
CHAPTER 1

Introduction to Sun Grid Engine 5.3

This chapter provides background information about the Sun Grid Engine 5.3
system that is useful to users and administrators alike. In addition to a description of
the product’s role in managing what could otherwise be a chaotic world of clustered
computers, this chapter includes the following topics.

■ A brief description of grid computing
■ An overview of QMON, the Sun Grid Engine 5.3 graphical user interface
■ An explanation of each of the important components of the product
■ A detailed list of client commands that are available to users and administrators
■ A complete glossary of Sun Grid Engine 5.3 terminology

What Is Grid Computing?
Conceptually, a grid is quite simple. It is a collection of computing resources that
perform tasks. It appears to users as a large system, providing a single point of
access to powerful distributed resources. Users treat the grid as a single
computational resource. Resource management software, such as Sun Grid Engine,
accepts jobs submitted by users and schedules them for execution on appropriate
systems in the grid based upon resource management policies. Users can literally
submit thousands of jobs at a time without being concerned about where they run.

No two grids are alike; one size does not fit all situations. There are three key classes
of grids, which scale from single systems to supercomputer-class compute farms that
utilize thousands of processors. Cluster grids, consisting of a many computational
resources working together to provide a single point of access to users in a single
project or department, are what the Sun Grid Engine 5.3 system helps you to create
and manage.

(Two other types of more complex grids—campus grids and global grids—are created
and managed by a related product from Sun, Sun Grid Engine, Enterprise Edition.)
1

Sun Grid Engine 5.3 software orchestrates the delivery of computational power
based upon enterprise resource policies set by the organization’s technical and
management staff. The Sun Grid Engine system uses these policies to examine the
available computational resources within the grid, gathers these resources, and then
allocates and delivers them automatically in a way that optimizes usage across the
grid.

Managing Workload by Managing
Resources and Policies
Sun Grid Engine software provides the user with the means to submit
computationally demanding tasks to the Sun Grid Engine system for transparent
distribution of the associated workload. The user can submit batch jobs, interactive
jobs, and parallel jobs to the Sun Grid Engine system.

The product also supports checkpointing programs. Checkpointing jobs migrate
from workstation to workstation without user intervention on load demand.

For the administrator, the software provides comprehensive tools for monitoring and
controlling Sun Grid Engine jobs.

How the System Operates
The Sun Grid Engine system accepts jobs—users’ requests for computer
resources—from the outside world, puts them in a holding area until they can be
executed, sends them from the holding area to an execution device, manages them
during execution, and logs the record of their execution when they are finished.

As an analogy, imagine a large “money-center” bank in one of the world’s capitol
cities.

Matching Resources to Requests
In the bank building’s lobby are dozens upon dozens of customers, each with
different requirements, who are waiting to be served. One customer merely wants to
withdraw a small amount of money from his account. Arriving just after him is
2 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

another customer who has an appointment with one of the bank’s investment
specialists; she is seeking advice before undertaking a complicated venture. In front
of both of them in the long line is another customer who intends to apply for a large
loan—as do the eight customers in front of her.

Different customers and different intentions require different types and levels of the
bank’s resources. Perhaps, on this particular day, the bank has many employees who
have sufficient time available to handle the one customer’s simple withdrawal of
money from his account. But on that day, only one or two loan officers are on hand
to help the many loan applicants. On another day, the situation may be reversed.

The effect, of course, is that customers must wait for service—even though many of
them could probably receive immediate service if only their requirements were
immediately discerned and matched to available resources.

If the Sun Grid Engine system were the bank manager, it would organize the service
differently.

■ Upon entering the bank lobby, customers would be asked to declare their name,
their affiliations (such as representing a company), and their requirements.

■ The customers’ time of arrival would be recorded.

■ Based on the information that the customers provided in the lobby, those whose
requirements match suitable and immediately available resources, those whose
requirements have the highest priority, and those who have been waiting in the
lobby for the longest time would be served.

■ Of course, in a “Sun Grid Engine bank,” one bank employee may be able to
provide assistance to several customers at the same time. The Sun Grid Engine
system would try to assign new customers to the least loaded and most suitable
bank employee.

Jobs and Queues: The Sun Grid Engine World
In a Sun Grid Engine system, jobs correspond to bank customers, jobs wait in a
computer holding area instead of a lobby, and queues located on computer servers
take the place of bank employees, providing services for jobs. As in the case of bank
customers in the analogy, the requirements of each of the jobs—which typically
consist of available memory, execution speed, available software licenses, and
similar needs—may be very different and only certain queues may be able to
provide the corresponding service.

Corresponding to the analogy, Sun Grid Engine software arbitrates available
resources and job requirements in the following fashion.
Chapter 1 Introduction to Sun Grid Engine 5.3 3

■ A user who submits a job through the Sun Grid Engine system declares a
requirement profile for the job. In addition, the identity of the user and his or her
affiliation with projects or user groups is retrieved by the system. The time that the
user submitted the job is also stored.

■ The moment, literally, that a queue becomes available for execution of a new job,
the Sun Grid Engine system determines suitable jobs for the queue and
immediately dispatches the job with the highest priority or longest waiting time.

■ Sun Grid Engine queues may allow concurrent execution of many jobs. The Sun
Grid Engine system will try to start new jobs in the least loaded and suitable
queue.

Sun Grid Engine 5.3 Components
Figure FIGURE 1-1 displays the most important Sun Grid Engine components and
their interaction in the system. The following sections explain the functions of the
components.

Hosts
Four types of hosts are fundamental to the Sun Grid Engine 5.3 system.

■ Master
■ Execution
■ Administration
■ Submit

Master Host

The master host is central for the overall cluster activity. It runs the master daemon,
sge_qmaster, and the scheduler daemon, sge_schedd. Both daemons control all
Sun Grid Engine components, such as queues and jobs, and maintain tables about
the stttus of the components, about user access permissions, and the like.

By default, the master host is also an administration host and submit host. See the
sections relating to those hosts.
4 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Execution Host

Execution hosts are nodes that have permission to execute Sun Grid Engine jobs.
Therefore, they are hosting Sun Grid Engine queues and run the Sun Grid Engine
execution daemon, sge_execd.

Administration Host

Permission can be given to hosts to carry out any kind of administrative activity for
the Sun Grid Engine system.

Submit Host

Submit hosts allow for submitting and controlling batch jobs only. In particular, a user
who is logged into a submit host can submit jobs via qsub, can control the job status
via qstat, and can use the Sun Grid Engine OSF/1 Motif graphical user's interface,
QMON, which is described in the section, “QMON, the Sun Grid Engine Graphical User
Interface” on page 9.

Note – A host may belong to more than one of the above described classes.

Daemons
Four daemons provide the functionality of the Sun Grid Engine 5.3 system.

sge_qmaster – the Master Daemon

The center of the cluster’s management and scheduling activities, sge_qmaster
maintains tables about hosts, queues, jobs, system load, and user permissions. It
receives scheduling decisions from sge_schedd and requests actions from
sge_execd on the appropriate execution hosts.

sge_schedd – the Scheduler Daemon

The scheduling daemon maintains an up-to-date view of the cluster’s status with the
help of sge_qmaster. It makes the following scheduling decision:

■ Which jobs are dispatched to which queues
Chapter 1 Introduction to Sun Grid Engine 5.3 5

It then forwards these decisions to sge_qmaster, which initiates the required
actions.

sge_execd – the Execution Daemon

The execution daemon is responsible for the queues on its host and for the execution
of jobs in these queues. Periodically, it forwards information such as job status or
load on its host to sge_qmaster.

sge_commd – the Communication Daemon

The communication daemon communicates over a well-known TCP port. It is used
for all communication among Sun Grid Engine components.

Queues
A Sun Grid Engine queue is a container for a class of jobs allowed to execute on a
particular host concurrently. A queue determines certain job attributes; for example,
whether it may be migrated. Throughout their lifetimes, running jobs are associated
with their queue. Association with a queue affects some of the things that can
happen to a job. For example, if a queue is suspended, all the jobs associated with
that queue are also suspended.

In the Sun Grid Engine system, there is no need to submit jobs directly to a queue.
You only need to specify the requirement profile of the job (e.g., memory, operating
system, available software, etc.) and Sun Grid Engine software will dispatch the job
to a suitable queue on a low-loaded host automatically. If a job is submitted to a
particular queue, the job will be bound to this queue and to its host, and thus Sun
Grid Engine daemons will be unable to select a lower-loaded or better-suited device.

Client Commands
Sun Grid Engine’s command line user interface is a set of ancillary programs
(commands) that enable you to manage queues, submit and delete jobs, check job
status, and suspend/enable queues and jobs. The Sun Grid Engine system makes
use of the following set of ancillary programs.

■ qacct – This command extracts arbitrary accounting information from the cluster
logfile.

■ qalter – This command changes the attributes of submitted, but pending, jobs.
6 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

■ qconf – This command provides the user interface for cluster and queue
configuration.

■ qdel – This command provides the means for a user, operator, or manager to
send signals to jobs or subsets thereof.

■ qhold – This command holds back submitted jobs from execution.

■ qhost – This command displays status information about Sun Grid Engine
execution hosts.

■ qlogin – This command initiates a telnet or similar login session with
automatic selection of a low-loaded and suitable host.

■ qmake – This command is a replacement for the standard UNIX make facility. It
extends make by its ability to distribute independent make steps across a cluster
of suitable machines.

■ qmod – This command enables the owner to suspend or enable a queue (all
currently active processes associated with this queue are also signaled).

■ qmon – This command provides an X-windows Motif command interface and
monitoring facility.

■ qresub – This command creates new jobs by copying running or pending jobs.

■ qrls – This command releases jobs from holds previously assigned to them; e.g.,
via qhold (see above).

■ qrsh – This command can be used for various purposes, such as the following.

■ To provide remote execution of interactive applications via the Sun Grid
Engine system—comparable to the standard UNIX facility, rsh

■ To allow for the submission of batch jobs which, upon execution, support
terminal I/O (standard/error output and standard input) and terminal control

■ To provide a batch job submission client which remains active until the job has
been finished

■ To allow for the Sun Grid Engine software-controlled remote execution of the
tasks of parallel jobs

■ qselect – This command prints a list of queue names corresponding to specified
selection criteria. The output of qselect is usually fed into other Sun Grid
Engine commands to apply actions on a selected set of queues.

■ qsh – This command opens an interactive shell (in an xterm) on a low-loaded
host. Any kind of interactive jobs can be run in this shell.

■ qstat – This command provides a status listing of all jobs and queues associated
with the cluster.

■ qsub – This command is the user interface for submitting a job to the Sun Grid
Engine system.
Chapter 1 Introduction to Sun Grid Engine 5.3 7

■ qtcsh – This command is a fully compatible replacement for the widely known
and used Unix C-Shell (csh) derivative, tcsh. It provides a command shell with
the extension of transparently distributing execution of designated applications to
suitable and lightly loaded hosts via Sun Grid Engine software.

All programs communicate with sge_qmaster via sge_commd. This is reflected in
the schematic view of the component interaction in the Sun Grid Engine system,
depicted in FIGURE 1-1.

FIGURE 1-1 Component Interaction in the Sun Grid Engine System

sge_commd

sge_qmaster sge_schedd sge_execd

job: a.sh

sge_commd

Masterhost B

Execution-
host C

sge_execd

Q1

Q2 Q3

Q1 Q2 Q3

arch osf sol7 sol7

load 0.4 1.3 1.3

state idle idle full

Queue State Table

E/N

qconf
qstat

qsubqsub -l arch=sol7 a.sh

FileserverSubmithost A
8 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

QMON, the Sun Grid Engine Graphical
User Interface
Using QMON, the graphical user interface (GUI) tool, you can accomplish most—if not
all—Sun Grid Engine 5.3 tasks. FIGURE 1-2 shows the QMON Main menu, which is
often the starting point for both user and administrator functions. Each icon on the
Main menu is a GUI button that you press to initiate a variety of tasks. The name of
each button, which appears as text on the screen when you pass the mouse pointer
over it, is also descriptive of its function.

FIGURE 1-2 QMON Main Menu, Defined

Customizing QMON

The look and feel of qmon is largely defined by a specifically designed resource file.
Reasonable defaults are compiled in and a sample resource file is available under
<sge_root>/qmon/Qmon.

Submit Jobs

Queue Control

Job Control

Calendar

Parallel Environment Checkpointing Object Exit

Host

Complex

Scheduler

Cluster
Configuration

Configuration Environment
Configuration

Browser

Configuration

Configuration

Configuration

Configuration

User Configuration
Chapter 1 Introduction to Sun Grid Engine 5.3 9

The cluster administration may install site specific defaults in standard locations
such as /usr/lib/X11/app-defaults/Qmon, by including qmon specific resource
definitions into the standard .Xdefaults or .Xresources files or by putting a site
specific Qmon file to a location referenced by standard search paths such as
XAPPLRESDIR. Ask your administrator if any of the above is relevant in your case,

In addition, the user can configure personal preferences by either copying and
modifying the Qmon file into the home directory (or to another location pointed to by
the private XAPPLRESDIR search path) or by including the necessary resource
definitions into the user‘s private .Xdefaults or .Xresources files. A private
Qmon resource file may also by installed via the xrdb command during operation or
at start-up of the X11 environment, e.g. in a .xinitrc resource file.

Refer to the comment lines in the sample Qmon file for detailed information on the
possible customizations.

Another means of customizing qmon has been explained for the Job Control and
Queue Control customization dialogue boxes shown in FIGURE 5-3 and in FIGURE 5-13.
In both dialogue boxes, you can use the Save button to store the filtering and display
definitions configured with the customization dialogue boxes to the file,
.qmon_preferences, in the user’s home directory. Upon being restarted, qmon
reads this file and reactivates the previously defined behavior.

Glossary of Sun Grid Engine Terms
The glossary provides a short overview on frequently used terms in the context of
Sun Grid Engine and resource management in general. Many of the terms have not
been used so far, but will appear in other parts of the Sun Grid Engine
documentation.

access list A list of users and UNIX groups who are permitted, or denied, access to a
resource such as a queue or a certain host. Users and groups may belong to
multiple access lists and the same access lists can be used in various contexts.

Array job A job consisting of a range of independent identical tasks. Each task is very
similar to a separate job. Job array tasks only differ by a unique task identifier
(an integer number).

cell A separate Sun Grid Engine cluster with a separate configuration and master
machine. Cells can be used to loosely couple separate administrative units.

checkpointing A procedure which saves the execution status of a job into a so called checkpoint
thereby allowing for the job to be aborted and resumed later without loss of
information and already completed work. The process is called migration, if the
checkpoint is moved to another host before execution resumes.
10 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

checkpointing
environment A Sun Grid Engine configuration entity, which defines events, interfaces and

actions being associated with a certain method of checkpointing.

cluster A collection of machines, called hosts, on which Sun Grid Engine functions
occur.

complex A set of attributes that can be associated with a queue, a host, or the entire
cluster.

group A UNIX group.

hard resource
requirements The resources which must be allocated before a job may be started. Contrasts

with soft resource requirements.

host A machine on which Sun Grid Engine functions occur.

job A batch job is a UNIX shell script that can be executed without user
intervention and does not require access to a terminal.

