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RANSAC
In: U = {xi} set of data points, |U| = N

function f computes model parameters p given a sample S from U

the cost function for a single data point x

Out: p* p*, parameters of the model maximizing the cost function

k := 0

Repeat until P{better solution exists} <  h (a function of C* and no. of steps k)

k := k + 1

I. Hypothesis

(1) select randomly set               , sample size

(2) compute parameters 

II. Verification

(3) compute cost 

(4) if C* < Ck then C* := Ck, p
* := pk

end

Non-uniform sampling

Additional constraints

Potential degeneracy tests

Randomized verification

Improving precision
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Outline

Non-uniform sampling

NAPSAC

PROSAC

Local Optimization (model refinement)

Degenerate configurations

Checking the sample

Randomized verification
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Sampling Locally
NAPSAC, …



Local Neighborhoods

Inliers tend to lie on densely populated manifolds

• Draw a first data point at random

• Draw the rest of the sample from some 

neighborhood of the initial point

Myatt, Torr, Nasuto, Bishop, Craddock: NAPSAC: High Noise, High Dimensional Robust Estimation - It’s in the Bag. BMVC 2002

Barath, Noskova, Ivashechkin, Matas: MAGSAC++, a fast, 

reliable and accurate robust estimator. CVPR 2020

Ni, Jin, Dellaert: GroupSAC: Efficient consensus in the presence 

of groupings. ICCV 2009 

5 / 55



(Semi-) Local Geometry

Idea: verify a tentative match “+“ by comparing neighboring features

+
+

?

OK

Schmid, Mohr: Local Greyvalue Invariants for Image Retrieval. PAMI 1997
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PROSAC
Progressive Sample Consensus



Quality of Correspondences

• Not all correspondences are created equally

• Some are better than others – are correct with higher probability

• Some quality is typically used to select tentative correspondences (similarity, first-to-second distance ratio, etc)

1 2 3 4 5 … N-2 N-1 N

Order all correspondences according to the quality
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Evaluate “Better” Samples Earlier

1 2 3 4

11 24 29 30

3 13 23 30

1 18 23 26

7 15 23 25

2 7 8 10

Quality of a sample given by its worst correspondence

Draw all the samples first

Reorder with respect to the quality

+ Evaluates “better” samples first

+ If the quality is uninformative ends up with uniform sampling

- Inefficient

Evaluate in the order of the sample quality
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PROSAC Sampling

? ? ? L

Draw uniformly from (1 … L-1)

Let TL be the expected number of samples with quality L

Draw ceil(TL) samples containing m-1 correspondences “better” than L and L

L := L + 1

Drawing samples of m correspondences

L := m
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Stopping Criterion of PROSAC

1 2 3 4 5 … N-2 N-1 N N+1 N+2 …

Quality threshold

Tentative correspondences commonly selected by thresholding their quality

Stopping criterion of RANSAC is based the fraction of inliers

tentative correspondences discard

Choose a threshold on the fly so that the fraction of inliers is maximized – earlier termination

Problems:

small sets of tentative correspondences (eg sample size) will have large inlier ratios – non-ramdomness

the ordering often introduces a bias (eg correspondences on a fronto-paralell plane match better)
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Example
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Epipolar geometry estimation

Executed on all TC Executed on outliers to 

the background model

stopping length stopping length

Too small set of TC – could be random
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LO-RANSAC
Locally Optimized RANSAC



RANSAC Recap

Calculate error function for each data point

Select data that support current hypothesis

Repeat sampling

Select minimal sample at random

Calculate model parameters that fit the data in the sample
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RANSAC Recap

Repeat sampling

… until you hit an ALL INLIER sample

Get inliers consistent with the model

Make sure that there in no better model in the data

This is also ALL INLIER sample!
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All-inlier Sample

Not every all-inlier sample gives a model 

consistent with all inliers

Lower number of inliers is detected

RANSAC needs more samples

Post-processing of RANSAC inliers (least squares)

often leads to a reasonable model
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Local Optimization (LO)

Idea: 

Insert optimization step into the hypothesis-verify loop

The LO step can be relatively complex, eg:

- least squares fit

- iteratively re-weighted least squares

- inlier re-sampling (inner RANSAC)

- graph-cup

Execute LO for so-far-the-best samples

Use inliers of the LO step to determine the best model

Chum, Matas, Kittler: Locally Optimized RANSAC. DAGM 2003
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Stability of LO-RANSAC

correspondence id
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Statistics over 10 000 executions

Ideally, inliers are always

detected as inliers, outliers

as outliers

Ideally, inliers have probability

one, outliers probability zero
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RANSAC

Lebeda, Matas, Chum: Fixing the Locally Optimized RANSAC. BMVC 2012 18 / 55



Stability of LO-RANSAC
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RANSAC LO+-RANSAC RANSAC LO+-RANSAC

RANSAC LO+-RANSAC RANSAC LO+-RANSAC

Lebeda, Matas, Chum: Fixing the Locally Optimized RANSAC. BMVC 2012 19 / 55



Hierarchical Model Estimation

Epipolar geometry through Affine Epipolar Geometry

LO-RANSAC:

1. Approximated by affine EG only 2 LAF correspondences needed

2. In LO step, estimate the full EG from multiple correspondeces

EG from 3 Local Affine Frame (LAF) correspondences

Each region provides 3 points

3 LAFs determine EG

Points are close to each other (low precision)

Chum, Matas, Obdržálek: Enhancing RANSAC by Generalized Model Optimization.  ACCV 2004

Pritts, Chum, Matas: Approximate Models for Fast and Accurate Epipolar Geometry Estimation. IVCNZ 2013

Local Affine Frames

Sample to estimate an imprecise /  approximate model

In LO step, use inliers to the sampled model to estimate the full model

SPEED-UP by reducing

the SAMPLE SIZE
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How Many Samples?

