Has the (Large-Scale) Image-based Localization Problem been solved?

Torsten Sattler
Computer Vision & Geometry Lab
ETH Zurich

The Image-Based Localization Problem

Compute exact position and orientation of query image relative to 3D scene model.

The Image-Based Localization Problem

Compute exact position and orientation of query image relative to 3D scene model.

[Middelberg et al., ECCV'14]

[Middelberg et al., ECCV'14]

Extract Local Features

Extract Local Features

Establish 2D-3D Matches

Extract Local Features

Establish 2D-3D Matches

Extract Local Features

Establish 2D-3D Matches

Camera Pose Estimation: RANSAC + n-Point-Pose Algorithm

Extract Local Features

Establish 2D-3D Matches

Camera Pose Estimation: RANSAC + n-Point-Pose Algorithm

- 3D model from SfM
- 2D-3D correspondences from (SIFT) descriptor matching

• 2D-3D correspondences from (SIFT) descriptor matching

• 2D-3D correspondences from (SIFT) descriptor matching

• 2D-3D correspondences from (SIFT) descriptor matching

Challenges

• Efficiency: Quickly localize query images

Challenges

• Efficiency: Quickly localize query images

• Effectiveness: Localize all query images

Challenges

• Efficiency: Quickly localize query images

• Effectiveness: Localize all query images

• Accuracy: Accurately recover camera pose

Overview

Efficient & Effective Large-Scale Localization

Real-Time Mobile Localization

Open Challenges

Overview

Efficient & Effective Large-Scale Localization

Real-Time Mobile Localization

Open Challenges

Localization - Overview

Baseline: kd-tree search

[Sattler et al., ICCV'11]

effectiveness efficiency

VPS

[Sattler et al., ICCV'11]

X

Active Search

+ Visibility Filtering

[Sattler et al., ECCV'12]

√√ X

Localization - Overview

Baseline: kd-tree search

[Sattler et al., ICCV'11]

effectiveness efficiency

VPS

[Sattler et al., ICCV'11]

Active Search

+ Visibility Filtering

[Sattler et al., ECCV'12]

2-nn search & ratio test

$$\frac{||d - d_1||_2}{||d - d_2||_2} < 0.7$$

2-nn search & ratio test

$$\frac{||d - d_1||_2}{||d - d_2||_2} < 0.7$$

Camera Pose Estimation LO-RANSAC $+T_{1,1} + p6p$

pose valid if ≥ 12 inliers

Results

Mean localization time per image [s] (excluding feature extraction)

Results

Mean localization time per image [s] (excluding feature extraction)

✓ Excellent localization effectiveness...

Results

Mean localization time per image [s] (excluding feature extraction)

✓ Excellent localization effectiveness...

X ... but very slow!

Potential for Faster Search

Potential for Faster Search

Localization - Overview

Baseline: kd-tree search

[Sattler et al., ICCV'11]

VPS

[Sattler et al., ICCV'11]

+ Visibility

effectiveness efficiency

Active Search

Filtering [Sattler et al., ECCV'12]

• 10x speed-up ... if we identify matching features before matching

- 10x speed-up ... if we identify matching features before matching
- Probabilistic approach:

- 10x speed-up ... if we identify matching features before matching
- Probabilistic approach:
 - p_i: Probability of finding correct match for ith feature

- 10x speed-up ... if we identify matching features before matching
- Probabilistic approach:
 - p_i: Probability of finding correct match for ith feature
 - c_i: Search cost for finding match for ith feature

- 10x speed-up ... if we identify matching features before matching
- Probabilistic approach:
 - p_i: Probability of finding correct match for ith feature
 - c_i: Search cost for finding match for ith feature
 - Select subset of features by solving

$$\min \sum_{i} X_i c_i \quad \text{s.t.} \quad \sum_{i} X_i p_i \ge N_t \text{ with } X_i \in \{0, 1\}$$