An interactive job is a session started with the Sun Grid Engine commands
qsh or qlogin that will open an xterm window for user interaction or
provide the equivalent of a remote login session, respectively.

job class A set of jobs that are equivalent in some sense and treated similarly. In Sun
Grid Engine a job class is defined by the identical requirements of the
corresponding jobs and the characteristics of the queues being suitable for
those jobs.

manager A user who can manipulate all aspects of Sun Grid Engine. The superusers of
the master host and of any other machine being declared as an administrative
host have manager privileges. Manager privileges can be assigned to non-root
user accounts as well.

migration The process of moving a checkpoint from one host to another before execution
of the job resumes.

operator Users who can perform the same commands as managers except that they
cannot change the configuration but rather are supposed to maintain
operation.

owner Users who may suspend/unsuspend and disable/enable the queues they own.
Typically users are owners of the queues that reside on their workstations.

parallel environment A Sun Grid Engine configuration entity, which defines the necessary interfaces
for Sun Grid Engine to correctly handle parallel jobs.
Chapter 1 Introduction to Sun Grid Engine 5.3 11

parallel job A job which consists of more than one closely correlated task. Tasks may be
distributed across multiple hosts. Parallel jobs usually use communication
tools such as shared memory or message passing (MPI, PVM) to synchronize
and correlate tasks.

policy A set of rules and configurations which the Sun Grid Engine administrator can
use define the behavior of Sun Grid Engine. Policies will be implemented
automatically by Sun Grid Engine.

priority The relative level of importance of a Sun Grid Engine job compared to others.

queue A container for a certain class and number of jobs being allowed to execute on
a Sun Grid Engine execution host concurrently.

resource A computational device consumed or occupied by running jobs. Typical
examples are memory, CPU, I/O bandwidth, file space, software licenses, etc.

soft resource
requirements Resources which a job needs but which do not have to be allocated before a job

may be started. Allocated to a job on an as available basis. Contrast with hard
resource requirements.

suspension The process of holding a running job but keeping it on the execution machine
(in contrast to checkpointing, where the job is aborted). A suspended job still
consumes some resources, such as swap memory or file space.

user May submit jobs to and execute jobs with Sun Grid Engine if he or she has a
valid login on at least one submit host and an execution host.

userset An access list (see above).
12 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

CHAPTER 3

Navigating Through the
Sun Grid Engine 5.3 Program

This chapter introduces you to some basic Sun Grid Engine 5.3 concepts and
terminology that will help you begin to use the software. For complete background
information about the product, including a comprehensive glossary, see Chapter 1,
“Introduction to Sun Grid Engine 5.3” on page 1.

This chapter also includes instructions for accomplishing the following tasks.

■ “How To Launch the QMON Browser” on page 57
■ “How To Display a List of Queues” on page 58
■ “How To Display Queue Properties” on page 58
■ “How To Find the Name of the Master Host” on page 60
■ “How To Display a List of Execution Hosts” on page 61
■ “How To Display a List of Administration Hosts” on page 61
■ “How To Display a List of Submit Hosts” on page 61
■ “How To Display a List of Requestable Attributes” on page 63

Sun Grid Engine User Types and
Operations
User types are divided into four categories in Sun Grid Engine.

■ Managers – Managers have full capabilities to manipulate Sun Grid Engine. By
default, the superusers of any machine hosting a queue have manager privileges.

■ Operators – The operators can perform many of the same commands as the
manager, with the exception of making configuration changes by adding,
deleting, or modifying queues, for example.
55

■ Owners – The queue owners are allowed to suspend or enable the owned queues
or jobs within them, but have no further management permissions.

■ Users – Users have certain access permissions, as described in “User Access
Permissions” on page 66, but no cluster or queue management capabilities.

TABLE 3-1 shows the Sun Grid Engine 5.3 command capabilities that are available to
the different user categories.

Queues and Queue Properties
In order to be able to optimally utilize the Sun Grid Engine system at your site, you
should become familiar with the queue structure and the properties of the queues
that are configured for your Sun Grid Engine system.

TABLE 3-1 User Categories and Associated Command Capabilities

Command Manager Operator Owner User

qacct Full Full Own jobs only Own jobs only

qalter Full Full Own jobs only Own jobs only

qconf Full No system setup
modifications

Show only
configurations and
access permissions

Show only
configurations and
access permissions

qdel Full Full Own jobs only Own jobs only

qhold Full Full Own jobs only Own jobs only

qhost Full Full Full Full

qlogin Full Full Full Full

qmod Full Full Own jobs and owned
queues only

Own jobs only

qmon Full No system setup
modifications

No configuration
changes

No configuration
changes

qrexec Full Full Full Full

qselect Full Full Full Full

qsh Full Full Full Full

qstat Full Full Full Full

qsub Full Full Full Full
56 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The QMON Browser
Sun Grid Engine features a graphical user interface (GUI) command tool, the QMON
browser. The QMON browser provides a myriad of Sun Grid Engine functions,
including job submission, job control, and important information gathering.

▼ How To Launch the QMON Browser
● From the command line, enter the following command.

After a message window is displayed, the QMON main control panel appears, similar
to the following (see FIGURE 1-2 to identify the meaning of the icons).

FIGURE 3-1 QMON Main Control Menu

Many instructions in this manual call for using the QMON browser. The names of the
icon buttons, which are descriptive of their functions, appear on screen as you pass
the mouse pointer over them.

(For instructions on how to customize the QMON browser, see “Customizing QMON”
on page 9.)

The Queue Control QMON Dialogue Box

The QMON Queue Control dialogue box displayed and described in the section, “How
To Control Queues with QMON” on page 132 provides a quick overview on the
installed queues and their current status.

% qmon
Chapter 3 Navigating Through the Sun Grid Engine 5.3 Program 57

▼ How To Display a List of Queues
● Enter the following command.

▼ How To Display Queue Properties
You can use either QMON or the command line to display queue properties.

Using the QMON Browser

1. From the main QMON menu, click the Browser icon.

2. Click the Queue button.

3. In the Queue Control dialog, move the mouse pointer over the icon for the
appropriate queue.

FIGURE 3-2 is a partial example of the Queue property information that is displayed.

FIGURE 3-2 QMON Browser Display of Queue Properties

From the Command Line

● Enter the following command.

Information similar to that shown in FIGURE 3-2 is displayed.

Interpreting Queue Property Information
You can find a detailed description of each queue property in the queue_conf
manual page and in the queue_conf section of the Sun Grid Engine 5.3 and Sun Grid
Engine, Enterprise Edition 5.3 Reference Manual.

Following is a list of some of the most important parameters.

■ qname – The queue name as requested.

% qconf -sql

% qconf -sq queue_name
58 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

■ hostname – The host of the queue.

■ processors – The processors of a multi processor system, to which the queue has
access.

■ qtype – The type of job which is allowed to run in this queue. Currently, this is
either batch, interactive, checkpointing, parallel or any combination thereof or
transfer alternatively

■ slots – The number of jobs which may be executed concurrently in that queue.

■ owner_list – The owners of the queue as explained in the section, “Managers,
Operators and Owners” on page 67
Chapter 3 Navigating Through the Sun Grid Engine 5.3 Program 59

■ user_lists – The user or group identifiers in the user access lists (see “User Access
Permissions” on page 66) enlisted under this parameter may access the queue.

■ xuser_lists – The user or group identifiers in the user access lists (see “User
Access Permissions” on page 66) enlisted under this parameter may not access the
queue.

■ complex_list – The complexes enlisted under this parameter are associated with
the queue and the attributes contained in these complexes contribute to the set of
requestable attributes for the queue (see “Requestable Attributes” on page 62).

■ complex_values – Assigns capacities as provided for this queue for certain
complex attributes (see “Requestable Attributes” on page 62).

Host Functionality
Clicking the Host Configuration button in the QMON Main menu displays an
overview of the functionality that is associated with the hosts in your Sun Grid
Engine cluster. However, without Sun Grid Engine manager privileges, you may not
apply any changes to the presented configuration.

The host configuration dialogues are described in the section, “About Daemons and
Hosts” on page 143. The following sections provide the commands to retrieve this
kind of information from the command line.

▼ How To Find the Name of the Master Host
The location of the master host should be transparent for the user as the master host
may migrate between the current master host and one of the shadow master hosts at
any time.

● Using a text editor, open the <sge_root>/<cell>/common/act_qmaster file.

The name of the current master host is in the file.
60 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

▼ How To Display a List of Execution Hosts
To display a list of hosts being configured as execution hosts in your cluster please
use the commands:

The first command displays a list of the names of all hosts being currently
configured as execution hosts. The second command displays detailed information
about the specified execution host. The third command displays status and load
information about the execution hosts. Please refer to the host_conf manual page
for details on the information displayed via qconf and to the qhost manual page
for details on its output and further options.

▼ How To Display a List of Administration Hosts
The list of hosts with administrative permission can be displayed with the following
command:.

▼ How To Display a List of Submit Hosts
The list of submit host can be displayed with the following command.

% qconf -sel
% qconf -se hostname
% qhost

% qconf -sh

% qconf -ss
Chapter 3 Navigating Through the Sun Grid Engine 5.3 Program 61

Requestable Attributes
When submitting a Sun Grid Engine job a requirement profile of the job can be
specified. The user can specify attributes or characteristics of a host or queue which
the job requires to run successfully. Sun Grid Engine will map these job requirements
onto the host and queue configurations of the Sun Grid Engine cluster and will,
therefore, find the suitable hosts for a job.

The attributes that can be used to specify the job requirements are either related to
the Sun Grid Engine cluster (e.g., space required on a network shared disk), to the
hosts (e.g., operating system architecture), or to the queues (e.g., permitted CPU
time), or the attributes are derived from site policies such as the availability of
installed software only on some hosts.

The available attributes include the queue property list (see “Queues and Queue
Properties” on page 56), the list of global and host-related attributes (see “Complex
Types” on page 186), as well as administrator-defined attributes. For convenience,
however, the Sun Grid Engine administrator commonly chooses to define only a
subset of all available attributes to be requestable.

The attributes being currently requestable are displayed in the Requested Resources
sub-dialogue (see FIGURE 3-3) to the QMON Submit dialogue box (refer to the section,
“Submitting Batch Jobs” on page 75 for detailed information on how to submit jobs).
They are enlisted in the Available Resources selection list.
62 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 3-3 Requested Resources Dialogue Box

▼ How To Display a List of Requestable Attributes
1. From the command line, display a list of configured complexes by entering the

following command:

A complex contains the definition for a set of attributes. There are three standard
complexes:

■ global– For the cluster global attributes (optional)
■ host – For the host-specific attributes
■ queue – For the queue property attributes

% qconf -scl
Chapter 3 Navigating Through the Sun Grid Engine 5.3 Program 63

Any further complex names printed as a result of the above command refers to an
administrator-defined complex (see Chapter 8, “The Complexes Concept” on
page 183 or the complex format description in the Sun Grid Engine 5.3 and Sun Grid
Engine, Enterprise Edition 5.3 Reference Manual for more information on complexes).

2. Display the attributes of a particular complex by entering the following
command:

The output for the queue complex might for example look as shown in TABLE 3-2.

% qconf -sc complex_name[,...]

TABLE 3-2 queue Complex Attributes Displayed

#Name Shortcut Type Value Relop Requestable Consumable Default

qname q STRING NONE == YES NO NONE

hostname h HOST unknown == YES NO NONE

tmpdir tmp STRING NONE == NO NO NONE

calendar c STRING NONE == YES NO NONE

priority pr INT 0 >= NO NO 0

seq_no seq INT 0 == NO NO 0

rerun re INT 0 == NO NO 0

s_rt s_rt TIME 0:0:0 <= NO NO 0:0:0

h_rt h_rt TIME 0:0:0 <= YES NO 0:0:0

s_cpu s_cpu TIME 0:0:0 <= NO NO 0:0:0

h_cpu h_cpu TIME 0:0:0 <= YES NO 0:0:0

s_data s_data MEMORY 0 <= NO NO 0

h_data h_data MEMORY 0 <= YES NO 0

s_stack s_stack MEMORY 0 <= NO NO 0

h_stack h_stack MEMORY 0 <= NO NO 0

s_core s_core MEMORY 0 <= NO NO 0

h_core h_core MEMORY 0 <= NO NO 0

s_rss s_rss MEMORY 0 <= NO NO 0

h_rss h_rss MEMORY 0 <= YES NO 0

min_cpu_interval mci TIME 0:0:0 <= NO NO 0:0:0

max_migr_time mmt TIME 0:0:0 <= NO NO 0:0:0
64 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The column name is basically identical to the first column displayed by the
qconf -sq command. The queue attributes cover most of the Sun Grid Engine
queue properties. The shortcut column contains administrator definable
abbreviations for the full names in the first column. Either the full name or the
shortcut can be supplied in the request option of a qsub command by the user.

The column requestable tells whether the Corresponding entry may be used in
qsub or not. Thus the administrator can, for example, disallow the cluster’s users to
request certain machines/queues for their jobs directly, simply by setting the entries
qname and/or qhostname to be not requestable. Doing this, implies that feasible
user requests can be met in general by multiple queues, which enforces the load
balancing capabilities of Sun Grid Engine.

The column relop defines the relation operation used in order to compute whether
a queue meets a user request or not. The comparison executed is:
■ User_Request relop Queue/Host/...-Property

If the result of the comparison is false, the user’s job cannot be run in the considered
queue. Let, as an example, the queue q1 be configured with a soft cpu time limit (see
the queue_conf and the setrlimit manual pages for a description of user process
limits) of 100 seconds while the queue q2 is configured to provide 1000 seconds soft
cpu time limit.

The columns consumables and default are meaningful for the administrator to
declare so called consumable resources (see the section, “Consumable Resources” on
page 194). The user requests consumables just like any other attribute. The Sun Grid
Engine internal bookkeeping for the resources is different, however.

Assume that a user submits the following request.

max_no_migr mnm TIME 0:0:0 <= NO NO 0:0:0

% qsub -l s_cpu=0:5:0 nastran.sh

TABLE 3-2 queue Complex Attributes Displayed (Continued)

#Name Shortcut Type Value Relop Requestable Consumable Default

qname q STRING NONE == YES NO NONE

hostname h HOST unknown == YES NO NONE

tmpdir tmp STRING NONE == NO NO NONE

calendar c STRING NONE == YES NO NONE

priority pr INT 0 >= NO NO 0

seq_no seq INT 0 == NO NO 0
Chapter 3 Navigating Through the Sun Grid Engine 5.3 Program 65

The s_cpu=0:5:0 request (see the qsub manual page for details on the syntax) asks
for a queue which at least grants for 5 minutes of soft limit cpu time. Therefore, only
queues providing at least 5 minutes soft CPU runtime limit are setup properly to run
the job.

