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Computer vision deals with inverse problems

I In computer vision, we have to determine the model parameters
based on observations → inverse problem

I Computer vision problems are typically ill-posed
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Regularization

I How to infer a physically meaningful solution?

I Idea is to introduce a certain smoothness assumption on the
solution

This leads to the variational approach:

min
u
R(u) + ‖Ku− f‖ ,

Instead of trying to solve the problem exactly, the variational
approach tries to find a tradeoff between data fit and
smoothness.
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Which regularization for images?

I Images exhibit a high degree of spatial coherence
I Given the intensity of some pixel, it is very likely, that its

neighboring pixels have the same intensity

I It turns out that the so-called total variation (TV) is a good
candidate for imaging problems

R(u) =

∫
Ω

|∇u|dx

I Generalization to higher order derivatives: Total generalized
variation (TGV) [Bredies, Kunisch, Pock ’10]
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optimization problem?

I Nature solves optimization problems all the time
I Example: Soapfilms, Trees, ...

I Many laws of nature are nothing but optimality conditions
I Often expressed in terms of a minimum energy principle



Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Why to pose the inverse problem as an

optimization problem?

I Nature solves optimization problems all the time
I Example: Soapfilms, Trees, ...

I Many laws of nature are nothing but optimality conditions
I Often expressed in terms of a minimum energy principle



Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Why to pose the inverse problem as an

optimization problem?

I Nature solves optimization problems all the time
I Example: Soapfilms, Trees, ...

I Many laws of nature are nothing but optimality conditions
I Often expressed in terms of a minimum energy principle



Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Why to pose the inverse problem as an

optimization problem?

I Nature solves optimization problems all the time
I Example: Soapfilms, Trees, ...

I Many laws of nature are nothing but optimality conditions
I Often expressed in terms of a minimum energy principle



Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Optimization problems are unsolvable

A general mathematical optimization problem it can be written as:

min f0(x)
s.t. fi(x) ≤ 0 , i = 1 . . .m

x ∈ S ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn

is a n-dimensional real-valued vector, and S is a subset of Rn

How to solve this problem?

I Naive: “Download a commercial package ...”

I Reality: “Finding a solution is far from being trivial!”

“Optimization problems are unsolvable” [Nesterov ’04]
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Complexity bounds for global optimization (1)

I Consider the problem class C0 [Nesterov ’04]

min
x∈Bn

f(x) ,

where Bn is the n-dimensional unit box defined by

Bn = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1...n}

I What is the lower complexity bound to find an ε - approximate
solution?
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Complexity bounds for global optimization (2)

A remark on Lipschitz continuity: A function f(x) is called Lipschitz
continuous on Bn if

|f(x)− f(y)| ≤ L‖x− y‖∞, ∀x, y ∈ Bn ,

where the constant L is an upper bound to the maximum steepness
of f(x)

I Theorem [Nesterov ’04]
For 1

2
L > ε > 0, the complexity of a zero-order method to find

an ε - approximate solution of the problem class C0 is at least(⌊
L

2ε

⌋)n
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Example

I Consider a general optimization problem with n = 10 unknowns
and a moderate Lipschitz constant of L = 2

I We require an accuracy of let’s say ε = 1%

I Results in at least 1020 function calls, that is, 31 250 000 years
on a workstation!

I If we change n to n+ 1 the estimate is multiplied by 1/ε = 100
and hence would take much longer

I Contrary, if we change ε to 8% we would need only two weeks

I Complexity bounds for higher order methods (gradient descend,
Newton, ...) are not much better

I Comparison to NP-hard problems: Hard combinatorial problems
need 2n arithmetic operations (only)!
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Convex versus non-convex

I Non-convex problems
I Often give more accurate models
I In general no chance to find the global minimizer
I Result strongly depends on the initialization
I Dilemma: Wrong model or wrong algorithm?
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Convex versus non-convex

I Convex problems
I Convex models often inferior
I Any local minimizer is a global minimizer
I Result is independent of the initialization
I Note: Convex does not mean easy!
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A class of problems

Let us consider the following class of structured convex optimization
problems [Chambolle, Pock ’10]

min
x∈X

F (Kx) +G(x) ,

I K : X → Y is a linear and continuous operator from a Hilbert
space X to a Hilbert space Y .

