

PATSI – Photo Annotation through Similar Images with Annotation Length Optimization

> Michał Stanek Institute of Informatics 24-03-2011

> > — • • **—** • • **—** • •

Presentation Outline

Automatic image annotation

Presentation Outline

Automatic image annotation

Proposed method Introduction Similarity Measures Annotation Transfer Parameter Optimization

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Presentation Outline

Automatic image annotation

Proposed method Introduction Similarity Measures Annotation Transfer Parameter Optimization

Evaluation Benchmark datasets

ション ふゆ く は く は く む く し く

Presentation Outline

Automatic image annotation

Proposed method Introduction Similarity Measures Annotation Transfer Parameter Optimization

Evaluation Benchmark datasets

(日) (日) (日) (日) (日) (日) (0) (0)

Conclusions

Automatic Image Annotation

Definition

Image Annotation

Set of words from semantic dictionary ${\mathcal W}$ associated with an image ${\mathcal I}$

blue cloud outside plane sky

Automatic Image Annotation

Annotator \mathcal{A} describes previously unseen image \mathcal{I} by a set of concepts $W^{\mathcal{I}}$ from the semantic dictionary \mathcal{W} based on the training dataset D, containing image–words pairs $(D = \{(\mathcal{I}_1, W^{\mathcal{I}_1}), \cdots, (\mathcal{I}_M, W^{\mathcal{I}_M}))\}).$

Automatic Image Annotation

- Annotation is a bridge between textual queries and visual content
- ► Find correlation between low-level visual features and high-level semantic
- Can be treated as multi-class classification problem (the number of classes is usually very large)
- ▶ Training data is often weakly annotated
 - ▶ annotation are incomplete,
 - may contain errors,
 - ▶ lack of association between the concept and the image region

ション ふゆ く は く は く む く し く

Example

Treining dataset

Training Dataset

blue cloud outside plane sky

blue forest green outside road tree

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Example

Query Image

Query Image

??? ??? ??? ???

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Questions:

- 1. what words should be assign to query image
- 2. how long should be the annotation

PATSI – Photo Annotation through Similar images

Hypothesis

Images similar in appearance are likely to share the same annotation

Image representation

Visual Features

► *I* – n-dimensional vector of visual features

$$\mathbf{v}^{\mathcal{I}} = \left(\mathbf{v}_{1}^{\mathcal{I}}, \cdots, \mathbf{v}_{n}^{\mathcal{I}}\right) \tag{2}$$

 visual features are a m-dimensional vector of low level attributes

$$\mathbf{x}_{i}^{\mathcal{I}} = \left(\mathbf{x}_{1}^{i,\mathcal{I}}, \cdots, \mathbf{x}_{m}^{i,\mathcal{I}}\right)$$
(3)

low level attributes:

- ► color
- ► texture
- ► edges
- ► shape

Minkowski Measure

Distance in vector space

The Minkowski metrics between images \mathcal{A} and \mathcal{B} is defined as:

$$d_{MK}(\mathcal{A}, \mathcal{B}) = \left(\sum_{i=1}^{n} |\mathbf{v}_{i}^{A} - \mathbf{v}_{i}^{B}|^{p}\right)^{1/p}$$
(4)

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ うへぐ

where p is the factor for the norm. Particularly, when p is equal to one or to two, it is the well known L1 and Euclidean distance respectively.

Jensen–Shannon Divergence

Image model

Image model – Multivariate Gaussian Distribution

$$\mathbf{M}^{\mathcal{I}}(\mathbf{x},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{N/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \quad (5)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Jensen–Shannon Divergence

Information divergence

Jensen–Shannon Divergence between image \mathcal{A} and \mathcal{B} is defined as:

$$d_{\rm JS}(\mathcal{A},\mathcal{B}) = \frac{1}{2} D_{\rm KL}(M^{\mathcal{A}} \| M^{\mathcal{B}}) + \frac{1}{2} D_{\rm KL}(M^{\mathcal{B}} \| M^{\mathcal{A}}), \qquad (6)$$

Kullback–Leibler divergence:

$$\begin{split} \mathrm{D}_{\mathrm{KL}}(\mathcal{M}^{\mathrm{A}} \| \mathcal{M}^{\mathrm{B}}) &= \quad & \frac{1}{2} \log_{\mathrm{e}} \left(\frac{\det \Sigma_{\mathrm{B}}}{\det \Sigma_{\mathrm{A}}} \right) + \frac{1}{2} \mathrm{tr} \left(\Sigma_{\mathrm{B}}^{-1} \Sigma_{\mathrm{A}} \right) \\ &+ \quad & \frac{1}{2} \left(\mu_{\mathrm{B}} - \mu_{\mathrm{A}} \right)^{\top} \Sigma_{\mathrm{B}}^{-1} (\mu_{\mathrm{B}} - \mu_{\mathrm{A}}) - \frac{\mathrm{N}}{2}, \end{split}$$

where Σ_A , Σ_B and μ_A , μ_B are covariance matrices and mean vectors from the respective image models A and B.

Annotation Transfer

Algorithm – Preparation Phase

Preparation phase

1. Each image in a training database is divided into disjoint regions.

ション ふゆ く は く は く む く し く

- 2. For all regions statistical visual features are calculated.
- 3. From the visual features create image model.