Note – Sun Grid Engine will only consider workload information in the scheduling
process if more than one queue is able to run a job.

User Access Permissions
Access to queues and other Sun Grid Engine facilities (e.g., parallel environment
interfaces; see “Parallel Jobs” on page 101) can be restricted for certain users or user
groups by the Sun Grid Engine administrator.

Note – Sun Grid Engine automatically takes into account the access restrictions
configured by the cluster administration. The following sections are only important
if you want to query your personal access permission.

For the purpose of restricting access permissions, the administrator creates and
maintains so called access lists (or in short ACLs). The ACLs contain arbitrary user
and UNIX group names. The ACLs are then added to access-allowed- or access-denied-
lists in the queue or in the parallel environment interface configurations (see
queue_conf or sge_pe in Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise
Edition 5.3 Reference Manual section 5, respectively).

User‘s belonging to ACLs which are enlisted in access-allowed-lists have permission
to access the queue or the parallel environment interface. User‘s being members of
ACLs in access-denied-lists may not access the concerning resource.

The Userset Configuration dialogue box opened via the User Configuration icon
button in the QMON Main menu allows you to query for the ACLs you have access to
via the Userset Configuration dialogue box. Refer to Chapter 9, “Managing User
Access and Policies” on page 213 for details.

From the command line a list of the currently configured ACLs can be obtained by
the command:

% qconf -sul
66 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The entries in one or multiple access lists are printed with the command:

The ACLs consist of user account names and UNIX group names with the UNIX
group names being identified by a prefixed “@” sign. This way you can determine to
which ACLs your account belongs.

Note – In case you have permission to switch your primary UNIX group with the
newgrp command, your access permissions may change.

You can now check for those queues or parallel environment interfaces to which you
have access or to which access is denied for you. Please query the queue or parallel
environment interface configuration as described in “Queues and Queue Properties”
on page 56 and “How To Configure PEs with QMON” on page 246. The access-
allowed-lists are named user_lists. The access-denied-list have the names
xuser_lists. If your user account or primary UNIX group is associated with a
access-allowed-list you are allowed to access the concerning resource. If you are
associated with a access-denied-list you may not access the queue or parallel
environment interface. If both lists are empty every user with a valid account can
access the concerning resource.

Managers, Operators and Owners
A list of Sun Grid Engine managers can be obtained by:

and a list of operators by:

Note – The superuser of a Sun Grid Engine administration host is considered as
manager by default.

% qconf -su acl_name[,...]

% qconf -sm

% qconf -so
Chapter 3 Navigating Through the Sun Grid Engine 5.3 Program 67

The users, which are owners to a certain queue are contained in the queue
configuration database as described in section “Queues and Queue Properties” on
page 56. This database can be retrieved by executing:

The concerning queue configuration entry is called owners.

% qconf -sq queue_name
68 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

CHAPTER 4

Submitting Jobs

This chapter provides background information about, and instructions for, using Sun
Grid Engine 5.3 to submit jobs for processing. The chapter begins with an example of
running a simple job, and then continues with instructions for running more
complex jobs.

Instructions for accomplishing the following tasks are included in this chapter.

■ “How To Run a Simple Job from the Command Line” on page 70
■ “How To Submit Jobs From the Graphical User Interface, QMON” on page 71
■ “How To Submit Jobs from the Command Line” on page 93
■ “How To Submit an Array Job from the Command Line” on page 96
■ “How To Submit an Array Job with QMON” on page 96
■ “How To Submit Interactive Jobs with QMON” on page 98
■ “How To Submit Interactive Jobs With qsh” on page 101
■ “How To Submit Interactive Jobs With qlogin” on page 101

Running a Simple Job
Use the information and instructions in this section to become familiar with basic
procedures involved in submitting Sun Grid Engine 5.3 jobs.

Note – If you have installed the Sun Grid Engine program under an unprivileged
account, you must log in as that particular user to be able to run jobs (see
“Prerequisite Tasks” on page 24 for details).
69

▼ How To Run a Simple Job from the Command
Line
Prior to executing any Sun Grid Engine command, you must first set your executable
search path and other environmental conditions properly.

1. Enter either of the the following commands, depending on your command
interpreter.

a. If you are using either csh or tcsh as your command interpreter:

sge_root_dir specifies the location of the Sun Grid Engine root directory that was
selected at the beginning of the installation procedure.

b. If you are using sh, ksh, or bash as your command interpreter:

Note – You can add the above commands into your .login, .cshrc, or .profile
files (whichever is appropriate) to guarantee proper Sun Grid Engine settings for all
interactive session you will start later.

2. Submit the following simple job script to your Sun Grid Engine cluster.

You can find the following job in the file, examples/jobs/simple.sh in your Sun
Grid Engine root directory.

% source sge_root_dir/default/common/settings.csh

. sge_root_dir/default/common/settings.sh

#!/bin/sh
#This is a simple example of a Sun Grid Engine batch script
#
Print date and time
date
Sleep for 20 seconds
sleep 20
Print date and time again
date
End of script file
70 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Enter the following command, which assumes that simple.sh is the name of the
script file in which the above script is stored, and the file is located in your current
working directory.

The qsub command should confirm the successful job submission as follows.

3. Enter the following command to retrieve status information on your job.

You should receive a status report containing information about all jobs currently
known to the Sun Grid Engine system and for each of them the so called job ID (the
unique number being included in the submit confirmation), the name of the job
script, the owner of the job, a state information (r means running), the submit or
start time and eventually the name of the queue in which the job executes.

If no output is produced by the qstat command, no jobs are actually known to the
system. For example, your job may already have finished. You can control the output
of the finished jobs by checking their stdout and stderr redirection files. By
default, these files are generated in the job owner‘s home directory on the host
which has executed the job. The names of the files are composed of the job script file
name, an appended dot sign followed by an “o” for the stdout file and an “e” for the
stderr file and finally the unique job ID. Thus the stdout and stderr files of your
job can be found under the names simple.sh.o1 and simple.sh.e1 respectively,
if that job was the first ever executed in a newly installed Sun Grid Engine system.

▼ How To Submit Jobs From the
Graphical User Interface, QMON
A more convenient method of submitting and controlling Sun Grid Engine jobs and
of getting an overview of the Sun Grid Engine system is the graphical user interface,
QMON. Among other facilities, QMON provides a job submission menu and a Job
Control dialogue box for the tasks of submitting and monitoring jobs.

% qsub simple.sh

your job 1 (“simple.sh”) has been submitted

% qstat
Chapter 4 Submitting Jobs 71

From the command line prompt, type the following command.

During startup, a message window is displayed and then the QMON Main menu
appears.

4. Click the Job Control button and then the Submit Jobs button.

FIGURE 4-1 QMON Main Menu

The Job Submission and the Job Control dialogue boxes appear (see FIGURE 4-2 and
FIGURE 4-3 respectively). The button names (such as Job Control) are displayed when
you move the mouse pointer over the buttons.

% qmon

Click here
first...

...and then click here
72 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 4-2 QMON Job Submission Dialogue Box

First, click here to
select the script file...

...then click Submit
to submit the job.
Chapter 4 Submitting Jobs 73

FIGURE 4-3 QMON Job Control Dialogue Box

5. In the Job Submission menu, click the Job Script file selection icon to open a file
selection box.

6. Click the appropriate file name to select your script file (e.g., the file simple.sh from
the command line example).

7. Click the Submit button at the bottom of the Job Submission menu.

After a couple of seconds, you should be able to monitor your job in the Job Control
panel. You will first see it under Pending Jobs, and it will quickly move to Running
Jobs once it gets started.
74 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Submitting Batch Jobs
The following sections describe how to submit more complex jobs through the Sun
Grid Engine 5.3 program.

About Shell Scripts
Shell scripts, also called batch jobs, are in principal a sequence of command-line
instructions assembled in a file. Script files are made executable by the chmod
command. If scripts are invoked, a proper command interpreter is started (e.g., csh,
tcsh, sh, or ksh) and each instruction is interpreted as typed in manually by the
user executing the script. You can invoke arbitrary commands, applications, and
other shell scripts from within a shell script.

The appropriate command interpreter is either invoked as login-shell or not,
depending whether its name (csh, tcsh, sh, ksh,...) is contained in the value list
of the login_shells entry of the Sun Grid Engine configuration in effect for the
particular host and queue executing the job.

Note – The Sun Grid Engine configuration may be different for the various hosts
and queues configured in your cluster. You can display the effective configurations
via the -sconf and -sq options of the qconf command (refer to the Sun Grid
Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual for detailed
information).

If the command interpreter is invoked as login-shell, the environment of your
job will be exactly the same as if you just have logged in and executed the script. In
using csh, for example, .login and .cshrc will be executed in addition to the
system default startup resource files (e.g., something like /etc/login) while only
.cshrc will be executed if csh is not invoked as login-shell. Refer to the
manual page of the command interpreter of your choice for a description of the
difference between being invoked as login-shell or not.
Chapter 4 Submitting Jobs 75

Example of a Script File
CODE EXAMPLE 4-1 is an example of a simple shell script, which first compiles the
application, flow, from its Fortran77 source and then executes it:.

CODE EXAMPLE 4-1 Simple Shell Script

Your local system user’s guide will provide detailed information about building and
customizing shell scripts (you might also want to look at the sh, ksh, csh or tcsh
manual page). In the following sections, the emphasis is on specialities that are to be
considered in order to prepare batch scripts for Sun Grid Engine.

In general, you can submit to Sun Grid Engine all shell scripts that you can execute
from your command prompt by hand, as long as they do not require a terminal
connection (except for the standard error and output devices, which are
automatically redirected) and as long as they do not need interactive user
intervention. Therefore, CODE EXAMPLE 4-1 is ready to be submitted to Sun Grid
Engine and will perform the desired action.

Submitting Extended and Advanced
Jobs with QMON
Before attempting a more complex form of job submission—extended or advanced—it
is useful to understand some important background information about the process.
The following sections provide that information.

#!/bin/csh

This is a sample script file for compiling and
running a sample FORTRAN program under Sun Grid Engine.

cd TEST

Now we need to compile the program 'flow.f' and
name the executable 'flow'.

f77 flow.f -o flow
76 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Extended Example

The standard form of the Job Submission dialogue box (see FIGURE 4-2) provides the
means to configure the following parameters for an extended job:

■ A prefix string which is used for script-embedded Sun Grid Engine submit
options (see the section, “Active Sun Grid Engine Comments” on page 90 for
detailed information)

■ The job script to be used

If the associated file button is pushed, a file selection box is opened (see
FIGURE 4-3)

■ The task ID range for submitting array jobs (see “Array Jobs” on page 95)

■ The name of the job (a default is set after a job script is selected)

■ Arguments to the job script

■ The job’s initial priority value

Users without manager or operator permission may only lower their initial
priority value.

■ The time at which the job is to be considered eligible for execution

If the associated file button is pushed, a helper dialogue box becomes available
for entering the correctly formatted time is opened (see FIGURE 4-4)

■ A flag indicating whether the job is to be executed in the current working
directory (for identical directory hierarchies between the submit and the potential
execution hosts only)

■ The command interpreter to be used to execute the job script (see “How a
Command Interpreter Is Selected” on page 89)

If the associated button is pushed, a helper dialogue box becomes available for
entering the command interpreter specifications of the job is opened (see
FIGURE 4-5).

■ A flag indicating whether the job’s standard output and standard error output are
to be merged together into the standard output stream

■ The standard output redirection to be used (see “Output Redirection” on page 89)

A default is used if nothing is specified. If the associated file button is pushed, a
helper dialogue box becomes available for entering the output redirection
alternatives (“Output Redirection” on page 89).

■ The standard error output redirection to be used—very similar to the standard
output redirection

■ The resource requirements of the job

To define resource needs for your job, press the corresponding icon button. If
resources have been requested for a job, the icon button changes its color.
Chapter 4 Submitting Jobs 77

■ A selection list button defining whether the job can be restarted after being
aborted by a system crash or similar events and whether the restart behavior
depends on the queue or is demanded by the job

■ A flag indicating whether the job is to be notified by SIGUSR1 or SIGUSR2 signals
respectively if it is about to be suspended or cancelled

■ A flag indicating that either a user hold or a job dependency is to be assigned to
the job

The job is not eligible for execution as long as any type of hold is assigned to it
(see the section, “Monitoring and Controlling Sun Grid Engine Jobs” on page 117
for more information concerning holds). The input field attached to the Hold flag
allows restricting the hold to only a specific range of task of an array job (see
“Array Jobs” on page 95).

■ A flag forcing the job to be either started immediately if possible or being rejected

Jobs are not queued if this flag is selected.

FIGURE 4-4 At Time Input Box

FIGURE 4-5 Shell Selection Box
78 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 4-6 Output Redirection Box

The buttons at the right side of the Job Submission screen enable you to initiate
various actions:
■ Submit – Submit the job as specified in the dialogue box.

■ Edit – Edit the selected script file in an X-terminal, either using vi or the editor as
defined in the $EDITOR environment variable.

■ Clear – Clear all settings in the Job Submission dialogue box, including any
specified resource requests.

■ Reload – Reload the specified script file, parse any script-embedded options (see
the section, “Active Sun Grid Engine Comments” on page 90), parse default
settings (see the section, “Default Requests” on page 94) and discard intermediate
manual changes to these settings. This action is the equivalent to a Clear action
with subsequent specifications of the previous script file. The option will only
show an effect if a script file is already selected.

■ Save Settings – Save the current settings to a file. A file selection box is opened to
select the file. The saved files may either explicitly be loaded later (see below) or
may be used as default requests (see the section, “Default Requests” on page 94).

■ Load Settings – Load settings previously saved with the Save Settings button (see
above). The loaded settings overwrite the current settings.

■ Done – Closes the Job Submission dialogue box.

■ Help – Display dialogue box-specific help.
Chapter 4 Submitting Jobs 79

FIGURE 4-7 shows the Job Submssion dialogue box with most of the parameters set.

