

Localization of multiple nearduplicate fragments of images

<u>Mariusz Paradowski</u>^{1,2}, Andrzej Śluzek^{2,3} ¹Wrocław University of Technology, Wrocław, Poland ²Nanyang Technological University, Singapore ³Nicolaus Copernicus University, Toruń, Poland

Outline

- Image, sub-image and image fragment matching
- Matching local features
- Geometric approach
 - Affine transformation
 - Histogram of elementary transformations
 - Matching examples
- Topological approach
 - Topological constraint
 - Topological graph
 - Matching examples
- Results
- Summary

Image and sub-image matching

- Given a query image localize images containing the given query
- Mark the exact location of the query within the image
- Query image (or a query ROI) becomes a model
- Combination of local keypoints and global geometry
- Application of model based techniques is possible (e.g. RANSAC)

Image fragment matching

- Capturing similar fragments of images instead of whole (query) images
- Unknown number of similar image fragments
- Completely random content
- Inability to define a model of a fragment
- Inability to apply typical machine learning approaches

Problem definition

Given two random images (i.e. without any a priori knowledge about their content) find near-duplicate fragments of these images.

Problem definition - example

Matching of local features

- An image is described by hundreds of keypoints (e.g. SIFT)
- A keypoint describes a fragment of image
- Keypoints from two images are paired (e.g. mutual nearest neighbors)
- Only a small fraction of keypoint pairs is correct
- RANSAC approach fails due to model limitations
- Correct keypoint pairs have to be found and grouped into objects

The geometrical approach background

- Global geometry is utilized to verify keypoint matching
- Localization of near-duplicate planar surfaces
- Application of affine geometry
 - Estimation of 6 parameters
 - Utilization of keypoint centers (stable but slower)
 - Utilization of ellipse parameters (faster but less stable)
 - Homography is locally approximated by affine transformation
- Making the data meaningful
- Decomposed transformations are probabilistic events
- Probability density function histogram
- Some resemblance to Parzen window
 - Non-parametric approach
 - Iteration over the data

The geometrical approach - outline

- Input: Image I, Image J
- Calculate local keypoints (e.g. Harris-Affine + SIFT)
- Find nearest keypoint pairs between images
- Build many triangle pairs from keypoint pairs
- Calculate affine transformations
- Decompose affine transformations
- Build histogram of affine transformations
- Find histogram peaks
- Create fragments out of triangles found in peaks
- Output: Related image fragments

Affine transformation

Affine transformation:

Γ	u		$\begin{bmatrix} x \end{bmatrix}$		\overline{A}	B	C
	v	$= \mathbf{A}$	y	$\mathbf{A} =$	D	E	F
L	1		1		0	0	1

Reconstruction of affine matrix from 3 points:

$\begin{bmatrix} A \end{bmatrix}$	1	$\begin{bmatrix} u_1 \end{bmatrix}$	x_1	y_1	1	0	0	0]	-1
B		u_2	x_2	y_2	1	0	0	0	
C		u_3	x_3	y_3	1	0	0	0	
D		v_1	0	0	0	x_1	y_1	1	
E		v_2	0	0	0	x_2	y_2	1	
F		v_3	0	0	0	x_3	y_3	1	

Matching triangles

- Pairs of triangles are the elementary geometrical structure
- Single affine transformation from a pair of triangles
- O(n³) computational complexity (n
 number of keypoints)
- O(nm²) computational complexity (m - size of keypoint neighborhood)
- Number of triangles: 100.000 -1.000.000
- Triangles can be replaced by ellipse pairs
 - O(nm) complexity
 - Faster approach
 - Less precise due to imprecise ellipses

Transformation decomposition

- Affine transformation has 6 degrees of freedom
- Parameters of the transformation are entangled
- Interpretation of transformation parameters is difficult
- Transformation decomposition allows to get the underlying meaning
- Recreation of elementary transformations makes reading the affine transformation easier
- SVD decomposition
 - 2 rotations (main rotation, auxiliary rotation)
 - 2 translations (OX, OY)
 - 2 scales (OX, OY)
- 3D decomposition
 - 3 rotations (OZ, OX, OZ)
 - 2 translations (OX, OY)
 - 1 scale (OZ)