I F , G are “simple” convex, proper, l.s.c. functions, and hence
easy to compute prox operator:

(1 + τ∂F )−1(z) = arg min
x

‖x− z‖2

2τ
+ F (x)

I It turns out that many low-level vision problems can be cast in
this framework.
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Primal, dual, primal-dual

A nice feature of convex functions is duality.

Recall the convex conjugate:

F ∗(p∗) = max
p
〈p, p∗〉 − F (p) ,

we can transform our initial problem [Rockafellar ’70]

min
x∈X

F (Kx) +G(x) (Primal)

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) (Primal-Dual)

max
y∈Y
− (F ∗(y) +G∗(−K∗y)) (Dual)

Allows to compute the so-called primal-dual gap:

G(x, y) = [F (Kx) +G(x)] + [F ∗(y) +G∗(−K∗y)] ,

which vanishes iff (x, y) is an optimal solution.
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Optimality conditions

We focus on the primal-dual formulation:

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y)

We assume, there exists a saddle-point (x̂, ŷ) ∈ X × Y which
satisfies the Euler-Lagrange equations{

Kx̂− ∂F ∗(ŷ) 3 0

K∗ŷ + ∂G(x̂) 3 0

Example for a saddle-point of a convex-concave function
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First-order versus second-order methods

I First order methods
I Some even work in case of non-smoothness
I Need only first order derivatives
I More iterations but the cost of one iteration is low

I Second order methods
I Need some smoothness in the function
I Need first and second order derivatives and need to invert the

Hessian matrix
I Fewer iterations but the cost and memory per iterations is huge

I What do we call an iteration?
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Convergence rates

The notion of Q-linear convergence is defined as

µ = lim
n→∞

‖xn+1 − x̂‖
‖xn − x̂‖

sublinear convergence if µ = 1
linear convergence if µ ∈ (0, 1)
superlinear convergence if µ = 0

I Lower bound for black-box oriented first-order methods:
O(1/

√
N)[Nemirovski ’83]

I Lower bound for any first-order method exploiting the structure
of the problem: O(1/N) [Nesterov ’04]

I Note that this does not mean that there does not exist some
other first order algorithm which is faster on a sub-class of
problems
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Standard approaches

I Classical Arrow-Hurwicz method [Arrow-Hurwicz, ’58]

I Proximal-point algorithm [Martinet ’70, Rockafellar ’76]

I Douglas-Rachford splitting [Mercier,Lions ’79]

I Extragradient-methods [Korpelevich ’76, Popov ’80]

I Nesterov’s smoothing method [Nesterov ’03]
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Forward-backward splitting

I Consider the problem minx f1(x) + f2(x) , where f1(x) is a
convex function and f2(x) is a convex function with L-Lipschitz
continuous gradient ∇f2, i.e.

‖∇f2(x)−∇f2(y)‖ ≤ L‖x− y‖ ,∀x, y ∈ dom(f2)

I It can be shown that a minimizer can be characterized by the
fixed point equation [Combettes, Pesquet ’05]

x = (I + τ∂f1)−1(x− τ∇f2(x))

I Note: This is exactly the case for our saddle-point formulation

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y)
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The algorithm

I Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X × Y and
set x̄0 = x0.

I Iterations (n ≥ 0): Update xn, yn, x̄n as follows:
yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

The algorithm has been first presented in a less general setting where
G, F ∗ are restricted to indicator functions, by [Pock, Cremers,
Bischof, Chambolle, ICCV’09]
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Convergence of the algorithm

Theorem [Chambolle, Pock ’10]
Let L = ‖K‖ choose θ = 1, τσL2 < 1 and let (xn, x̄n, yn) be defined
as in Algorithm 1.

(a) If the dimension of the spaces X and Y is finite, then there
exists a saddle-point (x̂, ŷ) such that xn → x̂ and yn → ŷ as
n→∞.