FIGURE 4-7 Extended Job Submission Example

The job configured in the example has the script file, flow.sh, which has to reside
in the working directory of QMON. The job is called Flow and the script file takes the
single argument, big.data. The job will be started with priority -111 and is
eligible for execution not before midnight of the 24th of December in the year 2002.
The job will be executed in the submission working directory and will use the tcsh
command interpreter. Finally, standard output and standard error output will be
merged into the file, flow.out, which will be created in the current working
directory also.
80 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Advanced Example

The Advanced submission screen allows definition of the following additional
parameters:

■ A parallel environment interface to be used and the range of processes which is
required (see the section, “Parallel Jobs” on page 101)

■ A set of environment variables which are to be set for the job before it is executed

If the associated icon button is pushed, a helper dialogue box becomes available
for the definition of the environment variables to be exported (see FIGURE 4-8).
Environment variables can be taken from QMON‘s runtime environment or
arbitrary environment variable can be defined.

■ A list of name/value pairs called Context (see FIGURE 4-9), which can be used to
store and communicate job related information accessible anywhere from within a
Sun Grid Engine cluster

Context variables can be modified from the command line via the -ac/-dc/-sc
options to qsub,qrsh, qsh, qlogin, or qalter and can be retrieved via qstat
-j.

■ The checkpointing environment to be used in case of a job for which
checkpointing is desirable and suitable (see the section, “About Checkpointing
Jobs” on page 111)

■ An account string to be associated with the job

The account string will be added to the accounting record kept for the job and can
be used for later accounting analysis.

■ The Verify flag, which determines the consistency checking mode for your job

To check for consistency of the job request, Sun Grid Engine assumes an empty
and unloaded cluster and tries to find at least one queue in which the job could
run. Possible checking modes are:

■ Skip - No consistency checking at all.

■ Warning - Inconsistencies are reported, but the job is still accepted (may be
desired if the cluster configuration is supposed to change after submission of
the job).

■ Error - Inconsistencies are reported and the job will be rejected if any are
encountered.

■ Just verify - The job will not be submitted, but an extensive report is generated
about the suitability of the job for each host and queue in the cluster.

■ The events about which the user is notified via electronic mail

The events start/end/abortion/suspension of job are currently defined.

■ A list of electronic mail addresses to which these notification mails are sent
Chapter 4 Submitting Jobs 81

If the associated button is pushed, a helper dialogue becomes available to define
the mailing list (see FIGURE 4-10).

■ A list of queue names which are requested to be the mandatory selection for the
execution of the job.

The Hard Queue List and the Soft Queue List are treated identically to a
corresponding resource requirement as described in the bulleted list item, “The
resource requirements of the job” on page 77.

■ A list of queue names which are eligible as master queue for a parallel job.

A parallel job is started in the master queue. All other queues to which the job
spawns parallel tasks are called slave queues.

■ An ID-list of jobs which need to be finished successfully before the job to be
submitted can be started

The newly created job depends on successful completion of those jobs.
82 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 4-8 Job Environment Definition

FIGURE 4-9 Job Context Definition
Chapter 4 Submitting Jobs 83

FIGURE 4-10 Mail Address Specification

The job defined in FIGURE 4-11 has the following additional characteristics as
compared to the job definition from the section, “Extended Example” on page 77.

■ The job requires the use of the parallel environment mpi. It needs at least 4
parallel processes to be created and can utilize up to 16 processes if available.

■ Two environment variables are set and exported for the job.

■ Two context variables are set.

■ The account string FLOW is to be added to the job accounting record.

■ The job is to be restarted if it fails in case of a system crash.

■ Warnings should be printed if inconsistencies between the job request and the
cluster configuration are detected

■ Mail has to be sent to a list of two e-mail addresses as soon as the job starts and
finishes.

■ Preferably, the job should be executed in the queue big_q.

FIGURE 4-11 shows an example of an advanced job submission.
84 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 4-11 Advanced Job Submission Example
Chapter 4 Submitting Jobs 85

Resource Requirement Definition
In the examples so far the submit options used did not express any requirements for
the hosts on which the jobs were to be executed. Sun Grid Engine assumes that such
jobs can be run on any host. In practice, however, most jobs require certain
prerequisites to be satisfied on the executing host in order to be able to complete
successfully. Such prerequisites are enough available memory, required software to
be installed or a certain operating system architecture. Also, the cluster
administration usually imposes restrictions on the usage of the machines in the
cluster. The CPU time allowed to be consumed by the jobs is often restricted, for
example.

Sun Grid Engine provides the user with the means to find a suitable host for the
user‘s job without a concise knowledge of the cluster‘s equipment and its utilization
policies. All the user has to do is to specify the requirement of the user‘s jobs and let
Sun Grid Engine manage the task of finding a suitable and lightly loaded host.

Resource requirements are specified via the requestable attributes explained in the
section, “Requestable Attributes” on page 62. A very convenient way of specifying
the requirements of a job is provided by QMON. The Requested Resources dialogue
box, which is opened upon pressing the Requested Resources button in the Job
Submission dialogue box (see FIGURE 4-12 for an example) only displays those
attributes in the Available Resource selection list which currently are eligible. By
double-clicking an attribute, the attribute is added to the Hard or Soft (see below)
Resources list of the job and (except for BOOLEAN type attributes, which are just set
to True) a helper dialogue box is opened to guide you in entering a value
specification for the concerning attribute.

The example Requested Resources dialogue box displayed in FIGURE 4-12 shows a
resource profile for a job in which a solaris64 host with an available permas
license offering at least 750 megabytes of memory is requested. If more than one
queue fulfilling this specification is found, any defined soft resource requirements
are taken into account (none in the example). However, if no queue satisfying both
the hard and the soft requirements is found, any queue granting the hard
requirements is considered to be suitable.

Note – Only if more than one queue is suitable for a job, load criteria determine
where to start the job.
86 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 4-12 Requested Resources Dialogue Box

Note – The INTEGER attribute permas is introduced via an administrator extension
to the “global” complex, the STRING attribute arch is imported from the “host”
complex, while the MEMORY attribute h_vmem is imported from the “queue”
complex.

An equivalent resource requirement profile can as well be submitted from the qsub
command line:

Note – The implicit -hard switch before the first -l option has been skipped.

The notation 750M for 750 Megabytes is an example for the Sun Grid Engine
quantity syntax. For those attributes requesting a memory consumption you can
specify either integer decimal, floating point decimal, integer octal and integer
hexadecimal numbers appended by the so called multipliers:

■ k – Multiplies the value by 1000.
■ K – Multiplies the value by 1024.

% qsub -l arch=solaris64,h_vmem=750M,permas=1 \
permas.sh
Chapter 4 Submitting Jobs 87

■ m – Multiplies the value by 1000 times 1000.
■ M – Multiplies the value by 1024 times 1024.

Octal constants are specified by a leading 0 (zero) and digits ranging from 0 to 7
only. Specifying a hexadecimal constant requires to prepend the number by 0x and
to use digits ranging from 0 to 9, a to f and A to F. If no multipliers are appended the
values are considered to count as bytes. If using floating point decimals, the
resulting value will be truncated to an integer value.

For those attributes imposing a time limit one can specify the time values in terms of
hours, minutes or seconds and any combination. The hours, minutes and seconds
are specified in decimal digits separated by colons. A time of 3:5:11 is translated to
11111 seconds. If a specifier for hours, minutes or seconds is 0 it can be left out if the
colon remains. Thus a value of :5: is interpreted as 5 minutes. The form used in the
Requested Resources dialogue box above is an extension, which is only valid within
QMON.

How the Sun Grid Engine System Allocates
Resources
As shown in the last section, it is important for you to know how Sun Grid Engine
software processes resource requests and how it allocates resources. The following
provides a schematic view of Sun Grid Engine software’s resource allocation
algorithm.

1. Read in and parse all default request files (see the section, “Default Requests” on
page 94).

2. Process the script file for embedded options (see the section, “Active Sun Grid
Engine Comments” on page 90).

3. Read all script embedding options when the job is submitted, regardless of their
position in the script file.

4. Read and parse all requests from the command line.

As soon as all qsub requests are collected, hard and soft requests are processed
separately (the hard first). The requests are evaluated, corresponding to the
following order of precedence:

1. From left to right of the script/default request file

2. From top to bottom of the script/default request file

3. From left to right of the command line

In other words, the command line can be used to override the embedded flags.
88 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The resources requested as hard are allocated. If a request is not valid, the submit is
rejected. If one or more requests cannot be met at submit time (e.g., a requested
queue is busy) the job is spooled and will be rescheduled at a later time. If all hard
requests can be met, they are allocated and the job can be run.

The resources requested as soft are checked. The job can run even if some or all of
these requests cannot be met. If multiple queues (already meeting the hard requests)
provide parts of the soft resources list (overlapping or different parts) Sun Grid
Engine software will select the queues offering the most soft requests.

The job will be started and will cover the allocated resources.

It is useful to gather some experience on how argument list options and embedded
options or hard and soft requests influence each other by experimenting with small
test script files executing UNIX commands such as hostname or date.

Extensions to Regular Shell Scripts
There are some extensions to regular shell scripts that will influence the behavior of
the script if running under Sun Grid Engine control. The following sections describe
these extensions.

How a Command Interpreter Is Selected
The command interpreter to be used to process the job script file can be specified
at submit time (see, for example, FIGURE 4-7). However, if nothing is specified, the
configuration variable, shell_start_mode, determines how the command
interpreter is selected:

■ If shell_start_mode is set to unix_behavior, the first line of the script
file—if starting with a „#!“ sequence—is evaluated to determine the command
interpreter. If the first line has no “#!“ sequence, the Bourne Shell sh is used by
default.

■ For all other settings of shell_start_mode, the default command interpreter as
configured with the shell parameter for the queue in which the job is started is
used (see the section, “Queues and Queue Properties” on page 56 and the
queue_conf manual page).

Output Redirection
Since batch jobs do not have a terminal connection their standard output and
their standard error output has to be redirected into files. Sun Grid Engine allows
the user to define the location of the files to which the output is redirected, but
uses defaults if nothing is specified.
Chapter 4 Submitting Jobs 89

The standard location for the files is in the current working directory where the
jobs execute. The default standard output file name is <Job_name>.o<Job_id>, the
default standard error output is redirected to <Job_name>.e<Job_id>. <Job_name>
is either built from the script file name or can be defined by the user (see for
example the -N option in the qsub manual page). <Job_id> is a unique identifier
assigned to the job by Sun Grid Engine.

In case of array job tasks (see the section, “Array Jobs” on page 95), the task
identifier is added to these filenames separated by a dot sign. Hence the resulting
standard redirection paths are <Job_name>.o<Job_id>.<Task_id> and
<Job_name>.e<Job_id>.<Task_id>.

In case the standard locations are not suitable, the user can specify output
directions with QMON as shown in FIGURE 4-11 and FIGURE 4-6 or with the -e and
-o qsub options. Standard output and standard error output can be merged into
one file and the redirections can be specified on a per execution host basis. I.e.,
depending on the host on which the job is executed, the location of the output
redirection files becomes different. To build custom but unique redirection file
paths, pseudo environment variables are available which can be used together
with the qsub -e and -o option. A list of these variables follows.

■ $HOME – Home directory on execution machine
■ $USER – User ID of job owner
■ $JOB_ID – Current job ID
■ $JOB_NAME – Current job name (see -N option)
■ $HOSTNAME – Name of the execution host
■ $TASK_ID – Array job task index number

These variables are expanded during runtime of the job into the actual values and
the redirection path is built with them.

See the qsub entry in the Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise
Edition 5.3 Reference Manual for further details.

Active Sun Grid Engine Comments
Lines with a leading “#” sign are treated as comments in shell scripts. Sun Grid
Engine, however, recognizes special comment lines and uses them in a special
way: the rest of such a script line will be treated as if it were part of the command
line argument list of the Sun Grid Engine submit command qsub. The qsub
options supplied within these special comment lines are also interpreted by the
QMON Job Submission dialogue box and the corresponding parameters are preset
when a script file is selected.

The special comment lines per default are identified by the “#$“ prefix string. The
prefix string can be redefined with the qsub -C option.
90 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The described mechanism is called script embedding of submit arguments. The
following is an example of a script file that makes use of script-embedded
command line options.

CODE EXAMPLE 4-2 Using Script-Embedded Command Line Options

Environment Variables
When a Sun Grid Engine job is run, a number of variables are preset into the job’s
environment, as listed below.

■ ARC – The Sun Grid Engine architecture name of the node on which the job is
running; the name is compiled-in into the sge_execd binary

■ COMMD_PORT – Specifies the TCP port on which sge_commd(8) is expected to
listen for communication requests

■ SGE_ROOT – The Sun Grid Engine root directory as set for sge_execd before
start-up or the default /usr/SGE

■ SGE_CELL – The Sun Grid Engine cell in which the job executes

■ SGE_JOB_SPOOL_DIR – The directory used by sge_shepherd(8) to store job-
related data during job execution

#!/bin/csh

#Force csh if not Sun Grid Engine default shell

#$ -S /bin/csh

This is a sample script file for compiling and
running a sample FORTRAN program under Sun Grid Engine.
We want Sun Grid Engine to send mail when the job begins
and when it ends.

#$ -M EmailAddress
#$ -m b,e

We want to name the file for the standard output
and standard error.

#$ -o flow.out -j y

Change to the directory where the files are located.

cd TEST

Now we need to compile the program 'flow.f' and
name the executable 'flow'.

f77 flow.f -o flow

Once it is compiled, we can run the program.

flow
Chapter 4 Submitting Jobs 91

■ SGE_O_HOME – The home directory path of the job owner on the host from which
the job was submitted

■ SGE_O_HOST – The host from which the job was submitted

■ SGE_O_LOGNAME – The login name of the job owner on the host from which the
job was submitted

■ SGE_O_MAIL – The content of the MAIL environment variable in the context of the
job submission command

■ SGE_O_PATH – The content of the PATH environment variable in the context of the
job submission command

■ SGE_O_SHELL – The content of the SHELL environment variable in the context of
the job submission command

■ SGE_O_TZ – The content of the TZ environment variable in the context of the job
submission command

■ SGE_O_WORKDIR – The working directory of the job submission command

■ SGE_CKPT_ENV – Specifies the checkpointing environment (as selected with the
qsub -ckpt option) under which a checkpointing job executes

■ SGE_CKPT_DIR – Only set for checkpointing jobs; contains path ckpt_dir (see
the checkpoint manual page) of the checkpoint interface

■ SGE_STDERR_PATH – The path name of the file to which the standard error
stream of the job is diverted; commonly used for enhancing the output with error
messages from prolog, epilog, parallel environment start/stop or checkpointing
scripts

■ SGE_STDOUT_PATH – The path name of the file to which the standard output
stream of the job is diverted; commonly used for enhancing the output with
messages from prolog, epilog, parallel environment start/stop or checkpointing
scripts

■ SGE_TASK_ID – The task identifier in the array job represented by this task

■ ENVIRONMENT – Always set to BATCH; this variable indicates that the script is run
in batch mode

■ HOME – The user’s home directory path from the passwd file

■ HOSTNAME – The host name of the node on which the job is running

■ JOB_ID – A unique identifier assigned by the sge_qmaster when the job was
submitted; the job ID is a decimal integer in the range to 99999

■ JOB_NAME – The job name, built from the qsub script filename, a period, and the
digits of the job ID; this default may be overwritten by qsub -N

■ LOGNAME – The user’s login name from the passwd file

■ NHOSTS – The number of hosts in use by a parallel job

■ NQUEUES – The number of queues allocated for the job (always 1 for serial jobs)

■ NSLOTS – The number of queue slots in use by a parallel job
92 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

■ PATH – A default shell search path of:
/usr/local/bin:/usr/ucb:/bin:/usr/bin

■ PE – The parallel environment under which the job executes (for parallel jobs
only)

■ PE_HOSTFILE – The path of a file containing the definition of the virtual parallel
machine assigned to a parallel job by Sun Grid Engine

See the description of the $pe_hostfile parameter in sge_pe for details on the
format of this file. The environment variable is only available for parallel jobs.

