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Abstract This work deals with verification of local planar
3D geometric model recovered from noisy data. Verification
is understood as making decision about consistency of the
model with a set of images. To evaluate the consistency, a
statistical measure is chosen and a novel procedure for test-
ing statistical dependence among a set of random variables
is proposed.

1 Introduction

In various computer vision tasks it is possible to encounter
the problem of verification of a 3D model. The purpose of
verification is to assess the consistency between the model
and a set of images that are supposed to be views of the scene
that is modeled. For example, Baillard et al. [2] describe the
reconstruction of 3D urban site models from aerial images.
The local candidate models for each building roof are recov-
ered from edge-based stereo. The roof regions are then ver-
ified in the input images based on the mutual consistency of
image values.

A similar problem has been reported in [4], where local
planar surface models recovered ina bottom-up reconstruc-
tion processare verified for their pose. Models that are not
consistent with a set of images are rejected.

These practical problems prompted us to study the ver-
ification itself in greater detail. The general problem will
be restricted to local planar models. Then, the verification
decision is whether the model (a reconstruction hypothesis)
is consistent or not with a set of images taken from general
viewpoints. Here we present it as a statistical decision pro-
cedure based on the model pose parameters, the projection
parameters, and a set of images. The decision should be in-
sensitive to a change in the unknown parameters of image
formation (namely surface non-Lambertianity), on the textu-
ral properties of the observed object (namely the statistical
texture parameters), and on image sensor properties (noise,
discretization).

Good statistical decision allows to eliminate local mod-
els that are unlikely to correspond to real objects, which sig-
nificantly improves the performance of subsequent steps in
global 3D model reconstruction.

This paper is organized as follows. In the next section we

give a general definition of verification, and narrow it down
to a useful concept. In Section3 we deal with suitable image
consistency measures. In Section4 we focus on verification
implemented as a statistical decision procedure. A novel ap-
proach to testing statistical dependence is developed. An ex-
periment with the verification of a set of local surface models
is demonstrated on a test object in Section5. Section6 then
concludes the paper.

2 Model Verification

The intuition behind model verification is demonstrated in
Figure1. To be precise, we give the following definition.

Definition A local planar model is verified if its projections
to all possible images of the corresponding object are equiv-
alent up to the class of transformations given by the physics
of image formation.
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Figure 1: Point model verification. ModelX1 is verified since
the image neighborhoods of its projection are mutually compatible.
ModelX2 is inconsistent since the left camera perceives it projected
on the backgroundε1 and the right camera onε2, so their images
generally differ.
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Figure 2: Circular disc model consistent with its images.

Let us suppose as an example that we have a disk-like 3-D
model and a pair of images to which the model projects, as
in Figure2, where the projected model boundary is shown.
The image formation introduces geometric distortion (per-
spective foreshortening) and radiometric distortion due to the
surface non-Lambertianity. The former is apparent as the
circle-to-ellipse distortion of the model boundary and the lat-
ter is visible as a highlight on the cornea, for instance. The
class of transformations further includes the discrete image
re-sampling and quantization and the optical properties of
each of the sensors.

Since the verification is defined in terms of projections
of the model to images, we need a measure of mutual con-
sistency among the images (given the model and projection
parameters defining the pointwise image correspondences).

For practical considerations, the views used for verifica-
tion must be reduced to a small number. The smallest possi-
ble number of views depends on the directional texture prop-
erties, but it is always greater or equal to two, since the veri-
fication is based on the relation among the images and not on
the model-to-image relation. The likelihood of a success-
ful rejection increases with the number of views involved
and reaches certainty for their infinite number. Note that
any model is consistent with any number of images if the
observed scene is completely texture-free and without any
shading. This is not considered a failure. The stronger the
texture the easier is the discrimination from a small number
of images.

Let the scene be static or all images be captured at the
same instant. We assume that in practice the verification is
done based on the following:

• on a local planar surface model instance given by its pose
and size,

• on a finite number (but at least two) intensity images from
different viewpoints but with overlapping visual fields,
and

• on known model projection parameters (binding the mod-
el and image coordinate systems).

We assume the verification decision is implemented as a
statistical test on a suitable consistency measure. Other pos-
sibilities are not discussed in this paper. The consistency
measure and the statistical decision is dealt with in the fol-
lowing two sections.

3 The Consistency Measure

The measure of local image consistency for a given a model
is introduced in this section. We called itPolynocular Local
Image Consistency (PLIC)[5]. Generally it can be defined
as a mapping into real numbers:

PLIC : (model, images,projection)→ R .

The higher the PLIC value the better the mutual consistency
of the images of the model.

We experimented with three variants of the PLIC measure.
They differ in the degree of invariance to the transformation
that acts on the images. The evaluation of PLIC is done in
the following three steps. First, the set ofn spatial points is
randomly selected on the model surface. Second, the points
are projected tom images. Third,m×n intensity valuesLij
are collected at the projected points, whereLi· denotes the
set of values in imagei. LetP be the set of all pairs among
them cameras. The basic PLIC variants are the following:

Sum of Square Differencesassumes that only identity
transformation of intensity values acts among the images.
All pairwise differences are summed.

