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Abstract In this paper we extend our previous work on
constructing multiple eigenspaces from a set of training im-
ages based on the Minimum Description Length (MDL) prin-
ciple. To enhance the robustness we propose a robust frame-
work for calculating the eigenspaces. We also propose a
mechanism for incrementally adding new eigenspaces to in-
crease the computational efficiency.We illustrate the robust
performance of the new algorithm on 2D point data, and
demonstrate the ability to form object specific eigenspaces
which enhances the classification accuracy on the ORL face
recognition database.

1 Introduction

In the past years we have seen an extensive use of meth-
ods applying eigenspace methods for recognition of ob-
jects [14, 9]. Most commonly, all the training images are en-
coded by a single eigenspace whose dimension is determined
on the basis of the maximum allowable reconstruction er-
ror. In some cases (see for example [10, 9]), the appearances
of individual objects are encoded by separate eigenspaces.
However, the fact that the correlation between the images
(even between the images of views of a single object) may
not be significant, has not been taken into account in any
of these cases. Such eigenspaces ignore the locally low-
dimensional structure of the data. Also, the generalization
property of such eigenspaces is usually rather poor. Recently,
there has been work on constructing multiple eigenspaces us-
ing mixture models e.g., [2, 3, 1]. However, all these ap-
proaches require that both the number of mixture compo-
nents and the dimensionality of the PCA subspaces isa priori
given. This is a major difference from the approach proposed
by Leonardis and Bischof [7], where these two parameters
are automatically determined by the MDL principle.

Leonardis & Bischof [7] have proposed a novel approach
for construction of (possibly) multiple eigenspaces from a
set of training images based on the Minimum Description
Length principle (MDL). The main idea is to systematically
build a redundant set of eigenspaces byeigenspace-growing.
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supported by a grant from the Austrian National Fonds zur F¨orderung der
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These eigenspaces are treated as hypotheses that are sub-
ject to a selection procedure (eigenspace-selection), which
selects a subset of the eigenspaces based on the MDL princi-
ple. Eigenspace-growing and eigenspace-selection are itera-
tively combined to yield a numerically feasible algorithm. In
this paper we extend the approach by using a robust formu-
lation of the eigenspace growing procedure. In addition, we
propose an incremental hypothesis generation step which de-
creases the number of generated hypotheses, thus improving
the computational complexity.

The paper is organized as follows: First, we briefly review
our MDL approach for constructing multiple eigenspaces. In
section 3 we present the robust eigenspace construction and
the algorithm for adding new eigenspaces. The experimental
results are shown in section 4. We conclude with a summary
and outline the work in progress.

2 Multiple Eigenspaces by MDL

LetX = fx1;x2; : : :xnjxi 2 IRNg be a set of images. The
aim is to compress the set of imagesX in terms of a set of
low-dimensional eigenspaces. Each image from the setX
can then be represented as a linear combination of eigenim-
ages from an eigenspace:

xi =

mX
j=1

Ij
(i)

djX
k=1

c
(i)
jk e

(i)
jk : (1)

Ij
(i) is a variable which is1 for the j-th eigenspace which

encodes the imagexi and0 otherwise,m is the number of
all eigenspaces,dj is the dimension of thej-th eigenspace,
andcjk andejk are the corresponding coefficients and eigen-
images, respectively. Often, onlypj , pj < dj , eigenimages
are needed to represent an image to a sufficient degree of ac-
curacy, yielding an image approximationx̂i. pj is called the
effective dimensionof thej-th eigenspace.

The goal is to partition the set of imagesX into a set of
subsetsGi, (Gi � X ; jGij = ki), which contain images that
lie on a linear subspace of low dimensionality and can thus
be encoded efficiently in terms of eigenspaces.ki denotes
the number of images in the subsetGi. Since the goal is to
achieve a compact representation, the MDL principle [11]
was chosen as a global optimization criterion.
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To minimize the description length the following iterative
approach (for a detailed derivation see[7]) was used:

1. Initialization: An initial set of eigenspace hypothesis is
formed by taking a small subset of imagesG(0)i , jG(0)i j =
ki, (ki << n) from the setX , calculating the eigenspace
E
(0)
i (G

(0)
i ), and determining the effective dimensionp(0)i

1.
The dimension of the eigenspace is found by minimiz-
ing the length of encoding of the data in terms of the
eigenspace (denoted byL(G0i )),

L(G0i ) = K1p
(0)
i +K2jG

0
i jp

(0)
i + f(

d
(0)

iX

j=p
(0)
i

+1

�j)

� K1p
(0)
i +K2jG

0
i jp

(0)
i +K3

d
(0)
iX

j=p
(0)

i
+1

�j :

(2)

Here �i denotes the eigenvalues of the corresponding
eigenspace, andK1, K2, andK3 are constants. The first
term on the right hand side is the length of encoding ofpi
eigenimages, the second one is the length of encoding of
pi coefficients for each image inGi, and the third one is
the length of encoding of the deviations between the data
and the model2.

