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Abstract

A novel approach to automatic, hierarchical texture de-
tection in single images as a step towards image understand-
ing is presented. First, the proposed method searches for al-
ternating color patterns through hierarchical clustering of
color pairs from adjacent, symmetrical image segments to
localize salient regions in terms of color and texture. Sec-
ond, the salient regions are fed as seeds to an image seg-
mentation method based on min-cut/max-flow in the graph
to localize the texture boundaries more accurately. The final
result is a hierarchy of potential textured regions in the im-
age useful for further object/texture recognition step. This
work gives a proof of concept that the stable salient texture
regions supported by a semi-automatic segmentation algo-
rithm may provide fully automatic image segmentation into
uniform color and/or texture regions. The results are pre-
sented on some images of natural scenes from the Berkeley
database.

1 Introduction

Texture detection and classification play an important role in
many image analysis tasks. Detection of texture boundaries
is crucial for general image segmentation algorithms, while
texture classification can provide extremely useful informa-
tion for object recognition methods.

The term “texture” typically describes the presence of
some regularity in a continuous image region, which may
manifest itself as a spatially repeating color pattern or shape,
but it is not defined how regular it must be. Several segmen-
tation algorithms, either automatic or semi-automatic, exist
which are capable of dividing an image into a uniform color
and/or texture regions [4, 11, 8,9, 7, 10, 12]. The primary
problem these methods face is related to texture discrimi-
nation. The texture similarity cannot be precisely defined
as it depends on the particular application — if we want to
segment out the whole tiger from an image, then our tex-
ture similarity criteria will have to be different than if we
want to segment out its legs, tail and head separately. This
leads us to conclusion that the definition of a texture is task-
dependent, which means that detection of texture should be
knowledge based. Current segmentation methods do not al-
low the selection of a knowledge database for texture detec-
tion. In this work we attempt to combine a separate texture
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Figure 1: Automatic texture detection from single images. (a) An
input image. (b) A mask provided by the proposed salient texture
patches detection method. (c) Final result after the seed segmenta-
tion method using the mask from (b).

detection method with the seed segmentation method [8] to
achieve a fully automated image segmentation, see Figure 1,
further useful for knowledge based texture classification.

The method Feature Co-occurrence Texture Detector
(FCTD) proposed in this paper detects textures at various
“regularity levels” and produces a hierarchy of textures. The
advantage of such an approach is the ability to detect less
or more regular patterns automatically and then to make a
knowledge based selection. Since the texture classification
is not yet implemented, we devised a simple method to se-
lect the most regular textures from the hierarchy of detected
ones, and use it as a texture marker for an image segmenta-
tion algorithm. This work is therefore a proof of concept of
whether the combination of both methods works well.

A very common pattern found in textures is the alterna-
tion of two or more colors or luminance levels like for exam-
ple the patterns covering tiger and zebra skins or the ripples
on water. Therefore FCTD at the moment uses only color
features to do a coarse texture detection. We assume that the
texture consists of spatially mixed patches of uniform color,
called texture elements. The general idea is to segment the
image into small segments with a relatively uniform color
and then find alternating color patterns among these seg-
ments. The pattern we are looking for is a group of similar
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color segments neighboring with another group of segments
(or potentially more groups) but with different color.

The FCTD method can be divided into several steps: im-
age segmentation, feature extraction, feature clustering and
texture detection. After the FCTD a semi-automatic image
segmentation method [8], based on maximal cut/minimal
flow is used. This method requires user interaction to pro-
vide a representative template patch for the texture of inter-
est. Here we avoid the problem of specifying the patch by
using salient texture patches found by the FCTD. It turns out
that the salient texture regions are large enough to capture
the basic structure and color information of the texture. The
result of the FCTD is a set of textures for which boundaries
and color patterns are known.

The novelty of the whole approach described in this paper
lies in showing how salient texture patches play a significant
role in further seed image segmentation and possible (not
discussed here) image understanding.

The structure of the paper is the following. First, the four
steps of FCTD are described in Sections 2-5. These are im-
age pre-segmentation, feature extraction, feature clustering,
and texture detection. Second, the use of a the segmentation
method is discussed in Section 6. Finally, the results with
discussion and conclusion complete the paper.

2 Image Pre-segmentation

An image is pre-segmented into small segments, where each
segment is a continuous, preferably convex shaped patch of
similar color pixels. These constraints cause that segments
do not exceed a texture elements size in the majority of cases
and allow the use of average segment color as a primary
feature.

