
J.F. Henriques

Institute of Systems and Robotics
University of Coimbra

t=0 t=1

Visual tracking

• We are given the initial bounding box (BB) of a target.
• Estimate its BB in later frames of a video (“track the target”).
• Important component of many Computer Vision pipelines

(simpler/faster than detection; ensures temporal consistency).
• Successfully tracked frames yield more information on target appearance.

?

Visual tracking – discriminative

t=0 t=1

Samples

Labels +1 +1 +1 −1 −1 −1

Classifier

…

Classify subwindows
to find target

The Convolution Connection

� = ���

• Linear classifier with
weights � :

The Convolution Connection

� = ���

• Linear classifier with
weights � :

• Evaluate it at subwindows �� :

�� = ����

� = 1

The Convolution Connection

� = ���

• Linear classifier with
weights � :

• Evaluate it at subwindows �� :

�� = ����

� = 1
� = 2

The Convolution Connection

� = ���

• Linear classifier with
weights � :

• Evaluate it at subwindows �� :

�� = ����

� = 1
� = 2

� = 3

The Convolution Connection

� = ���

• Linear classifier with
weights � :

• Evaluate it at subwindows �� :
…

�� = ����

� = 1
� = 2

� = 3

The Convolution Connection

� = ���

� = � ⊛ �

• Linear classifier with
weights � :

• Evaluate it at subwindows �� :
…

� = 1
� = 2

� = 3

�� = ����

• Concatenate �� into a vector �.
• Equivalent to crosscorrelation (or correlation for short)

A

A• Note: Convolution is related; it is the same as crosscorrelation,
but with the flipped image of � (→).

The Convolution Theorem

� = � ⊛ � �� = ��∗ × ��⟺

• Crosscorrelation is equivalent to an
elementwise product in Fourier domain:

• �� = ℱ(�) is the Discrete Fourier Transform (DFT) of �.
(likewise for �� and ��).

• × is elementwise product.
• .∗ is complexconjugate (i.e. negate imaginary part).

where

• Note that crosscorrelation, and the DFT, are cyclic
(the window wraps at the image edges).
Not an issue in practice.

The Convolution Theorem

� 		ℱ

		ℱ��

� 		ℱ

	× �

��∗

��

��

• In practice:

• Can be orders of magnitude faster:

• For � × � images, crosscorrelation is �(��).

• Fast Fourier Transform (and its inverse) are �(�� log �).

� = � ⊛ � �� = ��∗ × ��⟺

			.∗	

• Crosscorrelation is equivalent to an
elementwise product in Fourier domain:

The Convolution Theorem

• The evaluation of any linear
classifier can be accelerated
with the Convolution Theorem.
(Not just for tracking.)

…

• What about training?

• It turns out that Signal Processing studied this problem for decades,
almost separately from mainstream Computer Vision!

Objective

Intuition of training objective:

• Crosscorrelation of classifier � and a training image � should have:

• A high peak near the true location of the target.

• Low values elsewhere (to minimize false positives).

⊛ � =

High values

Low values

Historical Perspective

• Synthetic Discriminant Functions (1970’s – 1980’s)

• Different criteria to optimize separation between a positive and a
negative class.

• Very similar to Linear Discriminant Analysis.

• Less interesting, compared to today’s generic classifiers
(SVM, Logistic Regression, Boosting…).

• No guarantee that correlation output will yield a sharp peak, i.e.:

� ⊛ � ≠

Historical Perspective

Now the good stuff (1980’s – 1990’s)

• Minimum Average Correlation Energy (MACE) filters

• Bring the average correlation output towards 0:

min
�

∑ �� ⊛ � �
�

• While keeping the peak value fixed for all samples:

subject	to:		���� = ��

• The goal is to produce a sharp peak at the target location.

�� ⊛ �

Historical Perspective

Now the good stuff (1980’s – 1990’s)

• Minimum Average Correlation Energy (MACE) filters

• The solution is:

�� = ������ ��������� ��
�

• � is vector of class labels (��).

• �� is data matrix in Fourier domain (its columns are ���).