- 10x speed-up ... if we identify matching features before matching
- Probabilistic approach:
 - p_i: Probability of finding correct match for ith feature
 - c_i: Search cost for finding match for ith feature
 - Select subset of features by solving

$$\min \sum_{i} X_i c_i \quad \text{s.t.} \quad \sum_{i} X_i p_i \ge N_t \text{ with } X_i \in \{0, 1\}$$

search costs

- 10x speed-up ... if we identify matching features before matching
- Probabilistic approach:
 - p_i: Probability of finding correct match for ith feature
 - c_i: Search cost for finding match for ith feature
 - Select subset of features by solving

$$\min \sum_i X_i c_i \quad \text{s.t.} \quad \sum_i X_i p_i \geq N_t \text{ with } X_i \in \{0,1\}$$
 search costs expected # matches

Efficient computation of p_i, c_i

Efficient computation of p_i, c_i

• Precompute probabilities for regions in descriptor space

Efficient computation of p_i, c_i

• Precompute probabilities for regions in descriptor space

Efficient computation of p_i, c_i

• Precompute probabilities for regions in descriptor space

Efficient computation of p_i, c_i

- Precompute probabilities for regions in descriptor space
- Limit nearest neighbor search to same cell (Quantized Search)

Efficient computation of p_i, c_i

- Precompute probabilities for regions in descriptor space
- Limit nearest neighbor search to same cell (Quantized Search)
- Computation in constant time for fixed-size vocabulary

• Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum_{i=1}^{n} p_i \geq N_t$

- Solving $\min \sum_{i} X_i c_i$ s.t. $\sum_{i} X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum p_i \geq N_t$

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum_{i=1}^{n} p_i \geq N_t$

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum_{i=1}^{n} p_i \geq N_t$

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum_{i=1}^{n} p_i \geq N_t$

- Solving $\min \sum_i X_i c_i$ s.t. $\sum_i X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum_{i=1}^{n} p_i \geq N_t$

- Solving $\min \sum_{i} X_i c_i$ s.t. $\sum_{i} X_i p_i \ge N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum p_i \geq N_t$

Resulting order:

Globally unique

- Solving $\min \sum_{i} X_i c_i$ s.t. $\sum_{i} X_i p_i \geq N_t$ is NP-complete
- Simple Greedy strategy:
 - Sort features with p_i>0 in ascending order of search costs
 - Select first m features such that $\sum p_i \geq N_t$

Greedy performs close to optimal!

- Greedy performs close to optimal!
- Here: Probabilities learnt from query images

- Greedy performs close to optimal!
- Here: Probabilities learnt from query images
- In practice: Hard to find good training data

- Greedy performs close to optimal!
- Here: Probabilities learnt from query images
- In practice: Hard to find good training data
 - ... but Greedy does not really need probabilities

Vocabulary-Based Prioritized Search (VPS)

[Sattler et al., ICCV'11] [code]

Vocabulary-Based Prioritized Search (VPS)

Query Image

[Sattler et al., ICCV'11] [code]

Vocabulary-Based Prioritized Search (VPS)

Query Image

Assign features to words

[Sattler et al., ICCV'11] [code]

Query Image

Assign features to words

Query Image

3D Model 100k words

Assign features to words

Query Image

3D Model

100k words

Assign features to words

Sort based on costs

Query Image

Assign features to words

Sort based on costs

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words

Query Image

Assign features to words

Sort based on costs

Linear search through words Stop after 100 matches

Query Image

Assign features to words

Sort based on costs

Linear search through words

Stop after 100 matches **Pose estimation:**RANSAC + p6p

Results

Results

Results

Match missed due to quantization!

Smaller Vocabulary

Soft Assignments

[Philbin et al., CPVR'08]

Localization - Overview

Baseline: kd-tree search

[Sattler et al., ICCV'11]

VPS

[Sattler et al., ICCV'11]

X

Active Search

+ Visibility Filtering

[Sattler et al., ECCV'12]

effectiveness

efficiency

Query Image

3D Model

Idea: Exploit co-occurrence of matches to recover matches

Points surrounding 2D-to-3D match should also be visible:

Idea: Exploit co-occurrence of matches to recover matches

Points surrounding 2D-to-3D match should also be visible:

- Points surrounding 2D-to-3D match should also be visible:
 - Find nearest neighbors in 3D around matching point

- Points surrounding 2D-to-3D match should also be visible:
 - Find nearest neighbors in 3D around matching point
 - Perform 3D-to-2D search for neighbors

- Points surrounding 2D-to-3D match should also be visible:
 - Find nearest neighbors in 3D around matching point
 - Perform 3D-to-2D search for neighbors

