn equally –
non-homogeneous form[u/w, v/w, 1]> is never used. This
allows using not only conventional cameras but also e.g.
panoramic images in whichw can have any value. In near
future, we will use the system for reconstruction from both
directional and panoramic images.

References
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