■ QUEUE – The name of the queue in which the job is running

■ REQUEST – The request name of the job, which is either the job script file name or
is explicitly assigned to the job via the qsub -N option

■ RESTARTED – Indicates, whether a checkpointing job has been restarted; if set (to
value 1), the job has been interrupted at least once and is thus restarted

■ SHELL – The user’s login shell from the passwd file

Note – This is not necessarily the shell in use for the job.

■ TMPDIR – The absolute path to the job’s temporary working directory

■ TMP – The same as TMPDIR; provided for compatibility with NQS

■ TZ – The time zone variable imported from sge_execd, if set

■ USER – The user’s login name from the passwd file.

▼ How To Submit Jobs from the Command Line
● Enter the qsub command, along with appropriate arguments.

For example, the simple job using the script file name, flow.sh—as described in the
section, “How To Run a Simple Job from the Command Line” on page 70—could be
submitted with the command:

To yield the equivalent result of the extended QMON job submission, however—as it
is shown in FIGURE 4-7—would look as follows:

% qsub flow.sh

% qsub -N Flow -p -111 -a 200012240000.00 -cwd \
-S /bin/tcsh -o flow.out -j y flow.sh big.data
Chapter 4 Submitting Jobs 93

Further command line options can be added to constitute more complex requests.
The advanced job request shown in FIGURE 4-11, for example, would look as follows:

Default Requests

The last example in the above section demonstrates that advanced job requests may
become rather complex and unhandy, in particular if similar requests need to be
submitted frequently. To avoid the cumbersome and error prone task of entering
such command-lines, the user can either embed qsub options in the script files (see
“Active Sun Grid Engine Comments” on page 90) or can utilize so called default
requests.

The cluster administration may setup a default request file for all Sun Grid Engine
users. The user, on the other hand, can create a private default request file located in
the user‘s home directory as well as application specific default request files located
in the working directories.

Default request files simply contain the qsub options to be applied by default to the
Sun Grid Engine jobs in a single or multiple lines. The location of the cluster global
default request file is <sge_root>/<cell>/common/sge_request. The private general
default request file is located under $HOME/.sge_request, while the application
specific default request files are expected under $cwd/.sge_request.

If more than one of these files is available, they are merged into one default request
with the following order of precedence:

1. Global default request file.

2. General private default request file.

3. Application-specific default request file.

Note – Script embedding and the qsub command line has higher precedence than
the default request files. Thus, script embedding overwrites default request file
settings, and the qsub command line options my overwrite these settings again.

% qsub -N Flow -p -111 -a 200012240000.00 -cwd \
-S /bin/tcsh -o flow.out -j y -pe mpi 4-16 \
-v SHARED_MEM=TRUE,MODEL_SIZE=LARGE \
-ac JOB_STEP=preprocessing,PORT=1234 \
-A FLOW -w w -r y -m s,e -q big_q\
-M me@myhost.com,me@other.address \
flow.sh big.data
94 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Note – The qsub -clear option can be used at any time in a default request file, in
embedded script commands and in the qsub command line to discard any previous
settings.

An example of a private default request file is presented below.

Unless overwritten, for all jobs of the given user the account string would be
myproject, the jobs would execute in the current working directory, mail notification
would be sent at the beginning and end of the jobs to me@myhost.com, the jobs are to
be restarted after system crashes, the standard output and standard error output are
to be merged and the ksh is to be used as command interpreter.

Array Jobs
Parametrized and repeated execution of the same set of operations (contained in a
job script) is an ideal application for the Sun Grid Engine array job facility. Typical
examples for such applications are found in the Digital Content Creation industries
for tasks such as rendering. Computation of an animation is split into frames, in this
example, and the same rendering computation can be performed for each frame
independently.

The array job facility offers a convenient way to submit, monitor and control such
applications. Sun Grid Engine, on the other hand, provides an efficient
implementation of array jobs, handling the computations as an array of independent
tasks joined into a single job. The tasks of an array job are referenced through an
array index number. The indices for all tasks span an index range for the entire array
job which is defined during submission of the array job by a single qsub command.

An array job can be monitored and controlled (e.g., suspended, resumed, or
cancelled) as a total or by individual task or subset of tasks, in which case the
corresponding index numbers are suffixed to the job ID to reference the tasks. As
tasks are executed (very much like regular jobs), they can use the environment
variable $SGE_TASK_ID to retrieve their own task index number and to access input
data sets designated for this task identifier.

-A myproject -cwd -M me@myhost.com -m b,e
-r y -j y -S /bin/ksh
Chapter 4 Submitting Jobs 95

▼ How To Submit an Array Job from the
Command Line

● Enter the qsub command with appropriate arguments.

The following is an example of submitting an array job.

The -t option defines the task index range. In this case, 2-10:2 specifies that 2 is the
lowest and 10 is the highest index number while only every second index (the :2 part
of the specification) is used. Thus the array job consists of 5 tasks with the task
indices 2, 4, 6, 8, and 10. Each task requests a hard CPU time limit of 45 minutes
(the -l option) and will execute the job script render.sh once being dispatched and
started by Sun Grid Engine. The tasks can use $SGE_TASK_ID to find out whether
they are task 2, 4, 6, 8, or 10 and they can use their index number to find their input
data record in the data file data.in.

▼ How To Submit an Array Job with QMON

● Follow the instructions in “How To Submit Jobs From the Graphical User
Interface, QMON” on page 71, additionally taking into account the following notes.

Note – The submission of array jobs from QMON works virtually identically to how it
was described in “How To Submit Jobs From the Graphical User Interface, QMON” on
page 71. The only difference is that the Job Tasks input window shown in FIGURE 4-7
needs to contain the task range specification with the identical syntax as for the
qsub -t option. Please refer to the qsub entry in the Sun Grid Engine 5.3 and Sun
Grid Engine, Enterprise Edition 5.3 Reference Manual for detailed information on the
array index syntax.

The sections “Monitoring and Controlling Sun Grid Engine Jobs” on page 117 and
“Controlling Sun Grid Engine Jobs from the Command Line” on page 130, as well as
the Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual
sections about qstat, qhold, qrls, qmod, and qdel, contain the pertinent
information about monitoring and controlling Sun Grid Engine jobs in general and
array jobs in particular.

% qsub -l h_cpu=0:45:0 -t 2-10:2 render.sh data.in
96 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Note – Array jobs offer full access to all Sun Grid Engine facilities known for
regular jobs. In particular they can be parallel jobs at the same time or can have
interdependencies with other jobs.

Submitting Interactive Jobs
Submitting interactive jobs instead of batch jobs is useful in situations where your
job requires your direct input to influence the results of the job. This is typically the
case for X-windows applications, which are interactive by definition, or for tasks in
which your interpretation of immediate results is required to steer the further
computation.

Three methods exist in Sun Grid Engine system to create interactive job.

■ qlogin – This is a telnet-like session that is started on a host selected by Sun Grid
Engine software.

■ qrsh – This is the equivalent of the standard UNIX rsh facility. Either a
command is executed remotely on a host selected by the Sun Grid Engine system,
or a remote rlogin (rlogin) session is started on a remote host if no command
was specified for execution.

■ qsh – This is an xterm that is brought up from the machine executing the job
with the display set corresponding to your specification or the setting of the
DISPLAY environment variable. If the DISPLAY variable is not set and if no
display destination was defined specifically, Sun Grid Engine directs the xterm to
the 0.0 screen of the X server on the host from which the interactive job was
submitted.

Note – To function correctly, all the facilities need proper configuration of Sun Grid
Engine cluster parameters. The correct xterm execution paths have to be defined for
qsh and interactive queues have to be available for this type of jobs. Contact your
system administrator whether your cluster is prepared for interactive job execution.

The default handling of interactive jobs differs from the handling of batch jobs in
that interactive jobs are not queued if they cannot be executed by the time of
submission. This is to indicate immediately, that not enough appropriate resources
are available to dispatch an interactive job right after it was submitted. The user is
notified in such cases that the Sun Grid Engine cluster is too busy currently.
Chapter 4 Submitting Jobs 97

This default behavior can be changed with the -now no option to qsh, qlogin and
qrsh. If this option is given, interactive jobs are queued like batch jobs. Using -now
yes, batch jobs submitted with qsub also can be handled like interactive jobs and
are either dispatched for execution immediately or are rejected.

Note – Interactive jobs can only be executed in queues of the type INTERACTIVE (
refer to “About Configuring Queues” on page 163 for details).

The subsequent sections outline the usage of the qlogin and qsh facilities. The
qrsh command is explained in a broader context in the section, “Transparent
Remote Execution” on page 103.

Submitting Interactive Jobs with QMON

The only type of interactive jobs that can be submitted from QMON are those bringing
up an xterm on a host selected by Sun Grid Engine.

▼ How To Submit Interactive Jobs with QMON

● Click the icon on top of the button column at the right side of the Job Submission
dialogue box until the Interactive icon is displayed.

This prepares the Job Submission dialogue box to submit interactive jobs (see
FIGURE 4-13 and FIGURE 4-14).

The meaning and the usage of the selection options in the dialogue box is the same
as explained for batch jobs in the section, “Submitting Batch Jobs” on page 75. The
basic difference is that several input fields are set insensitive because they do not
apply for interactive jobs
98 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 4-13 Interactive Job Submission Dialogue Box, General
Chapter 4 Submitting Jobs 99

FIGURE 4-14 Interactive Job Submission Dialogue Box, Advanced

Submitting Interactive Jobs with qsh

Qsh is very similar to qsub and supports several of the qsub options, as well as the
additional switch -display to direct the display of the xterm to be invoked (refer to
100 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

the qsh entry in the Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3
Reference Manual for details).

▼ How To Submit Interactive Jobs With qsh

● Enter the following command to start an xterm on any available Sun Solaris 64bit
operating system host.

Submitting Interactive Jobs with qlogin

The qlogin command can be used from any terminal or terminal emulation to
initiate an interactive session under the control of Sun Grid Engine.

▼ How To Submit Interactive Jobs With qlogin

● Enter the following command to locate a low-loaded host with Star-CD license
available and with at least one queue providing a minimum of 6 hours hard CPU
time limit.

Note – Depending on the remote login facility configured to be used by the Sun
Grid Engine system, you may have to enter your user name, your password, or both
at a login prompt.

Parallel Jobs
Sun Grid Engine provides means to execute parallel jobs using arbitrary message
passing environments such as PVM or MPI (see the PVM User’s Guide and the MPI
User’s Guide for details) or shared memory parallel programs on multiple slots in
single queues or distributed across multiple queues and (for distributed memory

% qsh -l arch=solaris64

% qlogin -l star-cd=1,h_cpu=6:0:0
Chapter 4 Submitting Jobs 101

parallel jobs) across machines. An arbitrary number of different parallel environment
(PE) interfaces may be configured concurrently at the same time. See Chapter 10,
“Managing Parallel Environments” on page 245 for details about PEs.

How Sun Grid Engine Jobs Are Scheduled
Essentially, Sun Grid Engine 5.3 software uses two set of criteria to schedule jobs:

■ Job Priorities
■ Equal-share

Job Priorities

Concerning the order of scheduling precedence of different jobs, a first-in-first-out
(fifo) rule is applied by default. All pending (not yet scheduled) jobs are inserted in a
list, with the first submitted job being the head of the list, followed by the second
submitted job, and so on. The job submitted first will be attempted to be scheduled
first. If at least one suitable queue is available, the job will be scheduled. Sun Grid
Engine software will try to schedule the second job afterwards no matter whether
the first has been dispatched or not.

This order of precedence among the pending jobs may be overruled by the cluster
administration via a priority value being assigned to the jobs. The actual priority
value can be displayed by using the qstat command (the priority value is
contained in the last column of the pending jobs display entitled P; refer to the
section, “How To Monitor Jobs with qstat” on page 127 for details). The default
priority value assigned to the jobs at submit time is 0. The priority values are
positive and negative integers and the pending jobs list is sorted Correspondingly in
the order of descending priority values. By assigning a relatively high priority value
to a job, the job is moved to the top of the pending jobs list. Jobs with negative
priority values are inserted even after jobs just submitted. If there are several jobs
with the same priority value, the fifo rule is applied within that priority value
category.

Equal-Share-Scheduling

The fifo rule sometimes leads to problems, especially if user’s tend to submit a series
of jobs almost at the same time (e.g., via shell-script issuing one submit after the
other). All jobs being submitted afterwards and being designated to the same group
of queues will have to wait a very long time. Equal-share-scheduling avoids this
problem by sorting jobs of users already owning a running job to the end of the
precedence list. The sorting is performed only among jobs within the same priority
102 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

value category. Equal-share-scheduling is activated if the Sun Grid Engine scheduler
configuration entry user_sort (refer to the sched_conf manual page for details)
is set to TRUE.

Queue Selection

The Sun Grid Engine system does not dispatch jobs requesting nonspecific queues if
they cannot be started immediately. Such jobs will be marked as spooled at the
sge_qmaster, which will try to re-schedule them from time to time. Thus, such jobs
are dispatched to the next suitable queue that becomes available.

As opposed to this, jobs that are requested by name to a certain queue will go
directly to this queue, regardless of whether they can be started or they have to be
spooled. Therefore, viewing Sun Grid Engine queues as computer science batch
queues is only valid for jobs requested by name. Jobs submitted with nonspecific
requests use the spooling mechanism of sge_qmaster for queueing, thus utilizing a
more abstract and flexible queuing concept.

If a job is scheduled and multiple free queues meet its resource requests, the job is
usually dispatched to the queue (among the suitable) belonging to the least loaded
host. By setting the Sun Grid Engine scheduler configuration entry
queue_sort_method to seq_no, the cluster administration may change this load
dependent scheme into a fixed order algorithm: the queue configuration entry
seq_no is used to define a precedence among the queues assigning the highest
priority to the queue with the lowest sequence number.