Reduce quantization artifacts

- Reduce quantization artifacts
- Reuse existing data structures

- Reduce quantization artifacts
- Reuse existing data structures

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Vocabulary Tree

- Reduce quantization artifacts
- Reuse existing data structures

Vocabulary Tree

Large Vocabulary required for VPS (100k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Vocabulary Tree

Large Vocabulary required for VPS (100k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Vocabulary Tree

- Reduce quantization artifacts
- Reuse existing data structures

Vocabulary Tree

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Vocabulary Tree

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Vocabulary Tree

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Vocabulary Tree

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Small Vocabulary for 3D-to-2D search (100-1k words)

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Vocabulary Tree

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

- Reduce quantization artifacts
- Reuse existing data structures

Query Image

Small Vocabulary for 3D-to-2D search (100-1k words)

ETH zürich

2D-to-3D Matching

3D-to-2D Matching

- Find neighbors inside visual word
- Same definition of search costs

2D-to-3D Matching

3D-to-2D Matching

- Find neighbors inside visual word
- Same definition of search costs

Priorities

Priorities

2D-to-3D Matching

3D-to-2D Matching

- Find neighbors inside visual word
- Same definition of search costs

Priorities

2D-to-3D Matching

3D-to-2D Matching

- Find neighbors inside visual word
- Same definition of search costs

Priorities

Priorities

2D-to-3D Matching

3D-to-2D Matching

- Find neighbors inside visual word
- Same definition of search costs

Priorities

Priorities

Common prioritization: Prefer cheaper search direction

- Mean localization time per image [s] (excluding feature extraction)
 - Active Search
 - kd-tree
 - VPS

- √ As effective as kd-tree or better
- X Less effective than VPS due to additional computations

- Active Search
- kd-tree
- VPS

- √ As effective as kd-tree or better
- X Less effective than VPS due to additional computations

Localization - Overview

Baseline: kd-tree search

[Sattler et al., ICCV'11]

VPS

[Sattler et al., ICCV'11]

Active Search + Visibility Filtering

[Sattler et al., ECCV'12]

effectiveness efficiency

Filter out 3D-to-2D matching candidates

Filter out 3D-to-2D matching candidates

Remove wrong matches before RANSAC

Filter out 3D-to-2D matching candidates

Remove wrong matches before RANSAC

Filter out 3D-to-2D matching candidates

Remove wrong matches before RANSAC

Mean localization time per image [s] (excluding feature extraction)

- Active Search + Filtering
- Active Search
- VPS

code will be available "soon"

Mean localization time per image [s] (excluding feature extraction)

- Active Search + Filtering + Cache Optimization [Sattler, Thesis'14]
- Active Search + Filtering
- Active Search
- VPS

code will be available "soon"

Mean localization time per image [s] (excluding feature extraction)

- Active Search + Filtering + Cache Optimization [Sattler, Thesis'14]
- kd-tree
- O P2F [Li et al., ECCV'10]
- VPS
- O PGPM [Choudhary, ECCV'12]
- WPE [Li et al.,ECCV'12]
- Hamming Voting [Sattler et al.,BMVC'12]
- [Svarm et al.,CVPR'14]

Locally Similar Structures

Ratio test for 2D-to-3D matching rejects globally ambiguous matches

• Ratio test for 2D-to-3D matching rejects globally ambiguous matches

Ratio test for 2D-to-3D matching rejects globally ambiguous matches

- Ratio test for 2D-to-3D matching rejects globally ambiguous matches
- Active Search can recover rejected matches using 3D-to-2D matching

- Ratio test for 2D-to-3D matching rejects globally ambiguous matches
- Active Search can recover rejected matches using 3D-to-2D matching

- Ratio test for 2D-to-3D matching rejects globally ambiguous matches
- Active Search can recover rejected matches using 3D-to-2D matching

- Ratio test for 2D-to-3D matching rejects globally ambiguous matches
- Active Search can recover rejected matches using 3D-to-2D matching

- Ratio test for 2D-to-3D matching rejects globally ambiguous matches
- Active Search can recover rejected matches using 3D-to-2D matching
 - Scalability: Globally ambiguous structures more likely for larger models

Method	% Localized Images	Mean Localization Time [s]
kd-tree [Li et al., ECCV'12]	~87	"few seconds"
VPS	85.47	0.89
Active Search	95.34	0.48