PLIC1 =
−1
n|P|

∑
(r,s)∈P

n∑
j=1

(Lrj − Lsj)2
. (1)

This may be too restrictive in certain applications.

Standard Correlation Coefficient [1] is invariant to linear
transformation acting on image values. It is computed as
a mean of all pairwise correlation coefficients and has a
range of[−1, 1]:

PLIC2 =
1
|P|

∑
(r,s)∈P

cov(Lr·, Ls·)√
cov(Lr·) cov(Ls·)

. (2)

It allows to suppress the influence of small deviations
from surface non-Lambertianity.

Rank Correlation [3] is the most general since it enables
any monotonic transformation among the images. We use
Kendall’s Rank Concordance [3]. Let Rij be the rank of
point i among the values collected in imagej, theRij
ranges from 1 to the total number of measurementsn. Let
Ri =

∑m
j=1Rij be the sum of ranks of the same point

over all images. The mean value ofRi is R̄ = 1
2m(n+1).

The concordance isnot calculated pairwise and its range
is [0, 1]:

PLIC3 =
S

Smax
, (3)

whereS is the sum over all points,

S =
n∑
i=1

(
Ri − R̄

)2
,

andSmax is the maximum possible value forS,

Smax =
n∑
i=1

(
im− R̄

)2
.
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Figure 3: The poor utility of statistical independence test for testing
statistical dependence.

The invariance to monotonic image transformations is
paid for by the loss of discriminability ofPLIC3. More gen-
eral transformations of image values are possible, but their
form must be explicitly known to construct the congruence
measure. The choice is then application-dependent and will
not be discussed here. As will be seen in the next section,
however, the actual verification is independent on the choice
of the measure.

4 The Statistical Decision Procedure

Models are verified by re-projectingn points randomly gen-
erated from the model to a set ofm camera retinas and com-
puting the mutual congruence of their (cubicly interpolated)
images as describe above. The image congruence is com-
puted ink trials and a cumulative histogram of the values is
obtained.

The model is accepted based on a statistical test at a
given confidence level using the computed image congruence
value histogram: If the cumulative histogram valueKα cor-
responding to the given confidence levelα exceeds theprior
image congruence valueKp, the model is accepted, other-
wise it is rejected:

Kα > Kp ⇒ model is accepted. (4)

This approach avoids the need for a prior statistical distribu-
tion required for the verification decision.

The inadequacy of the statistical independence test is
demonstrated in Figure3. The black curve represents a his-
togram of PLIC values for a collection of local models recon-
structed from images of a scene. Note the mode is very close
to the PLIC value of 1. The red curve peaking atPLIC = 0
is a histogram of the PLIC for two statistically independent
variables. To base the verification decision on the theoretical
distribution under the hypothesis of independence (the red
curve in Figure3), a very high percentile must be chosen as
the confidence level (e.g. 0.99999). Clearly, this is not a very
intuitive choice, since the confidence level losses its sense.
This is the reason we chose the method describe above. Al-
though it requires two more parameters, they have a clear
meaning. TheKp is a design parameter whose value must be
chosen based on factors like the image signal-to-noise ratio.
Thek is to be chosen too, but its value is not critical.

Verification
Model

Projection
Images

Decision
{+
−

Prior image congruence Kp

Confidence level α

Number of measurements n

Number of trials k

Figure 4: Verification procedure.

The verification decision procedure is summarized by the
diagram in Figure4. The input data comes from the left, the
four procedure parameters comes from the top.

5 Experiment

We tested our verification algorithm on the local models ob-
tained from a stereo-reconstruction process. Four synchro-
nized and calibrated cameras were used to capture a ceramic
teapot in the distance of approximately 60 cm. The scene
was illuminated by random texture pattern from an calibrated
texture projector. The parameters of local surface fitting pro-
cedure were set in a way that many wrong surface elements
were reconstructed. After verification, nearly none of them
survived, see Figure5. In our current setup we use the fol-
lowing values:Kp ≈ 0.6, α = 0.9, n = 40, k = 100.

6 Conclusion

We have studied the verification of local planar surface model
in a small set of intensity images. It is based on mutual im-
age consistency. Several image consistency measures were
overviewed. Each of them is invariant to a different class
of radiometric image distortions. An algorithm for testing
statistical dependence among a set of random variables was
proposed. The algorithm is independent on the choice of the
consistency measure. The verification method was tested on
real data to demonstrate its utility for 3D model reconstruc-
tion from stereo.
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Figure 5: Example of verification. The reconstructed model of a teapot with a large number of misplaced elements is shown left. Right is the
same model after verification. (Click on for VRML models.)

References
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FEL, Dept. of Control Engineering, Praha, Czech Republic,
Jan. 1998. Thesis proposal,
ftp://cmp.felk.cvut.cz/pub/cmp/articles/zyka/tr98-153.ps.gz.

4123 123

http://cmp.felk.cvut.cz/~zyka/demos/Kon1sum.wrl
http://cmp.felk.cvut.cz/~zyka/demos/Kon1ver.wrl
ftp://cmp.felk.cvut.cz/pub/cmp/articles/zyka/tr98-153.ps.gz