Transparent Remote Execution
Sun Grid Engine provides a set of closely related facilities supporting transparent
remote execution of certain computational tasks. The core tool for this functionality
is the qrsh command described in section “Remote Execution with qrsh” on
page 104. Building on top of qrsh, two high level facilities—qtcsh and
qmake—allow the transparent distribution of implicit computational tasks via Sun
Grid Engine, thereby enhancing the standard UNIX facilities make and csh. qtcsh
is explained in the section, “Transparent Job Distribution with qtcsh” on page 105
and qmake is described in the section, “Parallel Makefile Processing with qmake” on
page 107.
Chapter 4 Submitting Jobs 103

Remote Execution with qrsh

Qrsh is built around the standard rsh facility (see the information provided in
<sge_root>/3rd_party for details on the involvement of rsh) and can be used for
various purposes.

■ To provide remote execution of interactive applications via Sun Grid Engine
comparable to the standard UNIX facility, rsh (also called remsh for HP-UX).

■ To offer interactive login session capabilities via Sun Grid Engine similar to the
standard UNIX facility, rlogin (note that qlogin is still required as a Sun Grid
Engine representation of the UNIX telnet facility).

■ To allow for the submission of batch jobs which, upon execution, support
terminal I/O (standard/error output and standard input) and terminal control.

■ To offer a means for submitting a standalone program not embedded in a
shell-script.

■ To provide a batch job submission client which remains active while the job is
pending or executing and which only finishes if the job has completed or has been
cancelled.

■ To allow for the Sun Grid Engine system-controlled remote execution of job tasks
(such as the concurrent tasks of a parallel job) within the framework of the
dispersed resources allocated by parallel jobs (see the section, “Tight Integration
of PEs and Sun Grid Engine Software” on page 255).

By virtue of all these capabilities, qrsh is the major enabling infrastructure for the
implementation of the qtcsh and the qmake facilities as well as for the so called
tight integration of Sun Grid Engine with parallel environments such as MPI or
PVM.

qrsh Usage

The general form of the qrsh command is:

qrsh understands almost all options of qsub and provides only a few additional
ones.

■ -now yes|no – This option controls whether the job is scheduled immediately
and rejected if no appropriate resources are available, as usually desired for an
interactive job—hence it is the default—or whether the job is queued like a batch
job, if it cannot be started at submission time.

% qrsh [options] program|shell-script [arguments] \
[> stdout_file] [>&2 stderr_file] [< stdin_file]
104 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

■ -inherit – qrsh does not go through the Sun Grid Engine scheduling process to
start a job-task, but it assumes that it is embedded inside the context of a parallel
job which already has allocated suitable resources on the designated remote
execution host. This form of qrsh commonly is used within qmake and within a
tight parallel environment integration. The default is not to inherit external job
resources.

■ -verbose – This option presents output on the scheduling process. It is mainly
intended for debugging purposes and therefore switched off per default.

Transparent Job Distribution with qtcsh

qtcsh is a fully compatible replacement for the widely known and used UNIX
C-Shell (csh) derivative tcsh (qmake is built around tcsh - see the information
provided in <sge_root>/3rd_party for details on the involvement of tcsh). It
provides a command-shell with the extension of transparently distributing execution
of designated applications to suitable and lightly loaded hosts via Sun Grid Engine.
Which applications are to be executed remotely and which requirements apply for
the selection of an execution host is defined in configuration files called .qtask.

Transparent to the user, such applications are submitted for execution to Sun Grid
Engine via the qrsh facility. Since qrsh provides standard output, error output and
standard input handling as well as terminal control connection to the remotely
executing application, there are only three noticeable differences between executing
such an application remotely as opposed to executing it on the same host as the
shell.

■ The remote host may be much better suited (more powerful, lower loaded,
required hard/software resources installed) than the local host, which may not
allow execution of the application at all. This is a desired difference, of course.

■ There will be a small delay incurred by the remote startup of the jobs and by their
handling through Sun Grid Engine.

■ Administrators can restrict the usage of resources through interactive jobs (qrsh)
and thus through qtcsh. If not enough suitable resources are available for an
application to be started via the qrsh facility or if all suitable systems are
overloaded, the implicit qrsh submission will fail and a corresponding error
message will be returned (Not enough resources ... try later).

In addition to the standard use, qtcsh is a suitable platform for third party code and
tool integration. Using qtcsh in its single-application execution form
qtcsh -c appl_name inside integration environments presents a persistent interface
that almost never has to be changed. All the required application, tool, integration,
site and even user-specific configurations are contained in appropriately defined
.qtask files. A further advantage is that this interface can be used from within shell
scripts of any type, C programs and even Java applications.
Chapter 4 Submitting Jobs 105

qtcsh Usage

Invocation of qtcsh is exactly the same as for tcsh. Qtcsh extends tcsh in
providing support for the .qtask file and by offering a set of specialized shell built-
in modes.

The .qtask file is defined as follows. Each line in the file has the following format:

The optional leading exclamation mark (!) defines the precedence between
conflicting definitions in a cluster global .qtask file and the personal .qtask file of
the qtcsh user. If the exclamation mark is missing in the cluster global file, an
eventually conflicting definition in the user file will overrule. If the exclamation
mark is in the cluster global file, the corresponding definition cannot be overwritten.

The rest of the line specifies the name of the application which, when typed on a
command line in a qtcsh, will be submitted to Sun Grid Engine for remote
execution, and the options to the qrsh facility, which will be used and which define
resource requirements for the application.

Note – The application name must appear in the command line exactly like defined
in the .qtask file. If it is prefixed with an absolute or relative directory specification
it is assumed that a local binary is addressed and no remote execution is intended.

Note – Csh aliases, however, are expanded before a comparison with the
application names is performed. The applications intended for remote execution can
also appear anywhere in a qtcsh command line, in particular before or after
standard I/O redirections.

Hence, the following examples are valid and meaningful syntax:

% [!]appl_name qrsh_options

.qtask file

netscape -v DISPLAY=myhost:0

grep -l h=filesurfer
106 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Given this .qtask file, the following qtcsh command lines:

will implicitly result in:

qtcsh can operate in different modes influenced by switches where each of them
can be on or off:

■ Local or remote execution of commands (remote is default)
■ Immediate or batch remote execution (immediate is default)
■ Verbose or non-verbose output (non-verbose is default)

The setting of these modes can be changed using option arguments of qtcsh at start
time or with the shell builtin command qrshmode at runtime. See the qtcsh entry
in the Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual
for more information.

Parallel Makefile Processing with qmake

qmake is a replacement for the standard UNIX make facility. It extends make by its
ability to distribute independent make steps across a cluster of suitable machines.
qmake is built around the popular GNU-make facility, gmake. See the information
provided in <sge_root>/3rd_party for details on the involvement of gmake.

To ensure that a complex distributed make process can run to completion, qmake
first allocates the required resources in an analogous form like a parallel job. Qmake
then manages this set of resources without further interaction with the Sun Grid
Engine scheduling. It distributes make steps as resources are or become available via
the qrsh facility with the -inherit option enabled.

Since qrsh provides standard output, error output and standard input handling as
well as terminal control connection to the remotely executing make step, there are
only three noticeable differences between executing a make procedure locally or
using qmake:

netscape

~/mybin/netscape

cat very_big_file | grep pattern | sort | uniq

qrsh -v DISPLAY=myhost:0 netscape

~/mybin/netscape

cat very_big_file | qrsh -l h=filesurfer grep pattern | sort | uniq
Chapter 4 Submitting Jobs 107

■ Provided that the individual make steps have a certain duration and that there are
enough independent make steps to be processed, the parallelization of the make
process will be sped up significantly. This is a desired difference, of course.

■ In the make steps to be started up remotely, there will be an implied small
overhead caused by qrsh and the remote execution as such.

■ To take advantage of the make step distribution of qmake, the user has to specify
as a minimum the degree of parallelization; i.e., the number of concurrently
executable make steps. In addition, the user can specify the resource
characteristics required by the make steps, such as available software licenses,
machine architecture, memory or CPU-time requirements.

The most common use in general of make certainly is the compilation of complex
software packages. This may not be the major application for qmake, however.
Program files are often quite small (as a matter of good programming practice) and
hence compilation of a single program file, which is a single make step, often only
takes a few seconds. Furthermore, compilation usually implies a lot of file access
(nested include files) which may not be accelerated if done for multiple make steps
in parallel, because the file server can become the bottleneck effectively serializing
all the file access. So a satisfactory speed-up of the compilation process sometimes
cannot be expected.

Other potential applications of qmake are more appropriate. An example is the
steering of the interdependencies and the workflow of complex analysis tasks
through make-files. This is common in some areas, such as EDA, and each make step
in such environments typically is a simulation or data analysis operation with non-
negligible resource and computation time requirements. A considerable speed-up
can be achieved in such cases.

qmake Usage

The command-line syntax of qmake looks very similar to the one of qrsh:

Note – The -inherit option is also supported by qmake as described later in this
section.

Specific attention has to be paid on the usage of the -pe option and its relation to the
gmake -j option. Both options can be used to express the amount of parallelism to
be achieved. The difference is that gmake provides no possibility with -j to specify
something like a parallel environment to use. Hence, qmake makes the assumption,

% qmake [-pe pe_name pe_range][further options] \
-- [gnu-make-options][target]
108 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

that a default environment for parallel makes is configured which is called make.
Furthermore, gmake´s -j allows no specification of a range, but only for a single
number. Qmake will interpret the number given with -j as a range of 1-
<given_number>. As opposed to this, -pe permits the detailed specification of all
these parameters. Consequently, the following command line examples are identical.

While the following command lines cannot be expressed via the -j option:.

Apart from the syntax, qmake supports two modes of invocation: interactively from
the command-line (without -inherit) or within a batch job (with -inherit).
These two modes initiate a different sequence of actions:

■ Interactive – When qmake is invoked on the command-line, the make process as
such is implicitly submitted to Sun Grid Engine via qrsh taking the resource
requirements specified in the qmake command-line into account. Sun Grid Engine
then selects a master machine for the execution of the parallel job associated with
the parallel make job and starts the make procedure there. This is necessary,
because the make process can be architecture dependent and the required
architecure is specified in the qmake command-line. The qmake process on the
master machine then delegates execution of individual make steps to the other
hosts which have been allocated by Sun Grid Engine for the job and which are
passed to qmake via the parallel environment hosts file.

■ Batch – In this case, qmake appears inside a batch script with the -inherit
option (if the -inherit option was not present, a new job would be spawned as
described for the first case above). This results in qmake making use of the
resources already allocated to the job into which qmake is embedded. It will use
qrsh -inherit directly to start make steps. When calling qmake in batch mode,
the specification of resource requirements or -pe and -j options is ignored.

Note – Also single CPU jobs have to request a parallel environment
(qmake -pe make 1 --). If no parallel execution is required, call qmake with
gmake command-line syntax (without Sun Grid Engine options and “--”), it will
behave like gmake.

Refer to the qmake entry in the Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise
Edition 5.3 Reference Manual for further detail on qmake.

% qmake -- -j 10

% qmake -pe make 1-10 --

% qmake -pe make 5-10,16 --

% qmake -pe mpi 1-99999 --
Chapter 4 Submitting Jobs 109

110 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

CHAPTER 5

Checkpointing, Monitoring, and
Controlling Jobs

After you have submitted jobs by way of the Sun Grid Engine 5.3 system, you need
to be able to monitor and control them. This chapter provides both background
information about, and instructions for, accomplishing these tasks.

Included in this chapter are instructions for the following specific taks.

■ “How To Submit, Monitor, or Delete a Checkpointing Job from the Command
Line” on page 114

■ “How To Submit a Checkpointing Job with QMON” on page 115

■ “How To Monitor and Control Jobs with QMON” on page 117

■ “How To Monitor Jobs with qstat” on page 127

■ “How To Monitor Jobs by Electronic Mail” on page 130

■ “How To Control Jobs from the Command Line” on page 130

■ “How To Control Queues with QMON” on page 132

■ “How To Control Queues with qmod” on page 136

About Checkpointing Jobs
This section explores two different types of job checkpointing.

■ User-level
■ Kernel-level
111

User-Level Checkpointing
Many application programs, especially those that normally consume considerable
CPU time, have implemented checkpointing and restart mechanisms to increase
fault tolerance. Status information and important parts of the processed data are
repeatedly written to one or more files at certain stages of the algorithm. These files
(called restart files) can be processed if the application is aborted and restarted at a
later time and a consistent state can be reached, comparable to the situation just
before the checkpoint. As the user mostly has to deal with the restart files in order to
move them to a proper location, this kind of checkpointing is called user-level
checkpointing.

For application programs that do not have an integrated (user-level) checkpointing,
an alternative can be to use a so-called checkpointing library which can be provided
by the public domain (see the Condor project of the University of Wisconsin, for
example) or by some hardware vendors. Relinking an application with such a library
installs a checkpointing mechanism in the application without requiring source code
changes.

Kernel-Level Checkpointing
Some operating systems provide checkpointing support inside the operating system
kernel. No preparations in the application programs and no re-linking of the
application is necessary in this case. Kernel-level checkpointing is usually applicable
for single processes as well as for complete process hierarchies. I.e., a hierarchy of
interdependent processes can be checkpointed and restarted at any time. Usually
both, a user command and a C-library interface are available to initiate a checkpoint.

Sun Grid Engine supports operating system checkpointing if available. Please refer
to the Sun Grid Engine Release Notes for information on the currently supported
kernel-level checkpointing facilities.

Migration of Checkpointing Jobs
Checkpointing jobs are interruptible at any time, since their restart capability
ensures that only few work already done must be repeated. This ability is used to
build Sun Grid Engine’s migration and dynamic load balancing mechanism. If
requested, checkpointing Sun Grid Engine jobs are aborted on demand and migrated
to other machines in the Sun Grid Engine pool thus averaging the load in the cluster
in a dynamic fashion. Checkpointing jobs are aborted and migrated for the following
reasons.

■ The executing queue or the job is suspended explicitly by a qmod or qmon
command.
112 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

■ The executing queue or the job is suspended automatically because a suspend
threshold for the queue has been exceeded (see the section, “How To Configure
Load and Suspend Thresholds” on page 197) and the checkpoint occasion
specification for the job includes the suspension case (see the section, “How To
Submit, Monitor, or Delete a Checkpointing Job from the Command Line” on
page 114).

You can identify a job that is about to migrate by the state m for migrating in the
qstat output. A migrating job moves back to sge_qmaster and is subsequently
dispatched to another suitable queue if any is available.

Composing a Checkpointing Job Script
Shell scripts for kernel-level checkpointing show no difference from regular shell
scripts.

Shell scripts for user-level checkpointing jobs differ from regular Sun Grid Engine
batch scripts only in their ability to properly handle the case if they get restarted.
The environment variable, RESTARTED is set for checkpointing jobs which are
restarted. It can be used to skip over sections of the job script which should be
executed during the initial invocation only.

