A Bayesian analysis for fitting
manifolds of varying
dimensions




Microsoft Research

¢ Set up about 6 years ago.
¢ Redmond 400-500 researchers
¢ Cambridge 40-50 researchers

¢ China 100 researchers



Microsoft Research

¢ Redmond Anandan, Szeliski, Shafer
¢ Cambridge Bishop, Blake, Torr

¢ China Shum, Lee



Microsoft Research Beljing

¢ Shum, graphics, light fields, smart texture
generation for games

¢ Other, face detection, video parsing and
understanding.



Microsoft Research Cambridge

¢ MLP group, headed by Chris Bishop

¢ Me, matching, 3d reconstruction, some work
on face detection, video editing and
understanding

¢ Blake, work on image cut out, tracking.

¢ Herbrecht, Tipping, game Al



Outline of Talk

¢ First, review old work (with Fitzgibbon and
Zisserman), on the need for model
selection in SAM (Structure and Motion
recovery) problem.

¢ Second, examine model selection
paradigms for manifold fitting.

¢ Third, Bayesian analysis.



AlM

¢ To produce some easily computable bounds
on the Bayesian solution (the evidence)
without resorting to MCMC.

¢ Assumptions
— The error distribution Is rotationally symmetric.
— The manifold has mostly low curvature.



ocendario. oalrl
Structure and Motion Recovery

1. Need to recover the matches between the
Images.

2. Recovering the matches is equivalent to
recovery of structure.

3. To recover matches need to recover the
rigidity constraint, to guide matching: epipolar
geometry or homography.



Problem Degeneracy F or H?;
Torr, Fitzgibbon & Zisserman 97, 99

Two problem cases 7 o 6
for SAM (structure 8

and motion) ° ‘ |
recovery. N

A Camera Rotation

‘B Planar object.

Model Selection to determine whether F or H



Problem Degeneracy F or H?;
Torr, Fitzgibbon & Zisserman 97, 99

Two problem cases 7 o 6
for SAM (structure 8

and motion) ° ‘ |
recovery. N

A Camera Rotation

‘B Planar object.

was to use criteria, to be explained later.



When homography describes scene.

¢ A: Camera rotates, no new structure
Information.

¢ B: 2 views have a plane in common; can
not put structure into the same projective
frame (3 degrees of freedom).

¢ Note, new work of Pollefreys, Verbiest,
Gool...



Follefreys, verbiest, GO0l
ECCV 2002 to appear

¢ If F(1,2) & F(2,3) can be recovered, but all
points common to 1 & 3 are on a plane.

¢ Then there Is a one parameter family of
projective reconstructions.

¢ Their solution: Is to use (Torr et al)
to detect planes and self calibration to
resolve the ambiguity.



1Nnis Is an exampile of Titting manifolds
of varying dimension:

¢ 2 Views----Consider Image coordinates 4D
space

F Matrix Homography H
Affine F Matrix Affinity A

¢ (non generic: quadratic transformations,
dimension 2.)

¢ Three views: same dimension for manifolds.



Concatenated or Joint Image
Space

y ® (XY, XY ,...)

X’

Image coordinates in higher dimensional space



Guide matches with Epipolar
Geometry

eEpipoles anywhere
eFundamental matrix
F: a 3x3 rank-2 matrix

eNo Epipole define
eHomography

H: a 3x3 matrix
7 DOF 8 DOF



Guide matches with Geometry




Taxonomy of Motion Models

¢ 2 Views----Consider Image coordinates.

F Matrix Homography H
Affine F Matrix Affinity A

¢ (non generic: quadratic transformations)



Generic rropiem

¢ Determine the degree and dimension of
¢a manifold in = dimensional space.




Examples

roblem compounded in higher dimensions



Robust Model Selection

*Outliers make a hard problem very hard!

rve Dim 2, degree 2

ne Dim 1, degree 1
int Dim 0, degree 1



Error in Variable Model (EVM)

¢ Noise on points Is (possibly a robust mixture):

! = x) 4 €y

Zyi-l—"hj =12, andz=1...n

¢ Where points lie on a manifold defined by g
implicit relations (if polynomial this is also a
variety):

gﬁ'(m%:yz}?m?ﬁygae)zo Z=1ﬂ, andqzl...Q.




Parameters:

on-Latent Variables

parameters of manifold (i.e. 7 for F)

atent Variables



Form of the Non-robust & Robust
likelihood L

Pr(D|0, M,T) =Pr(D|ex, B,v, M,T) =Pr(D|B,v, M, T)

1 > i=1,0(& — z1)? + (@ —vl)?)