(b) If we let xN = (
∑N

n=1 x
n)/N and yN = (

∑N
n=1 y

n)/N , one has
for all (x, y)

[〈KxN , y〉 − F ∗(y) +G(xN)]− [〈Kx, yN〉 − F ∗(yN) +G(x)]

≤ 1

N

(
‖y − y0‖

2σ

2

+
‖x− x0‖

2τ

2
)

Moreover, the weak cluster points (xN , yN) are saddle points
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Convergence rates

The algorithm gives optimal convergence rates on different subclasses
by optimal choices on τ , σ, and θ.

I Completely non-smooth problem: O(1/N) for the gap

I Objective function sum of a smooth and a non-smooth function:
O(1/N2) for the error ‖x− x∗‖2

I Objective function completely smooth: O(ωN), ω < 1 for the
error ‖x− x∗‖2

Proofs can be found in [Chambolle, Pock ’10]
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Parallel computing?

I The algorithm basically alternates updates of the primal and the
dual variables.

I For most images, x and y are defined on a regular grid.

(ih, jh) ((i + 1)h, jh)

((i + 1)h, (j + 1)h)(ih, (j + 1)h)

I Each iteration of the algorithm can be done fully in parallel
I The processor of my dreams would look like this:

I One simple processor for each pixel
I Each processor has a small amount of local memory
I Each processor can inter-change data with its neighboring

processors

I We have to think parallel from scratch!
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ROF denoising

Consider the ROF model for image denoising

min
u
‖∇u‖2,1 +

λ

2
‖u− g‖2

2

Is the sum of a non-smooth and a sum function

(a) Clean (b) Noisy (c) Denoised

Example image used in the performance evaluation
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Comparison

λ = 16 λ = 8
ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

PD 108 (1.95s) 937 (14.55s) 174 (2.76s) 1479 (23.74s)
AHZC 65 (0.98s) 634 (9.19s) 105 (1.65s) 1001 (14.48s)
FISTA 107 (2.11s) 999 (20.36s) 173 (3.84s) 1540 (29.48s)
NEST 106 (3.32s) 1213 (38.23s) 174 (5.54s) 1963 (58.28s)
ADMM 284 (4.91s) 25584 (421.75s) 414 (7.31s) 33917 (547.35s)
PGD 620 (9.14s) 58804 (919.64s) 1621 (23.25s) –
CFP 1396 (20.65s) – 3658 (54.52s) –

I Arrow Hurwicz method performs best but can not be shown to
converge within O(1/N2).

I PD performs slightly worse but still better than established
O(1/N2) methods such as FISTA and Nesterov.
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Convergence
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Convergence of the top-performing methods for ROF model
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TV − L1 denoising

The TV − L1 model is given by

min
u
‖∇u‖2,1 + λ‖u− g‖1 .

This problem is completely non-smooth.

(a) Clean image (b) Noisy image (c) ROF (d) TV-L1

Example image used in the performance evaluation
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Comparison

λ = 1.5
ε = 10−4 ε = 10−5

PD 187 (15.81s) 421 (36.02s)
ADMM 385 (33.26s) 916 (79.98s)
EGRAD 2462 (371.13s) 8736 (1360.00s)
NEST 2406 (213.41s) 15538 (1386.95s)

I PD performs best, ADMM reasonable well

I Nesterov’s smoothing method seems to perform quite worse

I Paradoxically, it seems that for this example, our algorithm
converges with O(1/N2) for the function value
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Convergence
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Huber denoising

The Huber model is given by

min
u
‖∇u‖α +

λ

2
‖u− g‖2 .

where
F (y) = ‖y‖α =

∑
i,j

|~yi,j|α

and

|~p|α =

{
|p|2
2α

if |p| ≤ α

|p| − α
2

else.

