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Abstract A tracking with appearance modelling system
for pedestrians is described. For pedestrian detection a
cascade of boosted classifiers and Haar-like rectangular
features are used. Statistical modelling in the HSV colour
space is used for adaptive background modelling and
subtraction, where the use of circular statistics for hue is
proposed. A clipping algorithm based on this background
model and extensions to the traditional boosted classi-
fier for fast classification are introduced. By using the
background model in combination with the detector, the
system extracts a feature vector based on colour statistics
and spatial information. Circular and linear statistics are
applied on the extracted features to robustly track the ped-
estrians and other moving objects. An adaptive appearance
model copes with partial or full occlusions and addresses
the problem of missing or wrong detections in single frames.

Keywords: tracking, background segmentation, appearance
model, HSV, circular statistic, pedestrian detection.

1. Introduction
The proposed tracking system uses a background segment-
ation algorithm in combination with an object classifier to
quickly find pedestrians in each video frame. After a pos-
sible pedestrian is detected, the moving object is subdivided
into three zones (head, upper body, and lower body) and the
colour and spatial properties of each part which form the ba-
sic appearance model in this system are extracted. The col-
our information is analyzed in the HSV (Hue, Saturation and
Value) colour space. This colour model describes each col-
our by one angular (Hue) and two linear values (Saturation
and Value). Although HSV has been applied to a wide range
of applications like motion analysis, background modelling,
and image retrieval, often its mixed topological nature of lin-
ear and circular domains is not appropriately taken into ac-
count. For example, it is clear that the mean of angles 359◦

and 1◦ is not 180◦ like the arithmetic mean would yield —
it should be 0◦. Therefore, important definitions of circular
statistics are given in Section 2 and used in this work to
accurately process directional hue data.

Section 3 describes how color distributions can be ap-
proximated by parametric descriptions and how the adaptive
background model distinguishes between foreground and
background. The detector (Section 4) uses a cascade of

boosted classifiers and Haar-like features to describe ped-
estrians in a highly efficient way. Additionally, a method for
fast pre-classification and a clipping algorithm based on the
background model for reducing the number of classification
windows are introduced in this section.

Section 5 describes how tracking features can be extrac-
ted by using the obtained pedestrian detections and the fore-
ground data. The structure of the adaptive appearance model
is described in Section 6 and results and conclusions of this
work are given in Sections 7 and 8.

2. Circular statistics
The algebraic structure of the line and the circle are different
and therefore methods of circular data analysis as discussed
in [6] must be used when working with directional data. In
contrast to the linear domain only one operation, the addi-
tion modulo 2π is available in the circular domain. Due to
the fact that the circle is a closed curve, its natural period-
icity must be taken into account. Accurate distributions for
working with directional data are introduced in Section 3.

The arithmetic mean is unsuitable for directional data
since the result is very dependent on the choice of origin in
the circular domain. The circular mean for directional data
can be computed as a vector sum µ̂ =

∑n
i=1

Ri of n unit
vectors R1..n where each unit vector represents a sample dir-
ection. The circular variance V̂ is then defined as V̂ = |̂µ|

n
.

The circular variance V̂ , V̂ ∈ [0, 1] cannot be compared
directly with its linear equivalent σ2 which lies in the do-
main [0,∞). However by using the relationship between
the normal distribution on the circle (wrapped normal, [6])
and the normal distribution on the line a circular standard
deviation σ̂ in the range [0,∞) can be defined as

σ̂ =

√

−2logn(1 − V̂ ). (1)
All statistical definitions in this work which are used in the
context of hue values always refer to the above definitions
from circular statistics.

3. Background model
An adaptive background model is used for background sub-
truction and motion-based foreground selection. A paramet-
ric model as used by Francois et al. [2] for real-time seg-
mentation of video streams is used. The model operates on
the HSV colour space since it clearly separates chromatic
and intensity information which makes it suitable for both
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intensity and colour measurements. Each colour channel of
a background reference pixel is modelled as a single and
separate distribution since we use a static camera sequences
and assume that each pixel of the background can be repres-
ented as a single colour (single model).