Landmarks 1k dataset [Li et al., ECCV'12]

- Most popular 1k landmarks from Flickr
- 38M points reconstructed from 204k images
- 10k query images

Method	% Localized Images	Mean Localization Time [s]
kd-tree [Li et al., ECCV'12]	~87	"few seconds"
VPS	85.47	0.89
Active Search	95.34	0.48
WPE [Li et al., ECCV'12]	98.95	"few seconds"

Landmarks 1k dataset [Li et al., ECCV'12]

- Most popular 1k landmarks from Flickr
- 38M points reconstructed from 204k images
- 10k query images

Key Insights

- 2D-to-3D matching more reliable than 3D-to-2D search
- Efficient search through prioritization
- Effectiveness reduced by quantization

Key Insights

- 2D-to-3D matching more reliable than 3D-to-2D search
- Efficient search through prioritization
- Effectiveness reduced by quantization

- Recover missing matches via 3D-to-2D search
- **⇒**State-of-the-art localization effectiveness

Key Insights

- 2D-to-3D matching more reliable than 3D-to-2D search
- Efficient search through prioritization
- Effectiveness reduced by quantization

- Recover missing matches via 3D-to-2D search
- **⇒**State-of-the-art localization effectiveness

- Accelerate both 3D-to-2D matching & pose estimation
- ⇒State-of-the-art localization efficiency & effectiveness

Overview

Efficient & Effective Large-Scale Localization

Real-Time Mobile Localization

Open Challenges

Goals:

- Real-time localization on mobile device
- Scalable, independent from scene size

Goals:

- Real-time localization on mobile device
- Scalable, independent from scene size

Challenges:

Goals:

- Real-time localization on mobile device
- Scalable, independent from scene size

Challenges:

Limited memory

Goals:

- Real-time localization on mobile device
- Scalable, independent from scene size

Challenges:

Limited memory

[Aachen dataset]

Goals:

- Real-time localization on mobile device
- Scalable, independent from scene size

Challenges:

- Limited memory
- Limited computational capabilities

[Aachen dataset]

Goals:

- Real-time localization on mobile device
- Scalable, independent from scene size

Challenges:

- Limited memory
- Limited computational capabilities
- Localization accuracy

[Aachen dataset]

Mobile Device

[Middelberg et al., ECCV'14]

Mobile Device

[Middelberg et al., ECCV'14]

Mobile Device

Send Image Localization

[Middelberg et al., ECCV'14]

Server

Mobile Device

[Middelberg et al., ECCV'14]

Mobile Device

 Run SLAM / PTAM for real-time camera tracking

Mobile Device

• Run SLAM / PTAM for real-time camera tracking

Mobile Device

 Run SLAM / PTAM for real-time camera tracking

Send Image

[Middelberg et al., ECCV'14]

Mobile Device

 Run SLAM / PTAM for real-time camera tracking

Send Image

[Middelberg et al., ECCV'14]

[Middelberg et al., ECCV'14]

[Middelberg et al., ECCV'14]

- Initialization from first two keyframes + gravity direction
- Try to minimize distance to camera positions reported by server

- Initialization from first two keyframes + gravity direction
- Try to minimize distance to camera positions reported by server

• ... but 2D-3D matches are still correct!

• Use 2D-3D matches from server as control points

• Use 2D-3D matches from server as control points

- Use 2D-3D matches from server as control points
 - Anchor local model, prevent drift

- Use 2D-3D matches from server as control points
 - Anchor local model, prevent drift
 - Little additional costs during Bundle Adjustment

- Use 2D-3D matches from server as control points
 - Anchor local model, prevent drift
 - Little additional costs during Bundle Adjustment
- Still need weighting since fewer matches from server

Scalability from Server-Client architecture

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB
 - [Source code for local SLAM system available]

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB
 - [Source code for local SLAM system available]

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB
 - [Source code for local SLAM system available]
- Significant room for improvement:

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB
 - [Source code for local SLAM system available]
- Significant room for improvement:
 - Priors for server-side localization

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB
 - [Source code for local SLAM system available]
- Significant room for improvement:
 - Priors for server-side localization
 - Visual Inertial Odometry for mobile camera tracking