This model is smooth in both terms.
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Comparison

(a) Clean (b) Noisy (c) ROF (d) Huber

Comparison between the ROF model and the Huber-ROF model

λ = 5, α = 0.05
ε = 10−15

PD 187 (3.85s)
NEST 248 (5.52s)

I PD performs quite well in comparison to a restarted variant of
Nesterov’s O(1/N2) method.
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Linear convergence of PD and NEST for the Huber-ROF model.
Note that after approximately 200 iterations, PD reaches machine
precision.
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General structural sparsity

I It is well known that `1 norm minimization leads to sparse
solutions

I Total variation is probably the most simple example of structural
sparsity

I Straight foward to replace ∇ by a better model, e.g. a wavelet
or curvelet transform Ψ

min
u∈X
‖Ψu‖1 +

λ

2
‖u− g‖2

2 ,
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TV versus wavelet denoising

Noisy image
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TV versus wavelet denoising

TV denoising
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TV versus wavelet denoising

DTCWT denoising
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TV versus curvelet inpainting

Original image
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TV versus curvelet inpainting

80 % lost lines
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TV versus curvelet inpainting

TV inpainting
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TV versus curvelet inpainting

Curvelet inpainting
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Computing minimal Partitions

I The “continuous” Potts model

min
El

{
1

2

k∑
l=1

Per(El; Ω) +
k∑
l=1

∫
El

fl(x) dx

}
,

such that
k⋃
l=1

El = Ω, Es ∩ Et = ∅ ∀s 6= t ,

I Minimizes the total interface length (area) of the partitioning
subject to some given external fields fl

I Convex representation using labeling functions θl

min
θ
J (θ)+

k∑
l=1

∫
Ω

θlfldx, s.t. θl(x) ≥ 0,
k∑
l=1

θl(x) = 1, ∀x ∈ Ω
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Convex relaxation

Different choices have been proposed
I The most straight-forward relaxation has been proposed in

[Zach, Gallup, Frahm, Niethammer ’08]

J1(θ) =
1

2

k∑
l=1

∫
Ω

|Dθl|

I A tighter relaxation using a local envelope approach has been
proposed in [Chambolle, Cremers, Pock ’08]

J2(θ) =

∫
Ω

Ψ(Dθ),

Ψ(p) = sup
q

{
k∑
l=1

〈pl, qm〉 : |ql − qm| ≤ 1, 1 ≤ l < m ≤ k

}
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Comparison

A comparison using the “triple-junction” problem

Input J1 J2
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Examples

The “4-label” problem

Note that the minimizer is composed of two “triple-junctions”
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Examples

The “4-label” problem

Note that the minimizer is composed of two “triple-junctions”
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Examples

White/gray matter segmentation of the brain with k = 4 labels
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Examples

Piecewise constant Mumford-Shah segmentation with k = 16 labels
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Examples

The “triple-junction” problem in 3D

One slice 3D rendering
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Examples

Disparity estimation using the Potts model, simply use a different
data term: fl(x) = |Ileft(x)− Iright(x+ displ)|

Tsukuba data set, 64 labels, 300 it, 7.7s on a Tesla GPU

Teddy data set, 256 labels, 300 it, 175,6s on a Tesla GPU
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TV-L1 optical flow

Optical Flow is an important topic in computer vision [Horn,
Schunck, ’81]
A typical formulation is given by [Chambolle, Pock ’10]

min
u∈X,v∈Y

‖∇v‖1 + µ‖∇u‖1 + λ‖ρ(u, v)‖1 ,

I u : Ω→ R models the illumination changes

I v = (v1, v2)T : Ω→ R2 is the motion field

I ρ(u, v) = It + (∇I)T (v − v0) + u is the optical flow constraint,
explicitly modeling additive illumination changes.

The problem is completely non-smooth.
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Real-time implementation

I Optical flow constraint is only valid in a small neighborhood of v0

I Algorithm has to be integrated into a coarse-to-fine / warping
framework

I GPU-implementation yields real-time performance (> 30 fps) for
640× 480 images using a recent Nvidia graphics card

(a) Input (b) Ground
truth

(c) Estimated
motion

(d) Illumination

TV-L1 optical flow for a sequence of the Middlebury optical flow
benchmark
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Summary & future work

I First-order primal-dual algorithm for a class of convex
optimization problems

I Easy to implement, easy to parallelize

I Matches optimal convergence rates on several subclasses

I Preconditioning of the algorithm for badly scaled problems

I Convergence rates on standard problems, e.g. LP, SOCP

I Further exploit the intrinsic parallelism of variational problems

I Application to machine learning problems, e.g. SVM, LPBoost,
...

Here is a hammer: Find the nails!
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Thank you for your attention!
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