Since intensity and saturation are linear variables, Gaus-
sian distributions characterized by a mean µ and a variance
σ are used for modeling those two channels of a pixel. Note
that colours are not normally distributed [8] but as shown
in numerous works can be well approximated by the nor-
mal distribution [2]. Better suited distributions like the Beta
distribution for the saturation and the intensity would prob-
ably provide a more accurate description than the Gaussian
for values near the extremes. The natural finite domain
S ∈ [0, 1] of the Beta function is a significant advantage.

Nevertheless, most cameras have only a limited sensit-
ivity range and do not cope well near the extremes. Since
we are mainly interested in an accurate modelling of pixels
within the camera working range, the simpler Gaussian dis-
tribution is appropriate for saturation and intensity compon-
ents. However, for the hue component the Gaussian dis-
tribution is inappropriate since circular data behaves quite
differently from linear data. Here a von Mises distribution,
the circular equivalent of the Gaussian distribution, is an ad-
equate density function. Similar in shape to the von Mises
distribution is the wrapped Gaussian [6]. This distribution
of the form

P (H) =
1√

2πσh

∞∑

k=−∞

e
−

(H+2πk)2

2σ2
h (2)

where H is N(0, σh), wraps the ordinary normal distribu-
tion around a circle. It is shown in [5] that the wrapped nor-
mal distribution is a very accurate approximation to the von
Mises distribution for moderate SNR (signal-to-noise ratio).
For a color distribution described by a mean µ and a stand-
ard deviation σ, the SNR can be defined as SNR = µ/σ.

For a unimodal, static background we can assume that
background changes occur slowly and signal distortions pro-
duced by, say, camera sensors are in a moderate range.
Therefore the wrapped normal distribution is an appropriate
simpler alternative to the von Mises distribution for model-
ling the hue values and is used in this system.

Each pixel of the background is described by two Gaus-
sians N(µs, σs) and N(µv, σv) for saturation and intensity
and one wrapped Gaussian Ñ(µh, σh). Initially, the means
of all three colour channels of the reference distribution are
set to the corresponding values of the pixels in the first
frame. The variance for each background distribution is al-
ways set above a minimal variance value of σmin > 0 to
tolerate noise which is always present in an image. After
the initialization the model continually performs two main
tasks. First the background mask is generated by comparing
the reference distributions and the current frame. Secondly
the distributions of the background model are updated by
using the current frame information.

3.1. Background generation
The model decides if a pixel with value I = [H, S, V ]

′

belongs to the background by thresholding the distance
between the three colour channels and the means of the

correspondent colour distributions µ = [µh, µs, µv ]
′

in the
background model. The circular domain of the hue is taken
into account when computing the hue difference δh. We
make the simplified assumption that the colour channels are
independent of each other to reduce computational complex-
ity. It is observed in [7] that this assumption degrades the
quality of the results only minimally. If for a pixel at pos-
ition x the difference for one of the channels is larger than
a foreground threshold λ{h,s,v}(x) the pixel is marked as
foreground F (x) = 1, otherwise it is labelled as background
F (x) = 0. The threshold λ{h,s,v} depends on the variance
of the corresponding colour channel

λ{h,s,v}(x) = 2σ{h,s,v}(x). (3)

The range of 2σ is equivalent to a 95.5% confidence interval
for a standard normal distribution. Since colour informa-
tion is not Gaussian distributed [8] we can still expect each
colour value to lie in the interval [µ−2σ, µ+2σ] with a con-
fidence of at least 75% by applying Tchebychev’s Inequality
theorem.

An undesirable property of the HSV colour space is its
achromatic range. In this range the pixel lies on the cent-
ral line of gray values and its hue information is meaning-
less and not usable as a distance measure. We define a
pixel as achromatic if its saturation lies below a saturation
threshold λachrs

= 0.2 or if its intensity is below an intens-
ity threshold λachrv

= 0.2. According to this we only use
the reliable channels of the frame pixel and the reference
distributions for comparison.

Instead of using a saturation threshold for deciding if a
hue value is useful, another possibility would be to weight
each hue value by its corresponding saturation [4].

3.2. Update background model
After the pixels in the current frame have been labelled as
foreground or background, the colour distributions of all ref-
erence pixels are updated by

µ(t) = [1 − α]µ(t − 1) + αI (4)

σ2(t) = [1 − α]σ2(t − 1) + α[µ(t) − I ]2. (5)

Here α is the learning rate which defines how quickly old
frames are forgotten. As in the background generation step,
only those channels of a pixel which contain useful inform-
ation are updated. In the case where a reference pixel and a
frame pixel are both in the achromatic range and no useful
colour information is available, only its intensity distribution
is updated.