- Scalability from Server-Client architecture
- Use 2D-3D matches from server to stabilize local SLAM system
- Current results (iPad Mini 2nd Generation):
 - Localization error < 50 cm
 - Average FPS: 18 (~55-60ms per frame)
 - Memory consumption for local map: 5MB
 - [Source code for local SLAM system available]
- Significant room for improvement:
 - Priors for server-side localization
 - Visual Inertial Odometry for mobile camera tracking
 - Semi-Dense SLAM

Overview

Efficient & Effective Large-Scale Localization

Real-Time Mobile Localization

Open Challenges

Larger models contain more locally similar structures

- Larger models contain more locally similar structures
 - →Ratio test for 2D-to-3D search rejects more and more matches

- Larger models contain more locally similar structures
 - →Ratio test for 2D-to-3D search rejects more and more matches
- Happens already for Landmarks 1k dataset

• Two possible solutions:

- Two possible solutions:
 - Image Retrieval: No ratio test required during voting

- Two possible solutions:
 - Image Retrieval: No ratio test required during voting
 - Need to consider too many top-ranked images for large models

- Two possible solutions:
 - Image Retrieval: No ratio test required during voting
 - Need to consider too many top-ranked images for large models
 - Use full descriptors & relax matching criterion

- Two possible solutions:
 - Image Retrieval: No ratio test required during voting
 - Need to consider too many top-ranked images for large models
 - Use full descriptors & relax matching criterion
 - Need to handle higher outlier ratios (>99%)

- Two possible solutions:
 - Image Retrieval: No ratio test required during voting
 - Need to consider too many top-ranked images for large models
 - Use full descriptors & relax matching criterion
 - Need to handle higher outlier ratios (>99%)
 - Promising results: [Li et al., ECCV'12] [Svärm et al., CVPR'14]

- Two possible solutions:
 - Image Retrieval: No ratio test required during voting
 - Need to consider too many top-ranked images for large models
 - Use full descriptors & relax matching criterion
 - Need to handle higher outlier ratios (>99%)
 - Promising results: [Li et al., ECCV'12] [Svärm et al., CVPR'14]
 - ... pose estimation times grow too fast

(Quasi-)Identical Structures

(Quasi-)Identical Structures

- What to do if we can't disambiguate?
- Can we get at least all plausible poses?

Camera Pose Voting

[Aachen dataset]

- Assume known gravity direction, ground plane
- Iterate over camera height, orientation, vote for position
- Linear in number of matches

Illumination Changes

© Google

- Feature detector fires at completely different positions
- Can we learn co-occurrence between day and night features?

General Changes

General Changes

• Can we learn co-occurrence / changes over time?

General Changes

- Can we learn co-occurrence / changes over time?
- What can we use to distinguish between places?

Easy

- Database & query images from same source, e.g., Flickr
- 97% 100% localization rates
- Challenges: Run-time & memory consumption for large scale

Hard

Easy

- Database & query images from same source, e.g., Flickr
- 97% 100% localization rates
- Challenges: Run-time & memory consumption for large scale

- Database & query images from different spatial distributions
- 70% 90% localization rates
- Challenges: Deal with larger variety in viewpoints

Easy

- Database & query images from same source, e.g., Flickr
- 97% 100% localization rates
- Challenges: Run-time & memory consumption for large scale

- Database & query images from different spatial distributions
- 70% 90% localization rates
- Challenges: Deal with larger variety in viewpoints

Easy

- Database & query images from same source, e.g., Flickr
- 97% 100% localization rates
- Challenges: Run-time & memory consumption for large scale

- Database & query images from different spatial distributions
- 70% 90% localization rates
- Challenges: Deal with larger variety in viewpoints

- Streetview imagery
- 50% 65% localization rates
- Challenges: Repetitions, viewpoint variations, scale

Hard

Easy

- Database & query images from same source, e.g., Flickr
- 97% 100% localization rates
- Challenges: Run-time & memory consumption for large scale

- Database & query images from different spatial distributions
- 70% 90% localization rates
- Challenges: Deal with larger variety in viewpoints

- Streetview imagery
- 50% 65% localization rates
- Challenges: Repetitions, viewpoint variations, scale

- Indoor scenarios
- Challenges: Identical structures, small distance to scene

Has the (Large-Scale) Image-based Localization Problem been solved?

