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1 Introduction

This memo describes a MATLAB implementation of matching of line segments accross multiple
calibrated views. It extends the three-view matching described in [3, 4] to multiple views.

The input of the algorithm is a set of gray-scale images, a set of line segments (each represented
by two endpoints) for each image, and the camera projection matrix for each image. The output is
a set of matches (a match is a set of line segments, each from a different image) and reconstructed
3D line segments.

The text is organised as follows. After giving notation and terminology in §2, the main matching
algorithm is described in §3. Supported types of camera calibration are described in §4. The
subsequent sections then discuss non-trivial or interesting parts of the algorithm in detail.

2 Notation and terminology

Symbols related to images are indexed by k = 1, . . . ,K in subscript, where K is the number of
images. Pk are 3×4 camera matrices. Ik are image intensity matrices. The line segments detected
in image k form the set { sn

k | n = 1, . . . , Nk }. The image to which a segment s belongs is denoted
by k(s).

A match S is a list of image line segments, each from a different image. S need not contain
segments from all K images. The set of images in which S has segments is denoted by k(S) =
{ k(s) | s ∈ S }. E.g., if S contains three line segment from images 1, 3 and 7, then k(S) = {1, 3, 7}.
A set of matches is denoted by S (caligraphic letter, note the difference to italic S).

The pairwise photommetric score c represents photommetric similarity of two line segments, each
from a different image. It is based on normalised cross-correlation of the segments’ neighborhoods.

The score C of a match S is a positive scalar. A higher score means a larger chance that S is a
match. The score of a two-view match S is C = − log(1− c), where c is the pairwise photommetric
score. The score of a multiview match S is a sum of scores between selected pairs of images from
k(S). Roughly, scores can be interpreted as log-likelihoods.

The epipolar beam constraint is a geometrical constraint on corresponding line segments in two
images [4] induced by the epipolar geometry.

The reprojection constraint is a geometrical constraint on corresponding line segments in three
or more images, obtained by reconstructing the 3D segment and projecting it back to images.

View distance function D : {1, . . . ,K}2 → R+ says how ‘far’ image k is from image l. It is a
heuristic to estimate the number of correspondences between two images, used to plan the matching

1



strategy. If metric calibration is available, a possible choice for D(k, l) is the distance between the
camera centers of images k and l (even if this ignores the samera rotation).

3 The algorithm

The matching algorithm consists of two steps:

1. Generating tentative matches

Input: Images Ik. Image line segments sn
k . Camera matrices Pk.

Output: Set S of tentative matches. Score of each match S ∈ S.

2. Resolving ambiguities in tentative matches

Input: Set S of tentative matches and their scores.
Output: Set S∗ ⊆ S of final matches and reconstructed 3D line segments.

The output from Step 1, the set S of tentative matches, is generally inconsistent. That means,
two matches S, S′ ∈ S can, for example, share a line segment in a certain image, violating thus
the uniqueness constraint. It is the aim of Step 2 to find a subset of S which is consistent and
(sub)optimal with respect to the scores.

The two steps are described in the following two sections.

3.1 Generating tentative matches

Tentative matches are generated as follows. First, initial two-view matches are generated from a
chosen base pair of images. Then, the remaining images are searched for line segments consistent
with the existing matches. These two steps are repeated for more base pairs. The strategy of
choosing the base pairs and the order in which the remaining images are searched is planned using
the view distance function.

Here is the complete algorithm:

1. Choose a set of base image pairs that evenly covers the image set. Set S := ∅.
2. For each base image pair (k, l) do:

(a) Generate two-view matches from the base pair.
All tentative matches from the view pair (k, l) are added to S. A pair S of line segments,
one from image k and the other from image l, is a match iff it satisfies the epipolar beam
constraint and its pairwise photommetric score c is higher than 0.6. The score of S is
computed as C = − log(1− c).