FCTD uses a marker based version of the Watershed seg-
mentation method, in which locations of markers are aligned
with local symmetry maxima (see Figure 2). A radial sym-
metry s(z., y.) is calculated over the square area surround-
ing each pixel (z.,y.) as

R R
S(@erye) == D D [Harertis get ) ~I(ee—isye—3)| ()

i=—R j=0

where I(z. + i,y. + j) is an image pixel at coordinates
(Te +i,ye +J)-

This symmetry measure has several useful properties
which help to achieve convex shaped and low color gradi-
ent segments:

e The symmetry measure s reaches maximum (equal to 0)
if all corresponding pixel pairs (z. + i, y. +j) and (2. —
i,ye — j) are identical.

e Symmetry is maximized at the center of radially sym-
metric shapes (like a filled circle, star, etc.) or along their
symmetry axis (for elongated shapes).

e An edge irregularity produces more symmetry maxima
and more segments, which in turn prevents generation of
segments with complex boundaries.

[«]

The proposed symmetry measure tends to generate an ex-
cess of local maxima points, but it does not miss any sym-
metrical regions in the image (assuming sufficiently large
R). Other symmetry transforms exist [6], intended primar-
ily as interest point detectors. The comparison of texture
detection using other symmetry measures is part of the fu-
ture work.

The final shape of segments depends also on the image
gradient used for the Watershed, therefore even the use of
symmetry does not fully guarantee shape convexity. How-
ever relatively small irregularities in the segment boundary
have no great effect on the final result. All the results in this
paper are produced using a color gradient, which is an aver-
age of gradients ’VI .| calculated over each color channel ¢
in the CIELAB color space:
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We are able to decrease the overall number of segments
by applying symmetry maxima as Watershed seeds (see Fig-
ure 2), however in the majority of cases images are still over-
segmented, i.e. texture elements contain multiple segments.
If we can avoid over-segmentation we could use segment
(and so texture element) geometry as a feature for cluster-
ing. Section 8 discusses possible improvements allowing
the use of additional features.
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Figure 2: Example of symmetry maxima (left) and the resulting
Watershed segmentation (right).

3 Feature Extraction

A feature vector is calculated for each segment resulting
from the Watershed segmentation. The feature vector con-
tains the color of the segment it is assigned to and the color
or colors of segments surrounding it. Such features allow
one to analyze alternating color patterns. There are several
possibilities as to how colors are calculated. The most basic
option would be a feature vector consisting of two most dif-
ferent colors (six real values) (option 1 in Figure 3). The
color difference is measured as the Euclidean distance in
three dimensional color space (e.g. CIELAB).

Another option is to average the color of the surrounding
segments for which the color distance to the current segment
is larger or equal to 0.5d,,4., Where d,, 4, is a distance be-
tween two most different colors (option 2 in Figure 3). It
is also possible to use more than one color for the descrip-
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Option 1

Option 2 Option 3

Figure 3: Extraction of color features from neighboring Watershed
segments

tion of the surrounding segments (option 3 in Figure 3). The
results in this work were generated using “option 2”.

4 Feature Clustering

Color clustering has been applied in the past for color re-
duction and segmentation [5] as well as other problems, but
it was always performed in three dimensional space (single
color). Since our goal is detection of color patterns we clus-
ter color pairs, which means using a six dimensional space.

Before the clustering starts, color pairs are sorted by their
luminance. The color with the lower luminance value al-
ways occupies the first three elements. This prevents two
clusters per pattern forming due to different color orders.

FCTD uses agglomerative hierarchical clustering [3]
based on the average linkage to build a cluster hierarchy
of color pairs (and corresponding Watershed segments).
Hierarchical clustering performs a cluster reduction by
pairing nearest clusters when progressing from level N to
level N — 1. This process is repeated until only two clusters
remain at level 2.

Figure 4 is an example of a color-pair cluster hierarchy.
At clustering level 2 the whole image is divided into two
relatively large clusters. More significant clusters appear at
level 4. Also a number of segments on the boundary be-
tween the tiger and water form a separate cluster. At the
tiger boundary bright tiger segments and dark water seg-
ments create the most different color pairs. It is possible to
re-attach separated boundary clusters to the tiger body based
on statistical analysis of the segment features and their po-
sition. We know that a relatively small number of separated
boundary segments has a very similar color to the segments
belonging to the tiger body. Also most of the boundary seg-
ments are adjacent to the segments belonging to the tiger
body, representing both dark and bright stripes. This allows
us to assume that boundary segments belong to the tiger
body as well. This example shows that different textures
may be better detected at different clustering levels, as the
feature spread varies between textures.