• �� is a diagonal matrix, with elements ∑ ���
�

� .

• Easy to compute; only one expensive matrix inversion.
• Sharp peak = good localization! Are we done?

where

�� ⊛ �

Historical Perspective

The MACE filter suffers from 2 issues:

• Hard constraints easily lead to overfitting.

• UMACE (“Unconstrained MACE”) attempts to solve this by instead
maximizing the average classifier output on positive samples.

• Unfortunately, it still suffers from the second problem…

Historical Perspective

The MACE filter suffers from 2 issues:

• Enforcing a sharp peak is also a too strong condition; overfits.

• This led to the development of GaussianMACE / MSEMACE,
which encourages the peak to follow a nice Gaussian shape:

min
�

	 ∑ �� ⊛ � − � �
� , � =

• In the original papers, the minimization was still subject to
the MACE hard constraints: ���� = �� .
(They later turned out to be unnecessary!)

subject	to:		���� = ��

Sharp vs. Gaussian peaks

� =

Naïve filter
(� = �)

Classifier
(�)

Output
(� ∗ �)

Training image:

• Very broad peak is hard to localize
(especially with clutter).

• Stateoftheart classifiers (e.g. SVM)
show same behavior!

Sharp vs. Gaussian peaks

� =

Naïve filter
(� = �)

Sharp peak
(UMACE)

Classifier
(�)

Output
(� ∗ �)

Training image:

• A very sharp peak is
obtained by emphasizing
small image details
(like the fish’s scales here).

• Unfortunately, this classifier generalizes poorly:
If the details are not exactly the same, the output is 0.

Sharp vs. Gaussian peaks

� =

Naïve filter
(� = �)

Sharp peak
(UMACE)

Gaussian peak
(GMACE)

Classifier
(�)

Output
(� ∗ �)

Training image:

• A Gaussian peak is a good compromise.
• Tiny details are ignored.
• Instead, the classifier focuses on larger, more robust structures.

In their CVPR 2010 paper, David Bolme and colleagues
brought these techniques back to the spotlight.

• They presented a tracker that:

• Processed videos at over
600 framespersecond (!)

• Was very simple to implement
• No features.
• Only FFT and elementwise

operations on raw pixels.

• Despite this fact, it performed similarly to
the most sophisticated trackers of the time.

Min. Output Sum of Sq. Errors (MOSSE)

How did they do it?

• They focused on just the “Gaussian peak” objective (no constraints):

min
�

	 ∑ �� ⊛ � − � �
� , � =

Min. Output Sum of Sq. Errors (MOSSE)

How did they do it?

• They focused on just the “Gaussian peak” objective (no constraints):

min
�

	 ∑ �� ⊛ � − � �
� , � =

• Found the following solution using the Convolution Theorem:

(where a small constant � = 10�� is added to prevent divisions by 0)

�� =
∑ ��∗ × ����

∑ ���
∗ × ���� + �

No expensive matrix operations! ⇒ Only FFT and elementwise.

Min. Output Sum of Sq. Errors (MOSSE)

Why does the MOSSE filter work so well in practice?
→ We need tools to connect correlation filters with machine learning.

• Consider the problem for one sample �:

Circulant matrices

min
�

	 � ⊛ � − � �

Why does the MOSSE filter work so well in practice?
→ We need tools to connect correlation filters with machine learning.

• Consider the problem for one sample �:

• We can replace the correlation
with a special matrix �(�):

• �(�) is a circulant matrix:

min
�

	 �(�)� − � �

Circulant matrices

min
�

	 � ⊛ � − � �

• We can see X = �(�) as a dataset with cyclically shifted versions of �:

Circulant matrices

� = 	

��� �

��� �

⋮
����� �

	

��� ��� ���

• � is a permutation matrix that
shifts the pixels down 1 element.

• Arbitrary shift � obtained with power ���.
• Cyclic: ��� = ��� = �.

�����⋯

• Circulant matrices have many nice properties.