I / N [%]
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EG 7pt algorithm 

affine EG 2 LAF + LO
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Degenerate Configurations



Data with Outliers
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Degenerate Data with Outliers

Infinite number of models  passes through 

a degenerate configuration

Sample from the degenerate configuration and outlier(s) 

is a problem

It has higher than random support 

(the degenerate whole of configuration)
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The Dominant Plane Problem

Given many (almost) coplanar points, a few points off the plane, and (possibly) many outliers estimate the 

epipolar geometry (EG), if possible.

RANSAC run with 95% confidence actually finds the inliers on the lamppost in only 17% of executions
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Dealing with Degenerate Configurations

Model with high number of inliers found
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Dealing with Degenerate Configurations

Model with high number of inliers found

Select inliers to the model

Execute RANSAC for model of lower dimensionality

to discover the presence of the degenerate configuration

Frahm, Pollefeys: RANSAC for (Quasi-)Degenereate Data (QDEGSAC). CVPR 2006

QDEGSAC

Degenerate configuration
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DEGENSAC

Assumption: Degenerate configuration hit by 

an all-outlier model - unlikely

The sample spans the degenerate configuration

Analyze the sample and the inliers for degenerate 

configuration – deterministic (no new RANSAC)

Chum, Werner, Matas: Epipolar Geometry Estimation Unaffected by the Dominant Plane. CVPR 2005
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Dominant Plane

RANSAC draws minimal samples of 7 correspondences to hypothesize the epipolar geometry 

When dominant plane is present, samples with more than 4 coplanar correspondences often appear

7 or 6 coplanar correspondences: the sample is consistent with a family of fundamental matrices. This case is 
easily be detected.

It was shown that the epipolar geometry hypothesised from 5 coplanar points from the dominant plane and 2 off 
the plane (a so called H-degenerate sample) has a large RANSAC support. 

If at least one of the off-plane correspondences is an outlier, the EG is incorrect. 

Chum, Werner, Matas: Epipolar Geometry Estimation Unaffected by the Dominant Plane. CVPR 2005
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Different Solutions by RANSAC

Manually selected correspondences

Similar number of inliers, very different geometries
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DEGENSAC

Core of the algorithm:

1. Draw samples of 7 correspondences and estimate 1-3 fundamental matrices by the 
7-point algorithm

2. Test samples with the largest support so far for H-degeneracy

3. When H-degeneracy was detected, use plane-and-parallax algorithm

Note: the plane-and-parallax needs to draw samples of only 2 correspondences to hypothesize EG, 
therefore its complexity is negligible compared to RANSAC where 7 correspondences are 
drawn into a sample

Irani, Anadan: Parallax geometry of pairs of points for 3D scene analysis. ECCV 1997
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Stability of the Results

RANSAC

DEGENSAC

How many times will a correspondence be labeled as an inlier, if we run the 

experiment 100 times?

Correspondence number

Off the plane correspondences
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Non-minimal Samples

Assumption: Outliers are uniformly distributed in 3D

Algorithm:

• Draw samples of three points & fit a plane to them

• Calculate the support of the plane

• Check the three lines defined by the points of samples with the largest support so far 

Advantage: it is more likely to draw at least 2 inliers out of 3 than 2 out of 2 when fitting a line

Disadvantage: does not work if all points occupy a single plane

(all outlier model - off the line - hits the degenerate configuration)

Finding lines in 3D via plane fitting

(the line being a degenerate configuration of the plane)
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Non-minimal Samples for Homography

Ratio of the number of samples needed to estimate homography by drawing 

samples of four and seven correspondences respectively

Fraction of inliers

Probability of drawing 4 inlierers

Probability of drawing a 7-tuple with 

at least 5 inliers

Finding homographies via EG fitting
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Sample Checks
Oriented Constraints



Constraints

Constraints on the model parameters that do not reduce the model complexity exist in some problems.

model complexity - the number of data points that define the model ‘uniquely’ (sample size)

e.g. line segment of a fixed length (2 points are still needed)

Possible approaches:

Sample so that only hypotheses satisfying the constraints are generated

- may be time demanding or even intractable

Ignore additional constraints

- typically works OK since models that are not allowed do not have sufficient support

Check the constraints before verification step

- can save a lot of time on verification

- e.g. line segment of a fixed length, sampled points are further than the length
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Oriented Constraints for Two-View Geometry

Cameras can only observe points in front of the camera – rays are half-lines

Stolfi: Oriented Projective Geometry: A Framework for Geometric Computations. 