4. Detector
A detector similar to the implementation of Viola et al. [10]
searches for pedestrians in single video frames. Therefore
each frame is broken up into multiple sub-images and a clas-
sifier decides if the window contains a pedestrian.

As basic features for classification, a set of static Haar-
like rectangle features as shown in Figure 1 is used. This
kind of feature builds the basic structure of each of our clas-
sifiers and can quickly be computed for a grayscale image
by using its integral image. By using an adapted version of
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Figure 1: Features used in the detector.

the AdaBoost algorithm [3] we construct a cascade of boos-
ted classifiers for quickly detecting pedestrians. Boosting is
widely used in the field of pattern classification and is the
idea of letting multiple and simple (=weak) classifiers de-
cide a classification task by a majority vote.

The detector was trained with 1500 images of pedestri-
ans from different angles. All training samples were manu-
ally extracted from multiple video sequences. The negat-
ive training samples were created by selecting random re-
gions in images not containing any pedestrians (bootstrap-
ping, [1]). The final detector cascade consists of 11 boosted
classifiers. Each frame is divided into smaller sub images
by using an uniform pyramid with 13 levels and a ratio of
1.2 between each level. The resulting 2684 sub images per
frame are classified by the detector.

In our implementation an extension to the traditional
boosted classifier is made. This extended boosted classifier
is described in the next section.

4.1. Extended boosted classifier
A boosted classifier C normally uses a set of NC weak clas-
sifiers c1..NC

. The output of each weak classifier ci(x) ∈
{0, 1} is weighted with a weak classifier weight αi where
NC∑

i=1

αi = 1 and
NC∑

i=1

αici(x) ∈ [0, 1]. For deciding on the

class C(x) of a sample x the sum of all weighted outputs is
used. If this sum is above the threshold λC of the boosted
classifier C, the sample x is classified as positive, otherwise
as negative.

C(x) =







1 if
NC∑

i=1

αici(x) ≥ λC

0 otherwise.

(6)

In this implementation a constant threshold λC = 1

2
was

taken during the training, which means that if all classifier
weights are equal, a sample has to be classified by at least
50% of the weak classifiers as positive to belong to class 1.

In a traditional boosted classifier normally all weak clas-
sifiers are evaluated on the sample image. If the weighted
sum of all these outputs is above a certain threshold the im-
age is classified as positive (or pedestrian) – otherwise as
negative (or non-pedestrian). The fundamental idea behind
extended boosting is to test already during the evaluation of
the boosted classifier (e.g. after 50% of the weak classifiers)
if it makes sense to evaluate the remaining weak classifiers.
In particular in boosted classifiers with a large number of
weak classifiers this would result in a performance increase.

We can easily pre-classify an image as pedestrian
if after evaluating k weak classifiers the sum of their
votes

∑k

i=1
αici(I) is above the pedestrian threshold λC of

this boosted classifier C:

k∑

i=1

αici(I)

︸ ︷︷ ︸

>
1

2

NC∑

m=1

αm

︸ ︷︷ ︸

⇒ C(I) = 1

current λC

(7)

If this is the case we can skip the remaining Nc −k weak
classifiers and the boosted classifier can classify the image
immediately as pedestrian.

This positive pre-classification is implementable without
changing the structure of the boosted classifiers. Another
idea is if a negative pre-classification is possible where we
can reject an image as non-pedestrian before we have eval-
uated all weak classifiers of a boosted classifier. The test at
a weak classifier ck determines if it makes sense to evaluate
the remaining and unevaluated weak classifiers by

k∑

i=1

αici(I)

︸ ︷︷ ︸

+

NC∑

j=k+1

αj

︸ ︷︷ ︸

<
1

2

NC∑

m=1

αm

︸ ︷︷ ︸

current possible λC

. (8)

Here the term
∑k

i=1
αici(I) represents the summed clas-

sification results of the already evaluated classifiers. If all
remaining classifiers vote for the class pedestrian then the
maximal possible increase could be