Varo) LS (20%)

Pr(D|B, M, T) — (

Pr(D|8,v,M,1) =




Note

¢ The error distribution Is rotationally symmetric
In Gaussian and uniform case.

The manifold of F Is locally flat (i.e. for small
fields of view affine F is fine).



A possible approximation to robust
function: maximize or marginalize”

¢ Or could marginalize over y
¢ (or EM) [Torr 97]

¢ Red-mixture, green-uniform, blue-Gaussian.



Total least squares

A MNoisy point x
.'/I.

Centnid of Data Optimally Estimated Line




Number of Parameters in Model

¢ The number of parameters in the system is
¢ typically:

¢  number of parameters to define manifold
¢ (| the dimension (2 or 3 for Image sequences)
¢ /1 the number of features (data)



Summary of some two view relations
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Many more possible

¢ No Motion
¢ Translation
¢ Quadratic Transform

¢ Multi view, 1-2,& 2-3 F but 1-3 H (Pollefreys)



Classical Model Selection:
Hypothesis Testing

¢ Likelihood Ratio test:

¢ Follows chi square distribution:

MD) = 2(L1 — Ly) < x*(a,p1 — pa)



Problems with Hypothesis Testing

¢ Hard to apply to non nested models or when
there are multiple models to choose between.

¢ This lead to a host of penalized likelihood
methods being proposed...



Some penalty model selection
schemes

¢ It all started with Mallow’s:

Author Criterion
Mallows™ [12] Gy, —2log L — n + 2k
Akaike’s [1] AIC —2log L 4+ 2k
Schwarz [15] —2log L, + 2k logn
Schwarz [15] KC —2log L, — logp, + log |Z| + klogn
Rissanen’s [14] SSD —2logL + klog ”242 + 2log(k + 1)
Rissanen’s [14] MDL —2logL + tklogn
Bozdogan’s [2] CAIC —2log L + k(log(n) + 1)
Bozdogan’s [2] CAICF | —2log L + k(log(n) + 2) + log |J (8% )]
Wallace’s [20] MML2 | —2log L — log py + = (log |J(8%) + k)|




Notes:

¢ Model selection schemes are Max likelihood
plus a penalty related to k.

¢ Mallows similar to AIC

¢ Kanatani used AIC



GRIC

¢ GRIC similar but exploits specific manifold
structure:

GRIC = —2L + Aind + Ak

¢ Derivation of y postponed.



Problem with AIC &c

¢ Tends to over fit, due to ‘magic number’ 2.
¢ Inconsistent when compared to chi squared tes

2(L — Lg) < 2(p1 — )

Chance of over fit

2
o, P —
for X ( P1 P2)

1 — e 1 2 3

o 0.156 0135 0111



Test of AIC

Estimated Point Motion
General Orthographic  Rotation  Affinity
F ) F4
Fundamental

Afhne

Homography
Affinity

3LE 6. Number of times each model selected over 100 trials, using AIC for each of the four motion type
be seen that AIC fends to overfit the degree of the model.




Minimum Description Length: MDL

Goal to find model that optimally compresses data
Approximation to stochastic complexity:

¢ Asymptotically over fits as N increases.
¢ Contrary to popular belief it is non-Bayesian.



Test of BIC/MDL, under fits.

Estimated Point Motion

General Orthographic  Rotation  Atfhnity

F F, H F,4

Fundamental F )
Athne Fq

Homography H
Affinity Hq

TABLE 7. Number of ttmes each model selected over 100 trials, using BIC for each of the four motion fype

¢ BIC (‘Bayesian’ Information Criterion) Is the
same form as MDL and is not really Bayesian.



Difference Between MDL & Bayes

¢ MDL Is an approximation to stochastic
complexity which is uncomputable, a big proble
for any theory, Bayesian solution Is, in many
cases computable.

¢ MDL=maximum compression
¢ Bayes = maximize utility.



Bayesian Model Comparison

Pr(D| M, T) Pr(M;|T)
I=K Pr(D|M;, T) Pr(M;|T)

j=1

Pr(M;|D,T) =

Pr(D|M;, T) / Pr(D|M;,0;,7)Pr(0;|M;,7)do;

Evidence / likelihood x priord@; |,



A Horrible integral:

Pr(D|M,T) — /a /f&‘ L I e Pr(Bules, M, 1) Privie, M, 7) Priel M, 1)0a080

¢ Can we simplify it?