Academic Press 1991

Laveau, Faugeras: 3-D scene representation as a collection of images. ICPR 1994

Werner, Pajdla: Oriented matching constraints. BMVC 2001
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Oriented Constraints

Homography Epipolar Geometry

Need to preserve convexity

Compare signs of two determinants (four times)

Can be performed prior to computing the H matrix

(1)

(2)

oriented constraint

standard constraint

Estimate F using (2) – up to 3 solutions

Test all 7 points in the sample using (1)

Takes 27 – 81 floating point operations 

Discards 5% – 45% of models

Chum, Werner, Matas: Epipolar Geometry Estimation via RANSAC Benefits from the Oriented Epipolar Constraint. ICPR 2004
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Randomized Verification



Time Complexity of RANSAC

I. Hypothesis

(1) select randomly set               , sample size

(2) compute parameters 

II. Verification

(3) compute cost 

(4) if C* < Ck then C* := Ck, p
* := pk

Time

instantiate the model(s)

average # of models per sample

# of data points (correspondences)

Overall time spent in k samples
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Randomized Verification

I. Hypothesis

(1) select randomly set               , sample size

(2) compute parameters 

II.a Pre-verification

(3) reject weak hypotheses after a few randomly selected verification

II.b Verification

(4) compute cost 

(5) if C* < Ck then C* := Ck, p
* := pk

Time

instantiate the model(s)

average # of models per sample

average # of verifications

Overall time spent in k samples
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Pre-verification Errors

False positive

Incorrect model is not rejected

Decreases efficiency (increases the average number of verifications) 

False negative

Correct model is rejected with probability  α
Decreases confidence in the solution (good model could have been discarded) 

<

Increase # sample by factor 1 / (1 - α) to guarantee RANSAC confidence in the solution

Efficient randomized verification strategy
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RANSAC with the Td,d Test

Verify d << N data points, reject the model if not all d data points are consistent with the model

Chum, Matas: Randomized RANSAC with $T_d,d$ Test. BMVC 2002

For most problems and inlier ratios, the optimal value is d = 1, that is T1,1

Synthetic experiment on 1500 correspondences, 40% inliers, 30 repetitions
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Bail out Test

Exact probabilities intractable

Approximate by a Normal distribution

Capel: An Effective Bail-Out Test for RANSAC Consensus Scoring. BMVC 2005

Test with a threshold , where is a quantile of the Normal distribution

After each verification, check the current number of inliers In against the expected number of 

inliers of a good model
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WaldSAC: Optimal Randomized Verification

Optimal strategy in sequential decision making is based on sequential probability ratio test (SPRT)

Single parameter A:

probability of rejecting a good model a = 1/A

average number of measurements before rejection C log(A)

Sequential decision making Accept

Reject

Take another observation

Discard the model

Never taken – always verify all

Verify next data point

A. Wald: Sequential Analysis. Dover, 1947

Randomized verification:

Chum, Matas: Optimal Randomized RANSAC. TPAMI 2008

Minimize # observations to guarantee bounds on FP and FN
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Experimental Comparison

Synthetic data, 30% inliers, varying N, epipolar geometry estimation

N N

SPRT* optimal setting, fraction of inliers known beforehand

SPRT estimated fraction of inliers updated on the fly
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Experimental Comparison

Synthetic data, 30% inliers, varying N, epipolar geometry estimation

N N
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Experimental Comparison

Synthetic data, 30% inliers, varying N, epipolar geometry estimation

N N
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Latent RANSAC

Korman, Litman: Latent RANSAC. CVPR 2018

Xu, Oja, Kultanen: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters 1990

Image from Korman, Litman CVPR 2018

Problem: how to meaningfully parametrize high-dimensional models such as fundamental matrix

even homography is problematic – image points can be sent to infinity (or beyond)
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Fixed Time Budget
Real time system

Task: find the best model within given fixed time (not a confidence in the solution)

Solution: fixed number of hypotheses and fixed number of verifications

Hypotheses
O

b
s
e
rv

a
ti
o
n
s

Idea: Better hypotheses are likely to be also better on a subset of data

Animation courtesy of David Nistér
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Preemptive RANSAC

Animation courtesy of David Nistér

Hypotheses
O

b
s
e
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a
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s

Nister: Preemptive RANSAC for Live Structure and Motion Estimation. ICCV 2003 51 / 55



Conclusions

Non-uniform sampling can speed-up RANSAC significantly

Locality

Quality

Local Optimization stabilizes the results and reduces the number of samples

Approximate models bring significant speed-up

Degenerate Configurations

Avoid wrong models with high number of inliers

Efficiently detect models as degenerate configurations of higher dimensional models

Checking samples of additional constraints can avoid the verification

Oriented constraints in two-view problems

Randomized verification

Speed-up for problems with large number of correspondences 

Most of the algorithms implemented in USAC

Raguram et al.: USAC: A Universal Framework for Random Sample Consensus. TPAMI 2013 52 / 55
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