The initial set of imagesG(0)i can be chosen on the basis
of proximity of images (spatial or temporal), on some a
priori knowledge, or randomly.

2. Eigenspace Growing: To grow the eigenspaceE(t)i , a
search for images that arecompatiblewith the current
eigenspace has to be performed and can thus be added
to the subsetG(t)i . Each image is checked for the re-
construction error (jjx � x̂jj) and if it is bellow a com-
patibility threshold� the image is included in the cur-
rent eigenspace, then the effective dimension of the new
eigenspace is determined. These steps lead to a new hy-
pothesis.

3. Eigenspace Selection:The problem of eigenspace selec-
tion is solved in the framework of the MDL principle. It is
defined as an optimization problem which minimizes the
length of encoding ofX , i.e.,L(X ), which is equivalent
to maximizing the savings in the length of encoding. The
objective function has the following form

F (h) = h
T
Ch = h

T

2
64

c11 : : : c1R
...

...
cR1 : : : cRR

3
75h :

(3)

1Superscript(t) refers to thet-th iteration.
2The term

Pdi
j=pi+1

�j can be calculated efficiently without the need

to calculate all eigenimages (eigenvalues) [8].

VectorhT = [h1; h2; : : : ; hr] denotes a set of hypotheses
(eigenspaces), wherehi has the value1 for the presence
and0 for the absence of the hypothesis (eigenspace)i in
the resulting description. The diagonal terms of the matrix
C express the cost-benefit value for a particular hypothe-
sis (eigenspace)i, i.e.,cii = S(Ei(Gi)). WhereS(Ei(Gi))
denotes thesavingsin the length of encoding for each
eigenspaceEi,i.e., the difference between coding the im-
ages inGi individually or in terms of the eigenspace.

S(Ei(Gi)) = K0jGij � (K1pi+K2jGijpi +K3�i) : (4)

where�i denotes the error overGi, andK0, K1, K2,
andK3 are constants.K0 is related to the average cost
of describing an image (in bits) in the absence of the
eigenspace,K1 is related to the cost of encoding an eigen-
image,K2 is related to the average cost of specifying a
coefficient, andK3 is related to the average cost of speci-
fying the error.

Note that for imagesK0 >> K2pi, therefore the term
K2jGijpi can be neglected; also it can usually be assumed
thatK0 � K1.

The off-diagonal termscij take into account that the inter-
sections between image subsetsGi, Gj may not be empty,
i.e., that the same images are included in more than one
subset. Here only pairwise intersections are considered,
however, intersections including multiple subsets could
also be taken into account.

cij = (�K0jGi \ Gj j+K2jGi \ Gj jmax(pi; pj)

+K3�ij)=2 (5)

�ij is the maximal error of the images in the intersection
of Gi \ Gj with respect to theEi andEj . To maximize the
objective functionF (h), Eq. (3) Tabu search [4]is used.

Note that we can extend the above framework, such that
it is possible that some of the images fromX are not
included in any of the eigenspaces and will be encoded
separately—these images are calledoutliers. Let us de-
note their length of encoding asL(O).

4. Termination: If the eigenspaces have converged (i.e. no
new images are included) stop, otherwise goto 2.

3 Incremental and Robust Eigenspace
growing

The algorithm outlined in the previous section can be im-
proved in at least two ways:

1. The number of initial hypotheses: To guarantee (in prob-
abilistic terms) that no seeds leading to a good solution
are missing, a large number of hypotheses has to be gen-
erated. Many of these hypotheses are redundant and will
be removed by the selection. This results in a high com-
putational complexity which is further increased in case
of outliers in the training set.
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2. The parameter� which determines when an image is in-
cluded in an eigenspace: If this parameter is set too low,
the eigenspaces will not grow. If it is set too high, a highly
overlapping set of eigenspaces will result, with the ten-
dency of increasing their dimension.

In order to avoid these problems we propose two mecha-
nisms which will be explained in the sequel.

3.1 Incrementally Adding Eigenspaces

The following observation can be used to drastically decrease
the necessary number of initial hypotheses: Since the selec-
tion procedure compares the eigenspaces on a relative basis,
new eigenspaces can be generated at any time. If we gen-
erate new eigenspaces using the initialization procedure on
currently unexplained imagesX�

S
Gi (i.e., images not cov-

ered by any eigenspace) we increase the likelihood of finding
eigenspaces that have not yet been explored. The idea is very
similar to thedata driven explorationproposed in [13].

3.2 Robust Eigenspaces

In order to achieve a more robust updating of the eigenvec-
tors and to be less sensitive on the parameter�, we use a
weighted eigenspace formulation in the spirit of robust esti-
mators like hard/soft redecenders[5, 12].