¢ Integrate out the 3 and .



Distribution of  given a

¢ Important observation: likelihood proportional
to distribution of 3 on a.



Distribution of 3 given a

* , given a then [ car
be determined using the following identity:

1 W/ w'w
Varaz) TP\ 202




Distribution of a
B given a, assuming uniform
distribution on manifold.

C Is the area of the manifold (note the manifold
IS of finite extent in the joint Image space
defined by the image boundaries).




Distribution of a
B given a, for robust part of mixture.

(v 2mo?)

I .:!Ifl'l::.ﬁ: ; I| P [‘I::IL""]'E. |ﬂ vl I.' .r:l:.!'_f = v ( :




A 1 for Gaussian:

GRIC = —2L + Aind + Ak

From the analysis above, o

¢ Assuming a uniform
distribution on
manifold then U = L.

f some other distribution on manifold (i.e. robust) t



Robust Evidence IS now:

¢ Taking expectations over 5 and y_I.

& be the MAP estimate, and define

Lyvap = Z log (’Y (% exXp (_%ﬁ;)) +(1—v

i=1...m

en as [, 0o = 1, the minimum value of —log (Pr(D|M;,7)) = —Ly



Intuition

¢ GRIC works as long as
— The error distribution Is rotationally symmetric.
— The manifold has mostly low curvature.

¢ Then we can integrate out the latent variables
whatever the value of a.



Laplace’s Approximation

» As the number of observations increases a
becomes normal with covariance approximated
by the inverse Hessian A

1 .
og(Pr(D|M,T)) =~ log(Pr(D|M,0,7)) + ‘;ilog 27 + 3 log |A| + log(Pr{8| M, 7))

¢ Note problem when model is unidentifiable.



GRIC approximation

¢ Use BIC | GRIC = —2Lyjap + klogn,
approximation

for a

» Approximation .
fOF rObUSt case.: GRIC = Zﬂz (%) + Aind + Asak + constant




Bounds

¢ Thus we have an absolute upper bound and
approximate lower bound on the evidence.

¢ Experiments reveal the solution Is reasonably
iInvariant to the choice of lower bound (GRIC)

¢ Compare GRIC’s If close not enough
evidence to distinguish otherwise pick lowest.



Invariant prior on a

¢ Use result from Stochastic Geometry [Kendall,
Santalo]; e.qg. for a line:

ur+ovy+1=20

1
Pr{ice| M, T) = Pr{u,v| M, 7) X ————
(u? + v?)32




Related to Betrand’'s Paradox

¢ Throw straws at a circle, what is probability
that chord will have length greater than the
side of enscribed equilateral triangle.

¢ Depends on
distribution of
lines, which shc
not depend on

inate syste




Robust estimator: MLESAC

¢ Take minimal number of matches to estimate
two view relation.

¢ maximize posterior (MLESAC)

¢ Provides better results to RANSAC.



Maximize over q,
maximize over a and 37

¢ If we don’t marginalize 3 we get a biased
(higher curvature) fit to a.

¢ However we get less accurate 3.



Maximize over a and 3




Robust Model Selection




Testing-see Torr 2002

& Testing Is on going, code for
this and other SF will be online in May (to
coincide with ECCV).

¢ Methodology: Generate synthetic data with
varying noise and see whether correct model
selected.

¢ Actually experiments reveal that the results of
the model selection are invariant over a wide

range of A’s; indicating in general the choice
1< nNot criicial



Results of GRIC

BEstimated Point. Motion
Orthographic  Rotation  Affinity
F 4 F 4
| Fundamental F

| Affine F4
Homography H
Affinity H,

TABLE 9. Nuwnber of timnes each model selected over 100 trials, with outliers, weimg robust GRIC for each of the
four motion types.




eal Image Results

Image 2 with matches

FIGURE 3. Ho w0 deguence, comers bmnaleling end roleling Lo fieale
F. Row 2 lwg vicws i L. { ia F ;. With diaparily




Real Image

Image 1 Im;q:;l 2 1il."l’r.]:L matches

S A
%@" : mr 2




Conclusion

¢ Presented a Bayesian analysis of model
selection problems.

¢ The analysis provides rough approximations
to what the A’s should be

¢ The results are reasonable even If A's are
approximated.



END

¢ Matlab Code and paper available:
¢ Matching, est F, sfm, segmentation.
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