Thus, a transparently checkpointing job script may look similar to
CODE EXAMPLE 5-1.

CODE EXAMPLE 5-1 Example of Checkpointing Job Script

#!/bin/sh
#Force /bin/sh in Sun Grid Engine
#$ -S /bin/sh

Test if restarted/migrated
if [$RESTARTED = 0]; then

0 = not restarted
Parts to be executed only during the first
start go in here
set_up_grid

fi

Start the checkpointing executable
fem
#End of scriptfile
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 113

It is important to note that the job script is restarted from the beginning if a user-
level checkpointing job is migrated. The user is responsible for directing the
program flow of the shell-script to the location where the job was interrupted and
thus skipping those lines in the script which are critical to be executed more than
once.

Note – Kernel-level checkpointing jobs are interruptible at any point of time and
also the embracing shell script is restarted exactly from the point where the last
checkpoint occurred. Therefore, the RESTARTED environment variable is of no
relevance for kernel-level checkpointing jobs.

▼ How To Submit, Monitor, or Delete a
Checkpointing Job from the Command Line
Enter the following command with the appropriate switches.

Submitting a checkpointing job works the same way as for regular batch scripts,
except for the qsub -ckpt and -c switches, which request a checkpointing
mechanism and define the occasions at which checkpoints have to be generated for
the job. The -ckpt option takes one argument which is the name of the
checkpointing environment (“About Checkpointing Support” on page 238) to be
used. The -c option is not mandatory and also takes one argument. It can be used
to overwrite the definitions of the when parameter in the checkpointing environment
configuration (see the checkpoint entry in the Sun Grid Engine 5.3 and Sun Grid
Engine, Enterprise Edition 5.3 Reference Manual for details).

The argument to the -c option can be one of the following one-letter selection (or
any combination thereof) or a time value alternatively:

■ n – No checkpoint is performed. This has highest precedence

■ s – A checkpoint is only generated if the sge_execd on the jobs host is shut
down.

■ m – Generate checkpoint at minimum CPU interval defined in the corresponding
queue configuration (see the min_cpu_interval parameter in the queue_conf
manual page).

■ x – A checkpoint is generated if the job gets suspended.

#qsub options arguments
114 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

■ interval – Generate checkpoint in the given interval but not more frequently
than defined by min_cpu_interval (see above). The time value has to be
specified as hh:mm:ss (two digit hours, minutes and seconds separated by colon
signs).

The monitoring of checkpointing jobs just differs from regular jobs by the fact, that
these jobs may migrate from time to time (signified by state m for migrating in the
output of qstat, see above) and, therefore, are not bound to a single queue.
However, the unique job identification number stays the same as well as the job
name.

Deleting checkpointing jobs works just the same way as described in section
“Controlling Sun Grid Engine Jobs from the Command Line” on page 130.

▼ How To Submit a Checkpointing Job with QMON

● Follow the instructions in “Advanced Example” on page 81, taking note of the
following additional information.

Submission of checkpointing jobs via QMON is identical to the submission of regular
batch jobs with the addition of specifying an appropriate checkpointing
environment. As explained in the procedure, “Advanced Example” on page 81, the
Job Submission dialogue box provides an input window for the checkpointing
environment associated with a job. Aside to the input window there is an icon
button, which opens the Selection dialogue box displayed in FIGURE 5-1. You can
select a suitable checkpoint environment from the list of available ones with it. Ask
your system administrator for information about the properties of the checkpointing
environments installed at your site, or refer to the section, “About Checkpointing
Support” on page 238.
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 115

FIGURE 5-1 Checkpoint Object Selection

File System Requirements
When a checkpointing library based user-level or kernel-level checkpoint is written,
a complete image of the virtual memory the process or job to be checkpointed covers
needs to be dumped. Sufficient disk space must be available for this purpose. If the
checkpointing environment configuration parameter ckpt_dir is set the checkpoint
information is dumped to a job private location under ckpt_dir. If ckpt_dir is set
to NONE, the directory in which the checkpointing job was started is used. Refer to
the checkpoint entry in the Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise
Edition 5.3 Reference Manual for detailed information about the checkpointing
environment configuration.

Note – You should start a checkpointing job with the qsub -cwd script if ckpt_dir
is set to NONE.

An additional requirement concerning the way how the file systems are organized is
caused by the fact, that the checkpointing files and the restart files must be visible on
all machines in order to successfully migrate and restart jobs. Thus NFS or a similar
file system is required. Ask your cluster administration, if this requirement is met for
your site.

If your site does not run NFS or if it is not desirable to use it for some reason, you
should be able to transfer the restart files explicitly at the beginning of your shell
script (e.g. via rcp or ftp) in the case of user-level checkpointing jobs.
116 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Monitoring and Controlling Sun Grid
Engine Jobs
In principle, there are three ways to monitor submitted jobs.

■ With the Sun Grid Engine graphical user‘s interface, QMON
■ From the command line with the qstat command
■ By electronic mail

▼ How To Monitor and Control Jobs with QMON

The Sun Grid Engine graphical user‘s interface, QMON, provides a dialogue box
specifically designed for controlling jobs.

● In the QMON Main menu, press the Job Control button, then proceed according to
the additional information detailed in the following sections.

The general purpose of this dialogue box is to provide the means to monitor all
running, pending and a configurable number of finished jobs known to the system
or parts thereof. The dialogue box can also be used to manipulate jobs, i.e. to change
their priority, to suspend, resume and to cancel them. Three list environments are
displayed, one for the running jobs, another for the pending jobs waiting to be
dispatched to an appropriate resource and the third for recently finished jobs. You
can select between the three list environments via clicking to the corresponding tab
labels at the top of the screen.
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 117

In its default form (see FIGURE 5-2) it displays the columns JobId, Priority, JobName
and Queue for each running and pending job.

FIGURE 5-2 Job Control Dialogue Box—Standard Form
118 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

You can configure the set of information displayed with a Customization dialogue
box, (see FIGURE 5-3), which is opened upon pushing the Customize button in the Job
Control dialogue box.

FIGURE 5-3 Job Control Customization Dialogue Box

With the Customization dialogue box it is possible to select further entries of the Sun
Grid Engine job object to be displayed and to filter the jobs of interest. The example
in FIGURE 5-3 selects the additional fields, MailTo and Submit Time.

The Job Control dialogue box displayed in FIGURE 5-4 depicts the enhanced look after
the customization has been applied in case of the Finished Jobs list.
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 119

FIGURE 5-4 Job Control Dialogue Box Finished Jobs—Enhanced

The example of the filtering facility in FIGURE 5-5 selects only those jobs owned by
ferstl which run or are suitable for architecture solaris64.
120 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

FIGURE 5-5 Job Control Filtering

The resulting Job Control dialogue box showing Pending Jobs is displayed in
FIGURE 5-6.
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 121

FIGURE 5-6 Job Control Dialogue Box—After Filtering

Note – The Save button displayed in the Customization dialogue box in FIGURE 5-3,
for example, stores the customizations into the file .qmon_preferences in the
user’s home directory and thus redefines the default appearance of the Job Control
dialogue box.

The Job Control dialogue box in FIGURE 5-6 is also an example of how array jobs are
displayed in QMON.
122 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Jobs can be selected (for later operation) with the following mouse/key
combinations:

■ Clicking on a job with the left mouse button while the Control key is pressed
starts a selection of multiple jobs.

■ Clicking on another job with the left mouse button while the Shift key is pressed
selects all jobs in between and including the job at the selection start and the
current job.

■ Clicking on a job with the left mouse button while the Control key is pressed
toggles the selection state of a single job.

The selected jobs can be suspended, resumed (unsuspended), deleted, held back
(and released), re-prioritized and modified (Qalter) through the corresponding
buttons at the right side of the screen.

The actions suspend, unsuspend, delete, hold, modify priority and modify job may
only be applied to a job by the job owner or by Sun Grid Engine managers and
operators (see “Managers, Operators and Owners” on page 67). Only running jobs
can be suspended/resumed and only pending jobs can be held back and modified
(in priority as well as in other attributes).

Suspending a job means the equivalent to sending the signal, SIGSTOP, to the
process group of the job with the UNIX kill command, which halts the job and no
longer consumes CPU time. Unsuspending the job sends the signal, SIGCONT,
thereby resuming the job (see the kill manual page of your system for more
information on signalling processes).

Note – Suspension, unsuspension and deletion can be forced; i.e., registered with
sge_qmaster without notification of the sge_execd controlling the job(s), in case
the corresponding sge_execd is unreachable—for example, due to network
problems. Use the Force flag for this purpose.

If using the Hold button on a selected pending job, the Set Hold sub-dialogue box is
opened (see FIGURE 5-7).

FIGURE 5-7 Job Control Holds
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 123

The Set Hold sub-dialogue box enables setting and resetting user, system, and
operator holds. User holds can be set/reset by the job owner as well as Sun Grid
Engine operators and managers. Operator holds can be set/reset by managers and
operator and manager holds can be set/reset by managers only. As long as any hold
is assigned to a job it is not eligible for execution. Alternate ways to set/reset holds
are the qalter, qhold and qrls commands (see the corresponding entries in the
Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual).

If the Priority button is pressed, another sub-dialogue box is opened (FIGURE 5-8),
which enables entering the new priority of the selected pending jobs. In Sun Grid
Engine, the priority determines the order of the jobs in the pending jobs list and the
order in which the pending jobs are displayed by the Job Control dialogue. Users
can only set the priority in the range between 0 and -1024. Sun Grid Engine
operators and managers can also increase the priority level up to the maximum of
1023 (see the section, “Job Priorities” on page 102 for details about job priorities).

FIGURE 5-8 Job Control Priority Definition

The Qalter button, when pressed for a pending job, opens the Job Submission screen
described in “How To Submit Jobs From the Graphical User Interface, QMON” on
page 71 with all the entries of the dialogue box set corresponding to the attributes of
the job as defined during submission. Those entries, which cannot be changed, are
set insensitive. The others may be edited and the changes are registered with Sun
Grid Engine by pushing the Qalter button (a replacement for the Submit button) in
the Job Submission dialogue box.

The Verify flag in the Job Submission screen has a special meaning when used in the
Qalter mode. You can check pending jobs for their consistency and investigate why
they have not been scheduled yet. You just have to select the desired consistency
checking mode for the Verify flag and push the Qalter button. The system will
display warnings on inconsistencies depending on the selected checking mode. Refer
to the section, “Advanced Example” on page 81 and the -w option in the qalter
manual page for further information.
124 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

Another method for checking why jobs are still pending is to select a job and click on
the Why? button of the Job Control dialogue box. This will open the Object Browser
dialogue box and display a list of reasons which prevented the Sun Grid Engine
scheduler from dispatching the job in its most recent pass. An example browser
screen displaying such a message is shown in FIGURE 5-9.

FIGURE 5-9 Browser Displaying Scheduling Information

Note – The Why? button only delivers meaningful output if the scheduler
configuration parameter schedd_job_info is set to true (see sched_conf in the
Sun Grid Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual). The
displayed scheduler information relates to the last scheduling interval. It may not be
accurate anymore by the time you investigate for reasons why your job has not been
scheduled.

The Clear Error button can be used to remove an error state from a selected pending
job, which had been started in an earlier attempt, but failed due to a job dependent
problem (e.g., insufficient permissions to write to the specified job output file).

Note – Error states are displayed using a red font in the pending jobs list and
should only be removed after correcting the error condition; e.g., via qalter. Such
error conditions are automatically reported via electronic mail, if the job requests to
send e-mail in case it is aborted (e.g., via the qsub -m a option).
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 125

To keep the information being displayed up-to-date, QMON uses a polling scheme to
retrieve the status of the jobs from sge_qmaster. An update can be forced by
pressing the Refresh button.

Finally, the button provides a link to the QMON Job Submission dialogue box (see
FIGURE 5-10, for example).

Additional Information with the QMON Object
Browser
The QMON Object Browser can be used to quickly retrieve additional information on
Sun Grid Engine jobs without a need to customize the Job Control dialogue box, as
explained in section “How To Monitor and Control Jobs with QMON” on page 117.

The Object Browser is opened upon pushing the Browser icon button in the QMON
main menu. The browser displays information about Sun Grid Engine jobs if the Job
button in the browser is selected and if the mouse pointer is moved over a job‘s line
in the Job Control dialogue box (see FIGURE 5-2 for example).

The browser screen in FIGURE 5-10 gives an example of the information displayed in
such a situation.

FIGURE 5-10 Object Browser—Job
126 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

▼ How To Monitor Jobs with qstat

● From the command line, use one of the following commands, guided by
information detailed in the following sections.

The first form provides an overview of the submitted jobs only (see TABLE 5-1). The
second form includes information on the currently configured queues in addition
(see TABLE 5-2)).

In the first form, a header line indicates the meaning of the columns. The purpose of
most of the columns should be self-explanatory. The state column, however,
contains single character codes with the following meaning: r for running, s for
suspended, q for queued and w for waiting (see the qstat entry in the Sun Grid
Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual for a detailed
explanation of the qstat output format).

The second form is divided into two sections, the first displaying the status of all
available queues, the second (entitled with the - PENDING JOBS - ... separator)
shows the status of the sge_qmaster job spool area. The first line of the queue
section defines the meaning of the columns with respect to the enlisted queues. The
queues are separated by horizontal rules. If jobs run in a queue they are printed
below the associated queue in the same format as in the qstat command in its first
form. The pending jobs in the second output section are also printed as in qstat‘s
first form.

The following columns of the queue description require some more explanation.

■ qtype – This is the queue type—one of B(atch), I(nteractive), P(arallel) and
C(heckpointing) or combinations thereof.

■ used/free – This is the count of used/free job slots in the queue.

■ states – This is the state of the queue—one of u(nknown), a(laram),
s(uspended), d(isabled), E(rror), or combinations thereof.

Again, the qstat manual page contains a more detailed description of the qstat
output format.