The weight of an image is determined by the distance
from the eigenspace, i.e.wi �

1
jjxi�x̂ijj

. In particular, we
use a trapezoidal functionf : 7! [0::1] as a weighting func-
tion. In order to calculate the “weighted” eigenspace we
can use Singular Value Decomposition (SVD). We can pre-
multiply each image with the corresponding weight prior to
SVD (since SVD assumes zero mean data, this has also to
be considered in the calculation). This process can be iter-
atively repeated, thereby downweighting (ignoring) outliers.
Through this scheme we assure that images with a high re-
construction error have less or no influence on the eigenspace
calculation ofGi, therefore they can do not influence the final
result.

Fig. 1 demonstrates the robustness of this approach. The
original dataset is corrupted with 5 outliers. One can see
that after 3 iterations the solution has converged to the origi-
nal eigenspace corresponding to the original dataset without
outliers. Several experiments have shown that this procedure
converges reliably and fast (usually less than five iterations
are sufficient).

3.3 The Algorithm

The two above mentioned improvements can now be inte-
grated into the complete algorithm as depicted in detail in
Fig. 2. The algorithm can be roughly divided into four stages:

1. Initialization

2. Robust Eigenspace Growing

3. Eigenspace Selection

4. Adding Hypotheses

which are described in the following.
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Figure 1: Robust construction of eigenspaces on a data set dis-
turbed with 5 outliers. Robust PCA (lines marked with?), con-
verges in 3 iterations towards the Eigenvector of the non-spoiled
data set (line marked with�).

1. Initialization: This step is equivalent to the initialization
step of the original Eigenspace algorithm (section 2). The
initial set of hypothesis is formed by taking a small sub-
set of imagesG(0)i , jG(0)i j = ki, (ki << n) from the set

X , calculating the eigenspaceE(0)i (G
(0)
i ), and determin-

ing the effective dimensionp(0)i .

Note that due to the possibility to add hypotheses there is
no longer a need to initialize a large set of hypotheses to
ensure a sufficient exploration of the input space.

2. Robust Eigenspace Growing:First, for each eigenspace
a subset of compatible imagesG(t)i is determined in
the subset selection step. For these subsets the new
eigenspaces (hypotheses) and their effective dimension
Eq. 2 is calculated (Eigenspace Updating) by the pro-
posed robust Eigenspace algorithm. If the new MDL-
rating Eq.(4) is better then MDL-rating of the previ-
ous hypothesis, the updated eigenspaceE

(t)
i replaces the

eigenspaceE(t�1)i of the previous iteration. Otherwise
a pre-chosen percentage of the least compatible images
are excluded from the hypotheses (subset decrementa-
tion) and the MDL-rating is compared again. IfjjG(t)i jj
is smaller or equal to the original number of images (be-
fore the eigenspace growing step) the original eigenspace
remains unaltered. Through this growing scheme we can
assure that:

� Images which tend to decrease the quality of the
eigenspace in terms of the MDL-rating are not in-
cluded in a new hypothesis, and

� Good hypotheses found in an early iterations can be
propagated unaltered throughout the iterations of the
algorithm.

3. Eigenspace Selection:In the eigenspace selection stage
the valid hypotheses for the next robust eigenspace grow-
ing iteration are chosen. This is done by maximizing the
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Figure 2: Structure and data flow of the Robust Eigenspaces algo-
rithm

objective functionF (h), Eq. 3 using Tabu search. For
details see section 2.

4. Addition of Hypotheses: For images which are cur-
rently not encompassed by any eigenspaceX �

S
Gi new

eigenspaces are generated by using the initialization pro-
cedure. Through this scheme we increase the likelihood
of finding eigenspaces that have not yet been explored.

Note that after a hypotheses has been added at least one
eigenspace growing and selection step has to be per-
formed in order to ensure that no newly initialized hypoth-
esis can be part of the final solution without comparing it
to other hypotheses.

In order to prevent the algorithm from adding and deleting
the same hypotheses over and over again each image has
an counter, which incremented when the image is chosen

to be part of a new hypotheses, if this counter is above a
threshold for all images the algorithm terminates.

4 Experimental Results

First we present a 2-D example to demonstrate the main fea-
tures of the method. Fig. 3 shows a set of 240 points in a 2-D
space. 200 of these points originating from four lines are per-
turbed by additive Gaussian noise with a� = 0:02. The re-
maining 40 points, which are considered as outliers (clutter),
are generated by a uniform distribution over[0::1]� [0::1].