∑NC

j=k+1
αj . An image

I could be a pedestrian if the current sum
∑k

i=1
αici(I) and

the maximal possible rest
∑NC

j=k+1
αj can reach the classi-

fication threshold 1

2

∑NC

m=1
αm. If they cannot reach it we

can immediately classify the image as non-pedestrian and
abort the classification. If we bring the term

∑NC

j=k+1
αj

to the right side of the equation, we now have all constant
terms on one side and can calculate the resulting sum βk

offline. The traditional boosted classifier structure is exten-
ded to an extended boosted classifier which contains, next
to the weights α1..NC

, additional the sums β1..NC
for each

of its features f1..NC
. If the current sum at k is below βk,

the classification can be aborted immediately and the image
labelled as non-pedestrian, i.e.

k∑

i=1

αici(I) < βk ⇒ C(I) = 0 (9)

For positive and negative pre-classification it makes
sense to sort the weak classifiers ci according to their
weights αi so that α1 ≥ α2 ≥ ... ≥ αNC

. The weak
classifiers are evaluated according to their importance since
classifiers with a higher weight have a stronger influence on
the final result.

For complex objects like pedestrians normally many
weak classifiers must be evaluated until the image can be
pre-classified by the tests of the Equations 7 and 9. There-
fore we test only after 50%, 66%, 75% and 85% of the weak
classifiers if the image could be a pedestrian1.

1Note that both pre-classification methods neither change the classifica-
tion result of a boosted classifier nor the detection or false positive rate but
only influence the evaluation time.
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Figure 2: Adaptive Boosting with clipping.

4.2. Background clipping
A possibility to decrease the computations is to limit the
number of images which are given to the classification cas-
cade. The tracking algorithm in our system, described in
Section 5, relies completely on the foreground information
of a pedestrian which is provided by the background model.
If no or only little foreground information is present in a sub-
image it is impossible to find any correspondence between
this detection and other objects. This implies that it does
not make sense to give sub-windows without foreground in-
formation to the classifier cascade.

Therefore, after the background segmentation we com-
pute the fraction of selected foreground pixels over the total
number of pixels of a sub-image. If the fraction is above a
threshold λclip = 0.07 then the sub-image is given to the
classification cascade, otherwise rejected already before the
classification. The new structure of the detector with clip-
ping is shown in Figure 2 .

Long-term static pedestrians are adapted into the back-
ground and the windows which contain these pedestrians are
clipped. This is legitimate since for these windows – even if
they contain a pedestrian – no useful tracking information is
provided. After we have clipped all windows with low fore-
ground activity we classify the remaining windows with the
boosted classifier cascade.

5. Tracking features
5.1. Feature vector
The effectiveness of the tracking process depends strongly
on the choice of the tracking features. Our tracker uses the
detector to get basic spatial information of a possible ob-
ject and augments additional information by using the back-
ground model. The detector provides a set of K detec-
tion windows dk, k ∈ {1..K} in the current frame. Each
window is defined by a size and a position. We firstly di-
vide each detection window into three individual body zones
(head, upper body, lower body) by using a fixed height ratio
r = (rhead, rub, rlb)

′ = [ 1
4
, 3

8
, 3

8
]′. Next each part is pro-

cessed until it mainly contains a connected region of fore-
ground pixels. After the processing the colour information
is extracted. The feature vector for each body part contains
the position Pk, the size Sk and the histograms Hk,{h,s,v},
means µk,{h,s,v} and variances σk,{h,s,v} for all three colour
channels. For deciding if a hue or saturation value represents
useful information and should therefore be included in a his-

togram, the same rules as in the background segmentation
are applied. For generating the hue histogram all hue values
are additionally weighted by their corresponding saturation.

5.2. Distance measures
Since our feature vector contains spatial as well as colour in-
formation, different distance measures are used to calculate
the distances between two of its elements. For measuring
a spatial difference Dspat between two points Pi, Pj ∈ IR2

the Euclidean distance is used.
The difference Dhist between two colour histograms Hi

and Hj is computed by using the Bhattacharyya distance

Dhist(Hi, Hj) = 1 −
B∑

k=1

√

Hi(k)Hj(k) (10)

where B is the number of histogram bins. In our work it
was set to B = 10. The distance Ddist between two distri-
bution D(µi, σi) and D(µj , σj) is computed by a modified
Mahalanobis distance

Ddist(µi, σi, µj) =
|µi − µj |

2 min(σi, σj)
. (11)

After the distances for all elements of the feature vectors are
computed independently with the corresponding distance
functions, all distance values are tested against border condi-
tions like a maximal position difference ∆velocity or a max-
imal scale difference ∆scale. This rejects all objects which
do not provide enough features to support robust tracking.
After validation all distances are normalized, multiplied by
a weight factor and summed to a total sum Dfeature.