(b) Search other images for support.
Each existing match S has image line segments in a subset k(S) of all views. We seek
to find segments in other views corresponding to S. Denote by k̄(S) the set of views in
which S has no segments and that are not flagged as ‘missing’. Denote by

(k, k̄) = argmin
(k′,k̄′)∈k(S)×k̄(S)

D(k′, k̄′)

the nearest (in terms of the view distance function D) views in the two sets. If D(k, k̄)
is smaller than a threshold, we search for a line segment s in view k̄ that corresponds
to S. That means, such that the match S ∪ {s} satisfies the reprojection constraint and
the pairwise photommetric score c between segment s (in view k̄) and the segment of S
in view k is greater than a threshold (typically 0.6). The score of S is then updated as
C := C − log(1− c).
Three situations can occur:
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i. A single segment s corresponding to a match S ∈ S is found in an image. Then the
existing match S is extended by the new segment, S := S ∪ {s}.

ii. More than one segment corresponding to S is found, e.g., s1 and s2. Then the
original match S is removed from S and the new matches, S ∪ {s1} and S ∪ {s2},
are added to S.

iii. No segment corresponding to S is found. The view k̄ of match S is flagged as
‘missing’.

Step (b) is repeated until no existing match can be extended and no new match gener-
ated.

3.2 Matching

The task of the matching step is to select a subset S∗ of the set S of tentative matches that is
consistent and (sub)optimal in the sense of scores. A set S of matches is consistent iff each pair
of its elements is compatible. Two given matches S and S′ are compatible if one of the following
constraints is satisfied:

• Uniqueness constraint. In every image from k(S)∩k(S′), the segment of S and S′ are different.

During detection of image line segments, a single segment is often fragmented into several
shorter ones. Using the multiple-view information, these fragmented segments can be merged
back to the underlying larger segment [3, 4]. In this case, the uniqueness constraint becomes
more complex as follows: S and S′ may share a common segment in some image, but in the
remaining images their segments must be mergeable.

• Ordering constraint, known from stereo (§8).

Ordering constraint and deframgentation can be switched off.
To find S∗, we use the formalism from [2], which allows to treat uniqueness, ordering constraint,

and merging of fragmented segments in a uniform manner. Let Z(S, S) ⊆ S denote the inhibition
zone, being the set of matches from S incompatible with S. Selecting S∗ from S quasi-stable
matching as follows:

1. Initialize S∗ := ∅.
2. While S is non-empty do

(a) Find S ∈ S with the highest score.
(b) S∗ := S∗ ∪ {S}.
(c) S := S \ (Z(S, S) ∪ {S}).

This algorithm uses a simple greedy strategy which nevertheless has nice statistical properties [2].

4 Calibration and orientation

The software distinguishes three levels of calibration:

• Oriented projective [1, 7]. Matrices Pk have such overall signs that for each image point xnk

(with a positive third component) and scene point Xn visible in each camera Pk we have
xnk

+∼ PkXn, where +∼ denotes equality up to a positive scale. A projective reconstruction
can be upgraded to an oriented projective one simply by swapping signs of Pk and Xn; for
this, we need to known some reconstructed points Xn.

• Quasi-affine [1]. In addition, there exists a scene plane A such that AC > 0 and AX > 0 for
each scene point X and camera P. Here, C denotes the wedge product of the rows of P, i.e.,
the oriented camera center. For the particular case of affine reconstruction, A is the plane at
infinity. We assume w.l.o.g. that A = [0, 0, 0, 1].
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• Metric (also known as Euclidean). In addition, the reconstruction differs from the true scene
by a similarity transformation.

Quasi-affine and metric information is explicitly used by the software if available. Consequently,
the results are better for a higher level of calibration.

The software often makes use of oriented projective geometry [5], which results in simpler and
faster algorithms. Therefore, the overall signs of scene and image entities and multiview tensors
matter. Correct signs of camera matrices Pk are required from the user.

Corrrect signs of fundamental matrices, epipoles, and inter-image homographies are internally
ensured by using Grassmann algebra expressions for computing them. Thus, epipoles are computed
as e = P′C, where C is the oriented center P. In contrast to [1], the inter-image homography H
induced by a scene plane A and cameras P and P′ is H = P′G where G is a 4×3 matrix mapping
points in the first image onto A. In tensor notation used in [6], G is given by

Ga
A = εABCPB

b PC
c Adε

abcd .