Various additional options to the qstat command enhance the functionality in both
versions. The -r option can be used to display the resource requirements of
submitted jobs. Furthermore the output may be restricted to a certain user, to a
specific queue and the -l option may be used to specify resource requirements as
described in the section, “Resource Requirement Definition” on page 86 for the qsub

% qstat

% qstat -f
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 127

command. If resource requirements are used, only those queues (and the jobs
running in these queues) are displayed that match the resource requirement
specification in the qstat command line.
128 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

TABLE 5-1 Example of qstat Output

job-ID prior name user state submit/start at queue function

231 0 hydra craig r 07/13/96 20:27:15 durin.q MASTER

232 0 compile penny r 07/13/96 20:30:40 durin.q MASTER

230 0 blackhole don r 07/13/96 20:26:10 dwain.q MASTER

233 0 mac elaine r 07/13/96 20:30:40 dwain.q MASTER

234 0 golf shannon r 07/13/96 20:31:44 dwain.q MASTER

236 5 word elaine qw 07/13/96 20:32:07

235 0 andrun penny qw 07/13/96 20:31:43

TABLE 5-2 Example of qstat -f Output

queuename qtype used/free load_avg arch states

dq BIP 0/1 99.99 sun4 au

durin.q BIP 2/2 0.36 sun4

231 0 hydra craig r 07/13/96 20:27:15 MASTER

232 0 compile penny r 07/13/96 20:30:40 MASTER

dwain.q BIP 3/3 0.36 sun4

230 0 blackhole don r 07/13/96 20:26:10 MASTER

233 0 mac elaine r 07/13/96 20:30:40 MASTER

234 0 golf shannon r 07/13/96 20:31:44 MASTER

fq BIP 0/3 0.36 sun4

##

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS -

##

236 5 word elaine qw 07/13/96 20:32:07

235 0 andrun penny qw 07/13/96 20:31:43
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 129

▼ How To Monitor Jobs by Electronic Mail
● From the command line, enter the following command with appropriate

arguments, guided by information detailed in the following sections.

The qsub -m switch requests electronic mail to be sent to the user submitting a job
or to the email address(es) specified by the -M flag if certain events occur (see the
qsub manual page for a description of the flags). An argument to the -m option
specifies the events. The following selections are available:

■ b – Mail is sent at the beginning of the job.
■ e – Mail is sent at the end of the job.
■ a – Mail is sent when the job is aborted (e.g. by a qdel command).
■ s – Mail is sent when the job is suspended.
■ n – No mail is sent (the default).

Multiple of these options may be selected with a single -m option in a comma-
separated list.

The same mail events can be configured by help of the QMON Job Submission
dialogue box. See the section, “Advanced Example” on page 81.

Controlling Sun Grid Engine Jobs from the
Command Line
The section “How To Monitor and Control Jobs with QMON” on page 117 explains
how Sun Grid Engine jobs can be deleted, suspended and resumed with the Sun
Grid Engine graphical user‘s interface, QMON.

Equivalent functionality is also available from the command line, described in this
section.

▼ How To Control Jobs from the Command Line
● From the command line, enter one of the following commands and appropriate

arguments, guided by information detailed in the following sections.

% qsub arguments

% qdel arguments

% qmod arguments
130 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

You use the qdel command to cancel Sun Grid Engine jobs, regardless whether they
are running or spooled. The qmod command provides the means to suspend and
unsuspend (resume) jobs already running.

For both commands, you will need to know the job identification number, which is
displayed in response to a successful qsub command. If you forget the number it
can be retrieved via qstat (see the section, “How To Monitor Jobs with qstat” on
page 127).

Included below are several examples for both commands:

In order to delete, suspend or unsuspend a job you must be either the owner of the
job, a Sun Grid Engine manager or operator (see “Managers, Operators and Owners”
on page 67).

For both commands, the -f force option can be used to register a status change for
the job(s) at sge_qmaster without contacting sge_execd in case sge_execd is
unreachable, e.g. due to network problems. The -f option is intended for usage by
the administrator. In case of qdel, however, users can be enabled to force deletion of
their own jobs if the flag ENABLE_FORCED_QDEL in the cluster configuration
qmaster_params entry is set (see the sge_conf manual page in the Sun Grid
Engine 5.3 and Sun Grid Engine, Enterprise Edition 5.3 Reference Manual for more
information).

Job Dependencies
The most convenient way to build a complex task often is to split the task into sub-
tasks. In these cases sub-tasks depend on the successful completion of other sub-
tasks before they can get started. An example is that a predecessor task produces an
output file which has to be read and processed by a successor task.

Sun Grid Engine supports interdependent tasks with its job dependency facility. Jobs
can be configured to depend on the successful completion of one or multiple other
jobs. The facility is enforced by the qsub -hold_jid option. A list of jobs can be
specified upon which the submitted job depends. The list of jobs can also contain
subsets of array jobs. The submitted job will not be eligible for execution unless all
jobs in the dependency list have completed successfully.

% qdel job_id
% qdel -f job_id1, job_id2
% qmod -s job_id
% qmod -us -f job_id1, job_id2
% qmod -s job_id.task_id_range
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 131

Controlling Queues
As described in the section, “Queues and Queue Properties” on page 56, the owners
of queues have permission to suspend/unsuspend or disable/enable queues. This is
desirable, if these users need certain machines from time to time for important work
and if they are affected strongly by Sun Grid Engine jobs running in the background.

There are two ways to suspend or enable queues.

■ The QMON Queue Control dialogue box
■ The qmod command

▼ How To Control Queues with QMON

● In the QMON Main menu, click the Queue Control button.
132 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The Queue Control dialogue box, similar to that shown in FIGURE 5-11, is displayed.

FIGURE 5-11 Queue Control Dialogue Box

The purpose of the Queue Control dialogue box is to provide a quick overview on
the resources being available and on the activity in the cluster. It also provides the
means to suspend/unsuspend and to disable/enable queues as well as to configure
queues. Each icon being displayed represents a queue. If the main display area is
empty, no queues are configured. Each queue icon is labelled with the queue name,
the name of the host on which the queue resides and the number of job slots being
occupied. If a sge_execd is running on the queue host and has already registered
with sge_qmaster a picture on the queue icon indicates the queue host’s operating
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 133

system architecture and a color bar at the bottom of the icon informs about the status
of the queue. A legend on the right side of the Queue Control dialogue box displays
the meaning of the colors.

For those queues, the user can retrieve the current attribute, load and resource
consumption information for the queue and implicitly of the machine which hosts a
queue by clicking to the queue icon with the left mouse button while the Shift key
on the keyboard is pressed. This will pop-up an information screen similar to the
one displayed in FIGURE 5-12.

Queues are selected by clicking with the left mouse on the button or into a
rectangular area surrounding the queue icon buttons. The Delete,
Suspend/Unsuspend or Disable/Enable buttons can be used to execute the
corresponding operation on the selected queues. The suspend/unsuspend and
disable/enable operation require notification of the corresponding sge_execd. If
this is not possible (e.g., because the host is down) a sge_qmaster internal status
change can be forced if the Force toggle button is switched on.

If a queue is suspended, the queue is closed for further jobs and the jobs already
executing in the queue are suspended as explained in the section, “How To Monitor
and Control Jobs with QMON” on page 117. The queue and its jobs are resumed as
soon as the queue is unsuspended.

Note – If a job in a suspended queue has been suspended explicitly in addition, it
will not be resumed if the queue is unsuspended. It needs to be unsuspended
explicitly again.

Queues which are disabled are closed, however, the jobs executing in those queues
are allowed to continue. To disable a queue is commonly used to “drain“ a queue.
After the queue is enabled, it is eligible for job execution again. No action on still
executing jobs is performed.

The suspend/unsuspend and disable/enable operations require queue owner or Sun
Grid Engine manager or operator permission (see the section, “Managers, Operators
and Owners” on page 67).

The information displayed in the Queue Control dialogue box is update periodically.
An update can be forced by pressing the Refresh button. The Done button closes the
dialogue box.

The Customize button enables you to select the queues to be displayed via a filter
operation. The sample screen in FIGURE 5-13 shows the selection of only those queues
that run on hosts belonging to architecture osf4 (i.e, Compaq UNIX version 4). The
Save button in the Customization dialogue box allows you to store your settings in
the file, .qmon_preferences in your home directory for standard reactivation on
later invocations of QMON.
134 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

For the purpose of configuring queues, a sub-dialogue box is opened when you
press the Add or Modify button on the right side of the Queue Control screen (see
the section, “How To Configure Queues with QMON” on page 164 for details).

FIGURE 5-12 Queue Attribute Display

All attributes attached to the queue (including those being inherited from the host or
cluster) are listed in the Attribute column. The Slot-Limits/Fixed Attributes column
shows values for those attributes being defined as per queue slot limits or as fixed
complex attributes. The Load(scaled)/Consumable column informs about the
reported (and if configured scaled) load parameters (see the section, “Load
Parameters” on page 206) and about available resource capacities based on the Sun
Grid Engine consumable resources facility (see the section, “Consumable Resources”
on page 194).

Note – Load reports and consumable capacities may overwrite each other, if a load
attribute is configured as a consumable resource. The minimum value of both, which
is used in the job dispatching algorithm, is displayed.
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 135

Note – The displayed load and consumable values currently do not take into
account load adjustment corrections as described in the section, “Execution Hosts”
on page 29.

FIGURE 5-13 Queue Control Customization

▼ How To Control Queues with qmod

The section, “How To Control Jobs from the Command Line” on page 130 explained
how the Sun Grid Engine command, qmod, can be used to suspend/unsuspend Sun
Grid Engine jobs. However, the qmod command additionally provides the user with
the means to suspend/unsuspend or disable/enable queues.

● Enter the following command with appropriate arguments, guided by information
detailed in the following sections.

% qmod arguments
136 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

The following commands are examples how qmod is to be used for this purpose:

The first two commands suspend or unsuspend queues, while the third and fourth
command disable and enable queues. The second command uses the qmod -f
option in addition to force registration of the status change in sge_qmaster in case
the corresponding sge_execd is not reachable, e.g. due to network problems.

Note – Suspending/unsuspending as well as disabling/enabling queue requires
queue owner, Sun Grid Engine manager or operator permission (see the section,
“Managers, Operators and Owners” on page 67).

Note – You can use qmod commands with crontab or at jobs.

Customizing QMON

The look and feel of QMON is largely defined by a specifically designed resource file.
Reasonable defaults are compiled in and a sample resource file is available under
<sge_root>/qmon/Qmon.

The cluster administration may install site specific defaults in standard locations
such as /usr/lib/X11/app-defaults/Qmon, by including QMON specific resource
definitions into the standard .Xdefaults or .Xresources files or by putting a site
specific Qmon file to a location referenced by standard search paths such as
XAPPLRESDIR. Ask your administrator if any of the above is relevant in your case,

In addition, the user can configure personal preferences by either copying and
modifying the Qmon file into the home directory (or to another location pointed to by
the private XAPPLRESDIR search path) or by including the necessary resource
definitions into the user‘s private .Xdefaults or .Xresources files. A private
Qmon resource file may also by installed via the xrdb command during operation or
at start-up of the X11 environment, e.g. in a .xinitrc resource file.

Refer to the comment lines in the sample Qmon file for detailed information on the
possible customizations.

% qmod -s q_name
% qmod -us -f q_name1, q_name2
% qmod -d q_name
% qmod -e q_name1, q_name2, q_name3
Chapter 5 Checkpointing, Monitoring, and Controlling Jobs 137

Another means of customizing QMON has been explained for the Job Control and
Queue Control Customization dialogue boxes shown in FIGURE 5-2 and in
FIGURE 5-13. In both dialogue boxes, you can use the Save button to store the filtering
and display definitions configured with the customization dialogue boxes to the file,
.qmon_preferences, in the user’s home directory. Upon being restarted, QMON
reads this file and reactivates the previously defined behavior.
138 Sun Grid Engine 5.3 Administration and User’s Guide • October 2002

	I Background and Definitions
	Introduction to Sun Grid Engine 5.3
	What Is Grid Computing?
	Managing Workload by Managing Resources and Policies
	How the System Operates
	Matching Resources to Requests
	Jobs and Queues: The Sun Grid Engine World

	Sun Grid Engine 5.3 Components
	Hosts
	Master Host
	Execution Host
	Administration Host
	Submit Host

	Daemons
	sge_qmaster – the Master Daemon
	sge_schedd – the Scheduler Daemon
	sge_execd – the Execution Daemon
	sge_commd – the Communication Daemon

	Queues
	Client Commands

	QMON, the Sun Grid Engine Graphical User Interface
	Customizing QMON
	Glossary of Sun Grid Engine Terms

	III Using Sun Grid Engine 5.3 Software
	Navigating Through the Sun Grid Engine 5.3 Program
	Sun Grid Engine User Types and Operations
	Queues and Queue Properties
	The QMON Browser
	How To Launch the QMON Browser
	The Queue Control QMON Dialogue Box

	How To Display a List of Queues
	How To Display Queue Properties
	Using the QMON Browser
	From the Command Line

	Interpreting Queue Property Information

	Host Functionality
	How To Find the Name of the Master Host
	How To Display a List of Execution Hosts
	How To Display a List of Administration Hosts
	How To Display a List of Submit Hosts

	Requestable Attributes
	How To Display a List of Requestable Attributes
	User Access Permissions
	Managers, Operators and Owners

	Submitting Jobs
	Running a Simple Job
	How To Run a Simple Job from the Command Line
	How To Submit Jobs From the Graphical User Interface, QMON

	Submitting Batch Jobs
	About Shell Scripts
	Example of a Script File

	Submitting Extended and Advanced Jobs with QMON
	Extended Example
	Advanced Example
	Resource Requirement Definition
	How the Sun Grid Engine System Allocates Resources
	Extensions to Regular Shell Scripts
	How a Command Interpreter Is Selected
	Output Redirection
	Active Sun Grid Engine Comments

	How To Submit Jobs from the Command Line
	Default Requests

	Array Jobs
	How To Submit an Array Job from the Command Line
	How To Submit an Array Job with QMON

	Submitting Interactive Jobs
	Submitting Interactive Jobs with QMON
	How To Submit Interactive Jobs with QMON
	Submitting Interactive Jobs with qsh
	How To Submit Interactive Jobs With qsh
	Submitting Interactive Jobs with qlogin
	How To Submit Interactive Jobs With qlogin
	Parallel Jobs
	How Sun Grid Engine Jobs Are Scheduled
	Job Priorities
	Equal-Share-Scheduling
	Queue Selection

	Transparent Remote Execution
	Remote Execution with qrsh
	qrsh Usage

	Transparent Job Distribution with qtcsh
	qtcsh Usage

	Parallel Makefile Processing with qmake
	qmake Usage

	Checkpointing, Monitoring, and Controlling Jobs
	About Checkpointing Jobs
	User-Level Checkpointing
	Kernel-Level Checkpointing
	Migration of Checkpointing Jobs
	Composing a Checkpointing Job Script
	How To Submit, Monitor, or Delete a Checkpointing Job from the Command Line
	How To Submit a Checkpointing Job with QMON
	File System Requirements

	Monitoring and Controlling Sun Grid Engine Jobs
	How To Monitor and Control Jobs with QMON
	Additional Information with the QMON Object Browser
	How To Monitor Jobs with qstat
	How To Monitor Jobs by Electronic Mail
	Controlling Sun Grid Engine Jobs from the Command Line
	How To Control Jobs from the Command Line

	Job Dependencies
	Controlling Queues
	How To Control Queues with QMON
	How To Control Queues with qmod

	Customizing QMON