The distances between feature vectors are used for as-
signing detections to objects in the appearance model but
are also used by the detector to find and reduce multiple de-
tections of the same object in a frame to a single detection.

6. Appearance model
The adaptive appearance model (AAM) used in this work
has to address multiple tasks. A major task is the stable
handling of occlusions. In the case where an object is partly
or completely occluded the AAM should be able to predict
its current position and size. This is done by using the in-
formation about the velocity, direction, size and position of
the occluded object, which was collected during the previ-
ous frames. Since a missing object detection due to the de-
tector can be regarded as a complete occlusion, this special
case can also be addressed by the AAM. Additionally non-
pedestrian objects which are incorrectly classified as persons
by the detector can be filtered by the AAM. They normally
occur only briefly or stay stationary for long periods of time
and therefore can be distinguished from “real” pedestrians.

The AAM can be divided into multiple steps. At the be-
ginning the distances D(oj , dk) between all existing objects
oj , j ∈ {1..N} of the AAM and the detections dk, k ∈
{1..K} in the current frame are calculated. Here N and
K represent the numbers of objects in the appearance model
and the number of detections in the current frame. An ex-
isting object oj is assigned to a detection if the distance
D(oj , dk) is smaller than a similarity threshold ξsim.

All objects in the AAM which could be assigned to a
detection are updated with the new information. For ob-
jects without a corresponding detection in the current frame,
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Figure 3: Life span of an object.

the position and size are updated according to the model as-
sumptions. Additionally the AAM creates new objects for
all detections which could not be assigned to an existing ob-
ject. When an object is created it gets an initial life value
α0 and is regarded as a possible pedestrian candidate. If a
detection dk is assigned to the object oj , the life value αj of
the object is increased by a life bonus αbonus.

If the life value αj of an object rises above a threshold
ξacc the object is accepted as a pedestrian and the object can
be post-labelled as a pedestrian in all the previous frames.
If the life span decreases below a threshold ξdestroy it is
removed from the appearance model. All thresholds for
the appearance model were manually adjusted to the scene
properties.

Figure 3 shows different phases in the lifetime of an ob-
ject. The red rectangle on the left side represents the phase
of the object creation until it is accepted as a pedestrian. The
green rectangle shows the phase where the object is regarded
as a pedestrian. Note that the objects in all frames of the first
rectangle are post-labelled as pedestrians. The red rectangle
on the right side represents the time when the tracker loses
the object because it has left the field of view or is occluded
for too long a time. Finally the object is removed from the
object pool.

During partial or complete occlusions the colour histo-
grams of the colliding objects are mixed and no clear ex-
traction of the colour information of a single object is pos-
sible. Therefore no update of the colour tracking features is
done and no new objects are added to the appearance model
during occlusions.

7. Results
We did the performance evaluation of our detector with two
test sequence with 250 and 300 frames and with available
ground truth information. To build the ROC curve we slowly
lowered or raised the constant threshold λC for the boosted
classifiers. The decreasing or increasing of the threshold λC

leads to a rising or descent of the detection and the false
positive rate of the detector which is used for creating the
ROC curve. This global lowering of the threshold avoids
the adjusting of each boosted classifier and always regards
the performance of the complete classifier cascade. During
the generation of the ROC curve the clipping algorithm was
deactivated to avoid a performance deterioration of the de-

Figure 4: ROC curves of our detector.

tector.
We can see in Figure 4 that for both test sequences the

detection rate is around 80% at a false positive rate of 10−5.
At a higher false positive rates of F ≥ 2×10−5 the detector
reaches a detection rate of 88% in the first and 84% in the
second test sequence. In the second sequence this was the
highest detection rate which could be achieved. In test se-
quence 1 a detection rate D ≈ 0.91 at a false positive rate
of F ≥ 7× 10−5 was achievable. These rates have a similar
order of magnitude to those obtained by Viola et al. [10].

