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• Efficiency: Quickly localize query images

• Effectiveness: Localize all query images

• Accuracy: Accurately recover camera pose
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Probabilistic 2D-to-3D Search
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Efficient computation of pi, ci

• Precompute probabilities for regions in descriptor space

• Limit nearest neighbor search to same cell (Quantized Search)

• Computation in constant time for fixed-size vocabulary

Fixed & Precomputed 
Visual Vocabulary

Constant probability & 
constant search costs
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min
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Xipi � Nt
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Resulting order:

Globally 
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Highly 
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• Greedy performs close to optimal!

• Here: Probabilities learnt from query images

• In practice: Hard to find good training data

• … but Greedy does not really need probabilities
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Smaller Vocabulary

Match missed  
due to quantization!

Soft Assignments

[Philbin et al., CPVR’08]

W words, P points

Additional costs
for each feature

O(P/W )
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Baseline: 
kd-tree search

Active SearchVPS

[Sattler et al., ICCV'11] [Sattler et al., ICCV'11] [Sattler et al., ECCV’12]

effectiveness 
efficiency 

✗ 
✓

✓✓ 
✗

Visibility Filtering

• Accelerate both 3D-to-2D matching & pose 
estimation

➡State-of-the-art localization efficiency & 
effectiveness

+ Visibility 
Filtering

✓✓ 
✓

✓ 
✗ ✗

http://www.graphics.rwth-aachen.de/media/papers/sattler_iccv11_preprint_011.pdf
http://www.graphics.rwth-aachen.de/media/papers/sattler_iccv11_preprint_011.pdf
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2D-to-3D Matching 3D-to-2D Matching

• Find neighbors inside visual word 

• Same definition of search costs

Priorities Priorities

Common prioritization: Prefer cheaper search direction
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Baseline: 
kd-tree search

Active SearchVPS

[Sattler et al., ICCV'11] [Sattler et al., ICCV'11] [Sattler et al., ECCV’12]

effectiveness 
efficiency 

✗ 
✓

✓✓ 
✗

Visibility Filtering

• Accelerate both 3D-to-2D matching & pose 
estimation

➡State-of-the-art localization efficiency & 
effectiveness

+ Visibility 
Filtering

✓✓ 
✓

✓ 
✗ ✗

http://www.graphics.rwth-aachen.de/media/papers/sattler_iccv11_preprint_011.pdf
http://www.graphics.rwth-aachen.de/media/papers/sattler_iccv11_preprint_011.pdf
http://www.graphics.rwth-aachen.de/media/papers/sattler_eccv12_preprint_1.pdf
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Active Search + Filtering + Cache Optimization [Sattler, Thesis’14]

WPE [Li et al.,ECCV’12]
Hamming Voting [Sattler et al.,BMVC’12]
[Svarm et al.,CVPR’14]

http://www.cs.cornell.edu/projects/p2f/docs/localization_eccv2010.pdf
http://cvit.iiit.ac.in/papers/Choudhary12eccv.pdf
http://landmark.cs.cornell.edu/docs/global_pose.pdf
http://www-i8.informatik.rwth-aachen.de/publication/188/sattler_weyand_bmvc12.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Svarm_Accurate_Localization_and_2014_CVPR_paper.pdf
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Active Search vs. Pure 2D-to-3D Matching

33

• Ratio test for 2D-to-3D matching rejects globally ambiguous matches

• Active Search can recover rejected matches using 3D-to-2D matching
• Scalability: Globally ambiguous structures more likely for larger 

models

Query Image Locally Similar StructuresDescriptor Space
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Landmarks 1k dataset [Li et al., ECCV'12] 

• Most popular 1k landmarks from Flickr 

• 38M points reconstructed from 204k images 

• 10k query images

Method % Localized 
Images

Mean Localization Time 
[s]

kd-tree [Li et al., ECCV'12] ~87 “few seconds”
VPS 85.47 0.89

Active Search 95.34 0.48
WPE [Li et al., ECCV'12] 98.95 “few seconds”

http://landmark.cs.cornell.edu/docs/global_pose.pdf
http://landmark.cs.cornell.edu/docs/global_pose.pdf
http://landmark.cs.cornell.edu/docs/global_pose.pdf
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estimation
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Overview
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• Efficient & Effective Large-Scale Localization 

• Real-Time Mobile Localization 

• Open Challenges
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A Scalable Mobile Localization Pipeline
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Localization 
Server

Mobile Device

[Middelberg et al., ECCV'14]

https://www.graphics.rwth-aachen.de/media/papers/ECCV14_preprint.pdf
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http://www.graphics.rwth-aachen.de/media/resource_files/ACG_Tracker_Demo.zip
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• Still need weighting since fewer matches from server
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.

initial alignment, 
no updates

ground truth
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.

initial alignment, 
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
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e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.
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• Visual	
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  mobile	
  camera	
  
tracking

• Semi-­‐Dense	
  SLAM

http://www.graphics.rwth-aachen.de/media/resource_files/ACG_Tracker_Demo.zip
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• Efficient & Effective Large-Scale Localization 

• Real-Time Mobile Localization 

• Open Challenges
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• Larger models contain more locally similar structures

➡Ratio test for 2D-to-3D search rejects more and more matches

• Happens already for Landmarks 1k dataset
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• Two possible solutions:

• Image Retrieval: No ratio test required during voting

• Need to consider too many top-ranked images for large models

• Use full descriptors & relax matching criterion

• Need to handle higher outlier ratios (>99%)

• Promising results: [Li et al., ECCV'12] [Svärm et al., CVPR’14]

• … pose estimation times grow too fast

http://landmark.cs.cornell.edu/docs/global_pose.pdf
http://www2.maths.lth.se/vision/publdb/reports/pdf/svarm-enqvist-etal-cvpr2014.pdf
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How to disambiguate between 
multiple valid poses? 
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• What to do if we can’t disambiguate? 

• Can we get at least all plausible poses?



Camera Pose Voting

50

Work in Progress

• Assume known gravity direction, ground plane 

• Iterate over camera height, orientation, vote for position 

• Linear in number of matches

[Aachen dataset]

http://www.graphics.rwth-aachen.de/software/image-localization
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© Google

• Feature detector fires at completely different positions 

• Can we learn co-occurrence between day and night features?
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• Can we learn co-occurrence / changes over time?

• What can we use to distinguish between places?

© Google
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Easy

Hard

•Database & query images from same source, e.g., Flickr

• 97% - 100% localization rates

•Challenges: Run-time & memory consumption for large scale

•Database & query images from different spatial distributions

• 70% - 90% localization rates

•Challenges: Deal with larger variety in viewpoints

•Streetview imagery

• 50% - 65% localization rates

•Challenges: Repetitions, viewpoint variations, scale

• Indoor scenarios

•Challenges: Identical structures, small distance to scene



Has the (Large-Scale)  
Image-based Localization 

Problem been solved?

54