Circulant matrices

� = 	

��� �

��� �

⋮
����� �

	 ℱ � =

��� 0 ⋯ 0
0 ��� ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ���

Data matrix is
circulant ⇒

Becomes diagonal in
Fourier domain

• Similar role to the Convolution Theorem.
• Most of the “data” is 0 and can be ignored! ⇒ Massive speedup

• Closedform solution: � = ��� + �� �����

Circulant matrices

Back to our question:
Why does the MOSSE filter work so well in practice?

• Consider a simple Ridge Regression (RR) problem:

min
�

	 �� − � � + � � � RR = Leastsquares with
regularization (avoids overfitting!)

• Closedform solution: � = ��� + �� �����

• Now replace X = �(�) (circulant data), and � = �	 (Gaussian targets).
• Diagonalizing the involved circulant matrices with the DFT yields:

Circulant matrices

Back to our question:
Why does the MOSSE filter work so well in practice?

• Consider a simple Ridge Regression (RR) problem:

min
�

	 �� − � � + � � � RR = Leastsquares with
regularization (avoids overfitting!)

�� =
��∗ × ��

��∗ × �� + �

• Closedform solution: � = ��� + �� �����

• Now replace X = �(�) (circulant data), and � = �	 (Gaussian targets).
• Diagonalizing the involved circulant matrices with the DFT yields:

Circulant matrices

Back to our question:
Why does the MOSSE filter work so well in practice?

• Consider a simple Ridge Regression (RR) problem:

min
�

	 �� − � � + � � � RR = Leastsquares with
regularization (avoids overfitting!)

�� =
��∗ × ��

��∗ × �� + �
⇒

• Which is exactly the MOSSE solution!
• So MOSSE is equivalent to a good
learning algorithm (RR) with lots of
data (circulant/shifted samples).

Kernelized Correlation Filters

• Circulant matrices are a very general tool, replacing
standard operations with fast Fourier operations.

• For example, we can apply the same idea to Kernel Ridge Regression:

� = � + �� ��� (� kernel matrix)

• For many kernels, circulant data ⇒ circulant �:

�� =
��

�� + �

� = �(�), where �	is the first row of �
(small, and easy to compute)

• Diagonalizing with the DFT yields:

Fast solution in � � log � .
Typical kernel algorithms are
� �� or higher!

⇒

Kernelized Correlation Filters

KCF
Tracker

Kernelized Correlation Filter (KCF) TLD Struck

• Opensource (ported to Matlab/Python/Java/C)

• ~	300 FPS

• Base for top 3 trackers in VOT 2014.

• Train + detect: 13 lines of MATLAB code.

Kernelized Correlation Filters

KCF
Tracker

• Opensource (ported to Matlab/Python/Java/C)

• ~	300 FPS

• Base for top 3 trackers in VOT 2014.

• Train + detect: 13 lines of MATLAB code.

CVPR’13 Benchmark (50 videos)

Practical considerations

Filter size

Im
ag

e
siz

e

• As a rule of thumb, similarly sized crosscorrelation arguments
(e.g. image and filter) take the best advantage of the FFT.

• Consider a � × � image and a � × � filter.
• FFT complexity is �(�� log �) (independent of �, big or small!).
• Crosscorrelation complexity is �(����) (better when � ≪ �).

Practical considerations

• When performing FFTs, the “classic advice” is to set the image
size to a poweroftwo if possible:

size(�) = 2� × 2�, with integer �, �.

• While this theoretically achieves the best speed, modern FFT
libraries (such as FFTW) are optimized for arbitrary sizes.

• Rounding the size up to the next poweroftwo has 2 drawbacks:

• A mismatched size can degrade recognition performance
(e.g. by including unnecessary background regions in a filter).

• If the next poweroftwo is significantly larger, we can end up
with actually slower FFTs!

Other topics

Topics not covered here:

• Considering multiple samples
and features simultaneously.

• Circulant trick for other algorithms
(Support Vector Regression, etc).

ICCV’13 (example detections)

• Generalizing shifts to other
transformations (rotations, etc).

• Fast training of classifier
ensemble (pose estimator).

NIPS’14 (example pose estimates)