The positive pre-classification with the extended boos-
ted classifier was tested with a random set of negatives
which was created with bootstrapping. We compared the
percentage of windows rejected at one of the defined pre-
classification points at 50%, 66%, 75% and 85% of the total
feature number. Additionally the window percentage which
required more than 85% of the weak classifiers was counted.

Only around 4% of the windows can be rejected after
evaluating 50% of the weak classifiers. After 66% already
30% of the windows can pre-classified as a pedestrian and
we can classify more than the half of the windows with only
75% of the weak classifiers. The other half of the images is
harder to classify and requires at least 85%.

For the negative pre-classification only a relatively small
amount of 5% of the windows can already be rejected after
the evaluation of only one half of the weak classifiers. After
66% already around 15% of the negative samples can be re-
jected. After evaluating 75% of the weak classifiers already
40% of the negative samples can be classified as negative. A
large ratio of more than two thirds of all negatives is rejec-
ted after 85% of the weak classifiers and only a rest of 26%
requires the complete evaluation of the boosted classifier.

The theoretic velocity gain of the two pre-classification
steps seems quite high but in practice the effective speed up
is much smaller. The negative pre-rejection only saves com-
putations in the boosted classifier which rejects the negative
sample. The highest speed upbuilds the basic structure of
each of our classifiers for negative pre-classification would
be possible for complex boosted classifiers which contain
many weak classifiers and are located at the end of the cas-
cade. Due to the cascade structure only few negatives nor-
mally reach these complex classifiers and therefore the effi-
ciency of negative pre-classification is limited. However, for
negatives which are hard to classify and which reach higher
stages in the cascade a speed up is achieved since they are
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Figure 5: Tracking with occlusion.

classified as positives in all previous boosted classifiers be-
fore the rejecting one. The positive pre-classification saves
in contrast to the negative pre-classification the evaluation
of weak classifiers in each boosted classifier and is more ef-
ficient.

The clipping algorithm is also tested on the two test se-
quences. Due to a clear background segmentation it is pos-
sible to reduce the number of detection windows constantly
to around 12% in both video sequences. This relatively
small percentage is then classified by the classifier cascade.
The activated clipping does not deteriorate the performance
of the detector in either test sequence. This is probably
due to the constant movement of the pedestrians in both test
scenes. If a pedestrian would remain still for a longer period,
he/she would be adapted into the background and therefore
clipped in the next detection step. This is intended because
the pedestrian then does not provide any tracking informa-
tion. For a video sequence where the background cannot be
separated clearly enough from the foreground, this clipping
algorithm would neither result in a performance boost nor
deteriorate the detection rate.

To test how well the AAM copes with occlusions we
raised the classification threshold. Therefore, fewer ped-
estrian detections were registered and the AAM had to
cope with multiple frames where object detections are not
provided by the detector. The AAM provides good approx-
imations if an object is occluded for not longer than 15
frames. Since the color features of the pedestrians remain
nearly constant, objects could be robustly found and reas-
signed after an occlusion.

The background model performs well. It separates fore-
ground and background well enough to extract the tracking
features of moving objects. Since all test sequences are cre-
ated with static cameras, one distribution per colour channel
is sufficient for modeling the colour distribution.

8. Conclusion
In this paper we introduced a tracking system based on a
combination of an adaptive background model and an object
detector to quickly locate pedestrians in video frames and
to extract their colour and spatial information. We demon-
strated in two test sequences how the appearance model can
use this information to robustly track the objects through
the scene. Here a direct comparison of how well the use

of appropriate circular statistics improves the processing of
directional colour data provides interesting possibilities for
future investigations.

The tests showed that the pre-classification leads to a
speed up since it saves unnecessary feature evaluations in
nearly all boosted classifiers. However, the use of the
clipping algorithm already reduces the number of windows
which have to be classified significantly before the classi-
fication and leads to a increase in the detection speed. Full
details on the system are available in [9].

Future work includes a separation of the training samples
into different view angles and using multiple and view spe-
cialized detectors. This will probably improve the detection
rate of the detector.

To additionally improve the background model, another
colour space or shadow removal techniques can be used. An
improved foreground segmentation would increase the qual-
ity of the tracking features and make the prediction of the
object location and size more reliable.
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