The example from Figure 4 shows that different textures
may be better detected at different clustering levels. This is
caused by the fact that feature spread varies between textures
and that feature spread inside clusters decreases at higher
clustering levels. For example at clustering level 3, the wa-
ter is represented by only a single segment, but at clustering
level 4 it is divided into two clusters and at level 5 it is di-
vided into 5 relatively big clusters. At the same time the
tiger body is divided into more smaller clusters at higher
clustering levels, which makes them less usable in this case.

Segmentation result Level 2

T T,

Level 3

Figure 4: Example of a cluster hierarchy (R = 5, gradient calcu-
lated using luminance). It is recommended that the color version
of this image s viewed.

The main advantage of hierarchical clustering is that it
enables texture detection at different clustering levels. We
can also observe that some image regions remain stable in
a number of different clustering levels, i.e belong to a sin-
gle cluster across multiple clustering levels, like most of the
tiger body or a number of water regions, which may be a
useful tool for texture detection and classification.

5 Texture Detection

The texture detection step attempts to discover color patterns
in each cluster separately. It means that only features be-
longing to a single cluster are clustered again, but this time
color pairs in feature vectors are not sorted. This approach
divides a texture into two clusters whose segments neighbor
each other. Following this path we can say that if two or
more clusters have a high percentage of segments neighbor-
ing each other, then we should treat them as a texture. The
texture is detected then if the length of the boundary By, in
the image between groups of pixels belonging to two clus-
ters k and [, relative to their total boundary length By, and B;
exceeds a cluster co-occurrence ratio threshold 7 (in range 0

to 1):
Bkl Blk
—_— > N 2> 3
B, — T B, — T 3)

Typical values for 7 vary in the range from 0.7 to 0.9 due to
the fact that clusters are usually of different size and we also
allow for a small number of segments in both clusters to not
be neighbors of the segments in the other cluster.
Re-clustering is performed until the adjacency condition
in Equation 3 is fulfilled or the maximum clustering level
is reached, which means that no textures were detected. If
the adjacency condition is fulfilled then a texture consisting
of two adjacent clusters is detected. The texture detection is
continued further in an attempt to divide the detected texture
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Figure 5: Textures detected in image (a) at image clustering levels
3 (b) and 4 (c).

Textures

Figure 6: An example of texture detection from an image of size
481x321 pixels. Textures are detected at various clustering levels
shown on the texture images. A total of 13 textures were detected.
Note that not all detected textures become seeds for the segmenta-
tion method.

(two adjacent clusters) into 2 textures (4 clusters altogether).
It means that up to three textures can be detected from a
single cluster, as in the example in Figure 5. This way we
provide a choice of less and more generalized results for
further processing.

The texture detection step produces multiple textures
from all clustering levels. Figures 6, 7 and 8 show exam-
ples of textures detected at various clustering levels. Each
texture is accompanied by two numbers — the first number
indicates the image clustering level, while the second num-
ber indicates the texture clustering level. Redundant (iden-
tical) textures are automatically removed. The rest is used
to build a texture hierarchy tree. The texture which is not a
subset of another texture forms a tree root node. Then the
textures which are subsets of the root textures are attached to
the corresponding root nodes. It may happen that texture 1
is a subset of texture 2, which is a subset of texture 3. In that
case only texture 2 is attached to texture 3 and texture 1 is
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Textures

Figure 7: An example of texture detection from an image of size
481x321 pixels. Total of 34 textures were detected, but only the
most representative subset is shown. Other textures contain parts
of the shown ones.

Textures

Figure 8: An example of texture detection from an image of size
481x321 pixels. Total of 24 textures were detected, but only the
most representative subset is shown. Other textures contain parts
of the shown ones.

attached only to texture 2. An example of a texture hierarchy
tree is shown in Figure 9.
6 Seed Segmentation

We use a seed segmentation technique [8] based on the in-
teractive graph cut method [1] improved to colour and tex-
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Clustering Level: 8
texture clustering level:14
Std. Dev: 0.06 0.04 0.05
0.06 0.05 0.06

Clustering Level: 3
texture clustering level: 4
Std. Dev: 0.12 0.08 0.11
0.110.08 0.13