Histogram of transformations

Joint probability of elementary geometric transformations P(s_x,s_y,t_x,t_y,α,β)

From the histogram to near-duplicate fragments

- Histogram of elementary transformations is huge
- Hash-tables for efficient storage
 - Memory complexity *O*(*nm*²)
 - Computational complexity O(nm²)
- Histogram peaks represent near-duplicate fragments
- Non-duplicate keypoint pairs are a noise
- Threshold based histogram analysis
- Threshold t = 10 (fully sufficient)
- Merging triangles from neighboring bins
- Construction of convex hulls

Some matching examples

Road sign

Can (non-planar)

Box and a bottle

Background clutter

Repeated fragments

Different side of a tower

Zoom and details change

The topological approach - background

- Geometrical approach is strict and sound but not flexible
- Non-linear geometric models become complex to estimate
- Application of image topology instead of geometry (Forget about numbers, focus on relations)
- Verification of semi-local image topology
 - Keypoint pairs
 - Spatial neighborhood of keypoints
 - Relations between neighboring pairs
 - Constraints on neighboring pairs

The topological approach - outline

- Input: Image I, Image J
- Calculate local keypoints (e.g. HarAff, SIFT, MSER, SURF)
- Find nearest keypoint pairs between images
- For each pair determine its spatial neighbors
- Verify topological constraint for each pair
- Filter out all pairs not following the constraint
- Connect pairs according to topological data
- Build image fragments out of pair connected components
- Output: Related image fragments

The topological invariant - order of angles

Order of angles of vectors to neighboring points has to be consistent.

Largest subset of consistent neighbors is found.

Construction of the topological graph - keypoint pairs

Keypoints are detected and paired

Construction of the topological graph - spatial neighborhood

Spatial neighbors are found. Each keypoint pair gets a set of neighboring pairs.

Construction of the topological graph - topological filtering

Topological constraints are verified. For each keypoint pair consistency is checked. Inconsistent keypoint pairs are marked for removal.

The topological graph - filtered and connected keypoints

Nodes and edges are removed. Near-duplicate fragments are found using graph connected component search.

Some matching examples

Viewpoint change

Deformed book

Deformed bag

Cup (non-planar)

Different camera position

Different camera position

Evaluation - fragment matching dataset

Quality measure	HarAff SIFT	HarAff GLOH	SURF	MSER SIFT				
Geometry								
Precision [area]	0.96	0.96	0.90	0.95				
Recall [area]	0.64	0.50	0.49	0.53				
Precision [object]	0.97	0.97	0.98	0.94				
Recall [object]	0.81	0.71	0.61	0.68				
Topology								
Precision [area]	0.64	0.62	0.50	0.71				
Recall [area]	0.79	0.74	0.70	0.63				
Precision [object]	0.98	0.97	0.97	0.98				
Recall [object]	0.92	0.88	0.79	0.78				

Results on Oxford5k database

- Query images with ROI (model based approach)
- Our approaches are taken "as is"
- Query image ROI is not used
- Ranking by
 - detected region size
 - detection threshold (only geometrical)
- Retrieval quality
 - Precision is high
 - Recall is the biggest challenge
 - Mean averaged precision is comparable to state of the art

Retrieval method	mAP
Bag of words	0.618
Bag of words + spatial	0.645
WGC, no prior	0.383
WGC + HE + prior	0.547
HE + WGC + weights + MA	0.615
S4E12	0.789
S4E12 + QE	0.901
Geometrical approach	0.628
Topological approach	0.715

Possible applications

- Image retrieval (e.g. Oxford5k database)
- Visual objects formation (clustering)
- Matching based annotation (classification)
- Human face identification
- Vision-based vehicle navigation

Summary

- Image fragment matching
- Local approach matching keypoints (e.g. HarAff, SURF, MSER, SIFT)
- Image geometry and topology for validation
 - Non-parametric affine-based geometric approach
 - Local topological constraint and the topological graph
- Very few requirements
 - No query image region of interest
 - No object/fragment model definition
 - No training routines, no training datasets
 - All presented examples are done with default parameters
- Very high precision, lower recall
- Resistance to high background clutter
- On-line, camera-based fragment matching

Thank you !

Any questions?