5 Epipolar beam constraint

The epipolar beam constraint is a geometrical constraint on a pair (s, s′) of corresponding line seg-
ments induced by the epipolar geometry. It is efficiently implemented using the oriented projective
geometry.

Let x,y be homogeneous 3-vectors representing end points of segment s. Similarly, x′,y′ are
end points of s′. Prior to matching, each image line segment is oriented according to the sign of
intensity gradient such that its brighter side is always e.g. on the right. The segments s and s′

satisfy the epipolar beam constraint iff the two following conditions hold:

1. det[e,x,y] det[e′,x′,y′] < 0 (see [7]).

2. (x′,y′) intersects the beam delimited by the epipolar lines Fx and Fy. This translates to
two tests

(a) det[e,x,y] (Fy)>x′ < 0,

(b) det[e,x,y] (Fx)>y′ > 0.

Doing these tests for each pair (s, s′) results in an algorithm with complexity O(NN ′), where
N,N ′ are numbers of segments in the first and second image, respectively. This can matter for
huge images. The complexity could be descreased by first sorting the segments (e.g. vertically) and
then using search in a sorted list.

The segment that passes the tests is clipped by the epipolar lines. This is also done conveniently
using oriented projective geometry, but we skip the details.

This implementation of the epipolar beam constraint works not only for cameras with planar
retinas (conventional cameras) but also for central panoramic cameras. For planar retinas, the
third coordinates of the homogeneous 3-vectors representing image points must be positive.

5.1 Clipping by scene planes

If P and P′ are quasi-affine [1, 7], we have an additional knowledge that all 3D segments must be
in front of a single scene plane A. The clipping by a plane can be easily incorporated into Test 2
above. Straight line l = x∨y of the segment in image 1 is mapped into image 2 via the homography
H induced by A as l′ = (le)lH−1. Then, the segments in image 2 are discarded that have any end
point ‘behind’ this line, l′x′ < 0 or l′y′ < 0.
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6 Reprojection constraint

It is a geometrical constraint on a match consisting of three or more segments. It is used to find a
line segment s in image k(s) corresponding to an existing match S. It requires three tests:

1. The reprojection residuals of the 3D line reconstructed from S ∪ {s} are small.

2. Reprojection of S into image k(s) has a non-empty overlap with s.

3. Reprojection of S into image k(s) has equal orientation with s.

Test 1 is speeded up by doing first linear reconstruction of the 3D segment using a large
reprojection threshold, and only if this is passed, non-linear reconstruction (maximum-likelihood
estimate) is done.

7 Pairwise photommetric score

Pairwise photommetric score is critical for the performance of the matching algorithm, therefore
great care has been devoted to its design. After experimenting with the score described in [4] and
several other scores, the algorithm described below was observed to perform very well.

Let (X,Y) be a 3D line segment and P,P′ two camera matrices. The pairwise photommetric
score c between image line segments s = (x,y) = (PX,PY) and s′ = (x′,y′) = (P′X,P′Y) is
computed as follows:

1. For each point zi of s do:

(a) Three windows are taken in the first image: centered in zi, to the left from zi, to the
right from zi.

(b) Compute normalized cross-correlation of these windows with the same windows mapped
to the second image by the homography H described below.

(c) Set the score ci of zi to the highest of these three scores.

2. If the number of segment points zi with scores higher than 0.6 is smaller than 10, set c := 0.
Otherwise, set c to the average of those ci that are higher than 0.6.

The motivation behind using three rather than one window in Step 1a is as follows. Photometric
similarity of the neighbourhoods of s and s′ are caused by existence of a (nearly) planar surface
with tangent plane A, visible from both images, on which the 3D segment (X,Y) lies. Three cases
can occur: (i) this surface is a single plane, (ii) this surface are two different planes adjacent to
the 3D segment from either side, and (iii) the visible surface is a single plane adjacent to the 3D
segment from a single side (it means, the segment is an occluding edge).

Ideally, H should be the inter-image homography induced by A. We know only two of the three
parameters of A, the unknown parameter being the rotation around (X,Y). The next two sections
show how H is computed if metric calibration is or is not available.