Clustering Level: 10

texture clustering level: 23

Std. Dev: 0.04 0.03 0.04
0.04 0.03 0.04

Clustering Level: 13
texture clustering level: 29

Std. Dev: 0.04 0.03 0.04
0.04 0.03 0.04

Clustering Level: 15
ing level: 29

texture clust

Std. Dev: 0.04 0.03 0.04
0.04 0.03 0.04

Figure 9: Example of texture hierarchy tree. The label ’Std. Dev.” describes standard deviation of the color pairs in each texture — the top row
describes standard deviation for three color components of the first color, while the second raw provides same values for the second color. All

color values were normalised to range 0-1.

tured images. The core of the segmentation method is based
on minimizing “Gibbs” energy through an efficient algo-
rithm [2] for finding the min-cut/max-flow in a graph.

The segmentation method as it uses a color and texture
gradient in the process of building the graph respresenting
an image, can specify the boundaries of textures more accu-
rately than the FCTD. On the other hand, the drawback of
the method lies in the need of a priori information about the
region of interest. Therefore user interaction through estab-
lishing seeds in the image is required. In this paper we avoid
need of the user interaction and feed salient texture patches
found by the FCTD to the segmentation method as seeds. It
turns out that the FCTD gives good representative samples
allowing the texture to be enlarged and the texture bound-
aries to be localised more accurately, as shown Figures 1
and 10.

The seed segmentation method is run on all salient tex-
ture patches found by FCTD yielding a hierarchy of regions
in the image. The regions can overlap and not all image pix-
els are assigned to any region. To further handle the regions,
e.g. to merge them, texture recognition is needed which is
out of scope of this paper.

7 Discussion of the Results

The final result of the texture detection depends on a few
parameters: R, 7 and the type of image gradient used for
segmentation. All results shown in this section were ob-
tained using R = 5, normalized CIELAB color space and
averaged color gradient. These parameters primarily affect
the boundary of the detected textures. Parameter R has the
highest influence — it varied from 3 to 16 pixels for the im-
age size used in the experiments. Despite small differences
in texture boundaries, the same color patterns were discov-
ered in each case. Other results are presented in [13].

The use of color-pair based features sometimes leads to
inaccuracies in the detected texture boundaries, when seg-
ments at the texture boundary have other neighbors with
more different colors, not belonging to the texture. This

problem however can be solved as discussed in Section 4.

Figure 10 shows final results after applying the seed seg-
mentation method on the salient texture patches detected by
the FCTD. Not all textured region extracted from the input
image are shown. We chose manually the most significant
textures only to show how they are captured by the proposed
technique. As it was stated above the proposed automatic
procedure produces many potential textured regions in hi-
erarchical manner. To prune the hierarchy and keep only
meaningful textures or textures of interest a texture recogni-
tion algorithm has to follow.

The whole texture salient patches detection time did not
exceed 60 seconds on P4@2.8GHz. The seed segmentation
method applied afterwards takes another 60 seconds on re-
duced size 250x375 pixels image. We reduced the size for
the seed segmentation method due to the large memory and
computational demand on the original resolution.

8 Conclusion

FCTD is a method for fully automatic detection of textures
made up of alternating colors in two dimensional still im-
ages. It is based on a novel idea of color pair hierarchical
clustering, where color pairs are extracted from neighboring
Watershed segments. The method proved capable of detect-
ing a variety of color patterns, at different accuracy levels,
from natural scenes. The results obtained lead to the con-
clusion that the analysis of color patterns alone allows the
detection of the majority of the significant textures in natu-
ral scenes, although texture boundaries are not very precise.
This imprecision, as was shown can be solved by feeding
the salient texture patches found to the seed segmentation
method. The results show reasonable performance on the
Berkeley dataset.

Future work includes several improvements, including
the use of improved segmentation and adaptive segment
merging, which allow for geometrical features to be used.
Currently, image segmentation produces rather small and
dense segments, which often divide texture elements into
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several parts. Using current results, the segments within de-
tected color patterns will be merged if their color difference
is smaller than the color spread in the pattern. Texture de-
tection will be repeated after segment merging, but this time
with geometry features (such as segment elongation) added.
Images will also be analyzed at different scales to allow de-
tection of very small texture elements (less than 3 pixels in
diameter).
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Figure l(gil)Smme results for autor)natic texture detecti((fr? from sin-
gle images. (a) An input image. (b) A mask provided by proposed
texture detection method. (c) Final result after the seed segmenta-
tion method using the mask from (b).
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