Annotation Transfer

Algorithm – Query Phase

Query phase

- 1. Divide a query image into disjoint regions and calculate visual features vector.
- 2. Build the query image model from its visual features.
- 3. Calculate distance to all images models in training database
- 4. Take K images with smallest distances between models and create ranking of those images.
- 5. Transfer all words from images in the ranking with the value $\varphi(\mathbf{r})$, where r is the position of the image in the ranking, and φ is a transfer function
- 6. As a final annotation take words which sum of the transfer values are greater or equal to provided threshold value t.

Annotation Transfer

Idea

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Annotation Transfer

Parameters

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Evaluation Measures

Precision

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Evaluation Measures

Recall

Evaluation Measures

F-Score

イロト イボト イヨト イヨト 三日 うらの

Transfer Parameters Optimization

Problem definition

PATSI Annotator

$$\mathcal{A}_{\mathrm{t,k}}(\mathcal{I}|\mathrm{d},arphi,\mathrm{D}),$$

(7)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

where:

- φ transfer function,
- D training dataset,
- d distance measure

Transfer Parameter Optimization

Optimization Criterion

Optimization criterion

$$\phi(\mathbf{t},\mathbf{k}) = \frac{\sum_{(\mathcal{I},\mathcal{W}^{\mathcal{I}})\in \mathbf{D}} \mathbf{Q}(\mathcal{A}_{\mathbf{t},\mathbf{k}}(\mathcal{I}|\mathbf{d},\varphi,\mathbf{D}),\mathbf{W}^{\mathcal{I}})}{|\mathbf{D}|}$$
(8)

The optimal parameter values are therefore defined by

$$(t^*, k^*) = \underset{t,k}{\operatorname{argmax}}(\phi(t, k))$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Parameter Optimization

Iterative refinement – Idea

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Benchmark datasets

Statistics

	MGV 2006	ICPR 2004	IAPR TC-12
Number of images	751	1 109	19 805
Dictionary size	74	407	291
Mean annotation length	5.0	5.79	5.72
Mediana of annotation length	5.0	5.0	5.0
Std. dev. of annotation length	1.28	3.48	2.56
Min. and max. annotation length	(2, 9)	(1,23)	(1,23)

Feature Sets

- 1. Mean values of H, S and V (in HSV colour space) and their std. deviations
- 2. Mean values of R, G, and B (in RGB colour space) and their std. deviations
- 3. Normalized X and Y coordinates of center of the region, mean R, G, and B (in RGB colour space), std. deviation of R, G, B and mean eigenvalue of the colour Hessian computed in RGB colour space

うして ふゆう ふほう ふほう ふしつ

Most similar images to query image

Table: Similar images using JS divergence and 3rd feature set.

Query image

Similar images

Results

MGV 2006 dataset

Method	Precision	Recall	F-Score
FastDIM	0.24	0.16	0.19
FastDIM + GRWCO	0.34	0.34	0.34
MCML	0.32	0.24	0.27
MCML + GRWCO	0.38	0.37	0.37
CRM	0.39	0.34	0.36
PATSI	0.38	0.46	0.42
The best 2	20 words		
FastDIM	0.58	0.53	0.51
FastDIM + GRWCO	0.59	0.61	0.60
MCML	0.61	0.59	0.60
MCML + GRWCO	0.64	0.62	0.63
CRM	0.58	0.57	0.57
PATSI	0.71	0.86	0.78

Results

ICPR 2004 datasets

Method	Precision	Recall	F-Score
FastDIM	0.20	0.17	0.18
FastDIM + GRWCO	0.21	0.21	0.21
MCML	0.21	0.17	0.19
MCML + GRWCO	0.25	0.28	0.26
CRM	0.24	0.24	0.24
PATSI	0.27	0.34	0.30
The best	60 words		
FastDIM	0.64	0.58	0.61
FastDIM + GRWCO	0.63	0.61	0.62
MCML	0.69	0.60	0.64
MCML + GRWCO	0.69	0.67	0.68
CRM	0.61	0.61	0.61
PATSI	0.82	0.94	0.88

Results 1APR TC 12

Method	Precision	Recall	F-Score
RGB	0.24	0.24	0.24
HSV	0.20	0.20	0.20
LAB	0.24	0.25	0.24
Haar	0.20	0.11	0.14
HaarQ	0.19	0.16	0.17
Gabor	0.15	0.15	0.15
GaborQ	0.08	0.09	0.08
MBRM	0.24	0.23	0.23
Lasso	0.28	0.29	0.28
JEC	0.28	0.29	0.28
PATSI	0.26	0.31	0.28

PATSI Extensions

Use many features and multiple distance measures

Possible strategies:

- ▶ best for each word take the best distance measure
- weighted take many distance measures and weight them according to performance

・ロト ・日 ・ モー・ モー・ シック

Multiple distance measures

Method	Precision	Recall	F-Score
FastDIM	0.24	0.16	0.19
FastDIM + GRWCO	0.34	0.34	0.34
MCML	0.32	0.24	0.27
MCML + GRWCO	0.38	0.37	0.37
CRM	0.39	0.34	0.36
PATSI	0.38	0.46	0.42
multiPATSI - best	0.44	0.65	0.53
multiPATSI - weighted	0.58	0.66	0.62

Conclusion

PATSI

- ▶ is simple could be used as new baseline for image annotation
- ▶ could determine the resulted annotation length
- ▶ achieve very high recall on training datasets
- ▶ preserves annotation words coocurances distribution

ション ふゆ く は く は く む く し く