7.1 Metric calibration

If metric calibration is available, we assume that A is as orthogonal to the viewing direction as
possible. This is formalized by taking the normal of A to be orthogonal both to the viewing
direction and to (X,Y). As the viewing direction, the line joining the middle point between the
camera centers with X is considered.
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7.2 Non-metric calibration

If metric calibration is not available, the missing parameter of A must be determined in terms of
image entities rather than scene entities. Let row 3-vectors l = x∨y and l′ = x′∨y′ be image lines
of the segments s and s′. The family of homographies consistent with P and P′ and mapping l to
l′ is given by [4]

Hµ = H0 + µe′l (1)

where
H0 = [l′]×F (2)

and µ is the parameter corresponding to rotation of the plane A around the 3D line.
If the segment (X,Y) lies in the epipolar plane (or nearly so), Hµ is inaccurate which results

in a wrong pairwise photommetric score. The instability is removed if the segment is measured in
another image(s) where it is not parallel with the epipolar lines. This stabilization may not prevent
from rejecting an initial two-view match which is nearly parallel to epipolars, however it allows to
obtain more accurate scores for this match later when segments from more images are added to it.

We will show how to use the information from other views in (1). First, the corresponding 3D
segment (X,Y) is reconstructed from all the images and reprojected to our two images as segments
(x,y) and (x′,y′). The homography Hµ satisfies

Hµx +∼ x′, Hµy +∼ y′ . (3)

In this case, (1) still holds but (2) can be replaced by

H0 = [e′]×F + e′m (4)

where the row 3-vector m is uniquely determined by (3).
In the case of metric calibration (§7.1), the stabilization by other images is done automatically.
To determine µ, we assume area element invariance, saying that area elements in corresponding

points on s and s′ are equal. In fact, this means that the images are assumed to have the same
scale. Let u,u′ denote the non-homogeneous 2-vectors representing the homogeneous points x,x′,
and u′ = hµ(u) denote the homography mapping expressed by matrix Hµ. Area invariance means
that the Jacobian of h(u) equals identity,

det
dhµ(u)

du
= 1 . (5)

While for general u the Jacobian is a complicated rational function of µ, it turns out to be a linear
function of µ if u lies on l. Therefore, µ can be easily computed from (5).

If the signs of F and e′ and orientations of the segments are correct, setting the Jacobian to 1
ensures that Hµ maps correctly the left and right sides of the line.

8 Ordering constraint

Imposing the ordering constraint in the resolving phase of the matching algorithm (§3.2) can re-
duce the number of false positives and mismatches. However, it excludes some configurations of
reconstructed 3D line segments, typically thin lines in the foreground.

The constraint is well-known from stereo vision, where it is applied on two point correspondences
lying on a common epipolar. We can restate this in 3D as follows. The ordering relation is defined
for two scene points X,Y visible in two images that are coplanar with the camera centers C,C′

(in other words, X and Y lie in a common epipolar plane). The relation is satisfied if the line
joining X and Y does not separate C from C′ and violated otherwise. The concept of separation is
meaningful here since oriented projective calibration is assumed, i.e., the overall signs of X,Y,C,C′

matter. The relation can be restated in image entities, in terms of (oriented) epipoles e, e′ and
image projections x,y,x′,y′.
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Given two 3D line segments, the ordering relation is defined for their points of intersection with
the epipolar plane, if these exist. In other words, the constraint is applied pointwise.

Extension to multiple images is possible by performing the test for all pairs of camera centers.
Note, this is an O(K2) algorithm, therefore quite time consuming for a large number of images.

9 Example results

After matching image segments, 3D segments are reconstructed using non-linear method (maximum-
likelihood estimation). Optionally, this reconstruction can be constrained by one or three mutually
orthogonal principal directions: segments are first classified whether their intersection with the
plane at infinity goes through a principal point or line, and then reconstructed with this constraint.

The algorithm has been tested on a number of image sets using both metric and projective
calibration. 3D line segments obtained by matching three example image sets are in Figure 1. The
runtime for the MATLAB implementation was several minutes on a 1GHz PC laptop.

Figure 1: Reconstructed 3D lines for respectively Aerial (6 images), Dunster (10 images), and
Valbonne (15 images) image sets.
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