We applied our method to the data and obtained four
eigenspaces, each having one dominant dimension (�1i >>
0; �2i � 0). Fig. 3 shows the intermediate stages and the
final result. Fig. 3(a) shows the initial hypotheses; one can
see that one line is not covered by any hypotheses. In the
growing step (Fig. 3(b)) these initial hypotheses are consid-
erably improved (i.e. they cover more points). The redundant
hypotheses are eliminated by the selection step (Fig. 3(c)).
In the next step new hypotheses are generated for the unex-
plained points (Fig. 3(d)). An additional growing step (not
shown) improves these hypotheses and a further selection
step gives the final result (Fig. 3(e)). All four lines have been
successfully recovered and the uniformly distributed points
have been classified as outliers.

In addition to the efficient representation (measured in
bits), we can now discriminate the points that lie close to
the four lines (i.e., they have a low reconstruction error) from
those that lie far away from them. This would not be possible
having a single eigenspace.

Next, we have evaluated our algorithm extensively on the
ORL face database. This database contains for each individ-
ual10 face images (different head orientations and facial ex-
pressions). In total there are 40 individuals in this database.

Fig. 4 shows four typical clusters obtained by our method.
Note that the algorithm found automatically and unsuper-
vised for each individual a separate eigenspace. For most
clusters the dimension of the eigenspace is1, for a few
clusters the dimension is2 (when the pose is varying sig-
nificantly). Table 1 compares the mean reconstruction er-
ror, its variance, and the number of eigenimages needed
for representing the images in the following cases: a single
eigenspace, one eigenspace for each individual (i.e. parti-
tioning is done manually), and the four eigenspaces produced
with our method (for the first two cases the dimensionality
of the eigenspace is determined as capturing 95% of the vari-
ance). While using the same number of eigenimages for rep-
resenting the images, our method yields the lowest mean re-
construction error of all three cases. The difference between
the eigenspaces produced by our method and the four indi-
vidual eigenspaces is due to the robust eigenspace calcula-
tion, i.e., for the individual eigenspaces each face is weighted
by 1, which is not necessarily true for our method.

In the next experiment we compared the recognition rate
(whether faces of different individuals are correctly recog-
nized) for the eigenspaces obtained with our method and
the object-specific eigenspaces. The images to be recog-
nized are corrupted by replacement noise (i.e., we selected
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Figure 3: Illustration of our method on a set of points in 2-D. Points
encompassed by any eigenspace are represented by+. ’Outliers’
are marked withÆ.

randomly10%–90% of the pixels of an image and replaced
them by uniformly distributed random numbers between
[0:::255]). One can see that the eigenspaces constructed
with our method yield a higher recognition rate (Fig. 5(a)).
It is also interesting to note that, when we vary the rejec-
tion threshold we can achieve a higher recognition rate with
our eigenspaces than with the object-specific eigenspaces
(Fig. 5(b) depicts this situation for a noise level of 60%).

5 Conclusions and summary

We have presented a novel approach to constructing ro-
bust eigenspaces from a set of training images based on
the MDL principle. The results indicate that using the ro-
bust eigenspaces obtained by our method is more power-
ful (in terms of recognition rate) than using a single (all-
encompassing) eigenspace, or multiple eigenspaces based on
ad-hoc partitioning of the input images. Thus, the method
should be of interest to all researchers using eigenspace

(a) Subset of images which define the 1st eigenspace

(b) Subset of images which define the 2nd eigenspace

(c) Subset of images which define the 3rd eigenspace

(d) Subset of images which define the 4th eigenspace

Figure 4: Images encompassed by four eigenspaces for the set of
face images.
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Table 1: Comparison of different eigenspaces.
Method Mean Error Variance # Eigenimages
One ES 4:03 � 10

4
7:58 � 10

7 4
Face-1 ES 5:71 � 10

4
3:20 � 10

7 1
Face-2 ES 3:70 � 10

4
1:15 � 10

7 1
Face-3 ES 3:67 � 10

4
2:86 � 10

7 1
Face-4 ES 3:54 � 10

4
3:59 � 10

7 1
Face-1 RFES 4:91 � 10

4
9:18 � 10

7 1
Face-2 RFES 3:13 � 10

4
5:39 � 10

7 1
Face-3 RFES 3:00 � 10

4
4:72 � 10

7 1
Face-4 RFES 2:95 � 10

4
6:11 � 10

7 1
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(a) Recognition rate versus the % of replacement noise
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(b) Recognition rate versus rejection rate for a noise level of
60%

Figure 5: Classification results for object-specific eigenspaces (dot-
ted line) and for eigenspaces obtained with our method (full line).

methods for recognition.
There are various possible extensions of the method pro-

posed in this paper. Particularly interesting is the extension
to mixture PCA models [2, 6, 3], which would allow an au-
tomatic selection of the number of mixtures and the dimen-
sionality of the individual PCA spaces. Basically, we can use
a similar selection procedure also for these models, we only
need to change the growing phase which has to be replaced
by an EM-like algorithm.
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