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Abstract

This paper describes a 3D template-based tracking
method that allows simultaneous tracking of multiple
objects of different type. The assumption is that movements
of all objects are constrained to a ground plane so that the
tracking functionality can be accomplished using just one
properly calibrated camera.

The tracking algorithm is based on particle filtering
where each particle represents one hypothetical configura-
tion of the scene. Tracked objects are modeled by instances
of 3D templates, positions and dimensions of which are
continually updated from frame to frame.

A novel method for initialization of new objects has been
developed that can easily be adopted in any particle-based
approach, where the measurement step is done on the pixel
level.

Numerous experiments have been conducted that indi-
cate the presented approach copes with occlusions in an
efficient way. The results for scenes of various complexity
also demonstrate that the real-time performance can be
achieved on a standard PC.

1 Introduction

Object tracking is an area of active research in computer
vision. There are many applications utilizing tracking in-
cluding surveillance, gesture recognition, smart rooms, ve-
hicle/human tracking, etc. The tracking of objects is a chal-
lenging problem due to the presence of noise, occlusion,
clutter and changes in the scene. A variety of tracking al-
gorithms have been proposed and implemented to overcome
these difficulties.

Model-based tracking algorithms incorporate a priori in-
formation about the objects they are tracking. Models of 2D
body shape [22, 10], 3D joint models of human [18, 17, 14]
or simple 3D static objects [11, 27] are used for object mod-
eling.

Many methods are proposed to track objects using single
camera in 2D [10, 23, 1, 7, 6], while the others utilize spatial
information provided as combined input from multiple cam-
eras [9, 20, 21]. There are also methods which exploit 3D
information from single calibrated camera assuming that ob-
jects are moving along known plane [27]. The 3D position
of the object can be inferred from 2D position of object and
3D template along with the camera model and the ground
plane constraint.
Different types of trackers are used for object tracking:

Kalman filter [21], mean-shift [24, 5], etc. Recently differ-
ent variations of particle filtering are very popular in com-
puter vision [2, 4, 14, 17, 23, 15, 25, 1, 11]. A Tutorial on
Particle Filters for on-line nonlinear non-Gaussian Bayesian
tracking can be found in [2].

Various features may be measured on objects for the
tracking. Color of the object is used as target model in [13].
Edge-based measurement can be found in [14]. Combina-
tion of shape and color features is presented in [23]. Com-
bination of color and edge orientation histogram ordered in
a cascade can be found in [25].

The presented approach utilizes two specific 3D models
of a car and a human that are used to model moving objects
on a ground plane monitored by a single calibrated camera.
State of the tracker is estimated by a particle filter and mea-
surements on the input image are based on binary match-
ing of the templates of object shapes that have been prepro-
cessed by a motion detection module.

The paper is structured as follows. Section 2 describes
basic principles of the tracking algorithm. Object templates,
their parameters and dynamics are summarized in Section 3,
while Section 4 introduces a new probabilistic approach to
addition and deletion of objects. Results of experiments per-
formed on the testing sequences are demonstrated in Section
5.

2 Tracker
Tracking can be seen as a recursive calculation of belief de-
gree that an object is in the state xt at time t given measure-
ments on input images Qt = {q1, . . . , qt} up to time t. The
objective of tracking is to recursively estimate the posterior
probability density function:

p(xt|Qt). (1)

In Bayesian framework it can be done in two steps: predic-
tion (2) and update (3).

p(xt|Qt−1) =
∫

p(xt|xt−1)p(xt−1|Qt−1)dxt−1. (2)

p(xt|Qt) =
p(qt|xt)p(xt|Qt−1)

p(qt|Qt−1)
, (3)

where p(qt|xt) is observation likelihood and Markovian first
order model is assumed so that p(xt|Xt−1) = p(xt|xt−1),
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Figure 1: One step of particle filtering algorithm. Blob center
represents sample value, size depict weight of sample.

where Xt−1 = {x1, . . . , st−1} is history of states up to time
t− 1. Overview of methods which can be used under differ-
ent presumption to solve (1) can be found in [2].

2.1 Particle filter
Particle filtering is suboptimal method for recursive solving
of (1). Its advantage is that there are no requirements on
form of p(xt|Qt). Key idea of particle filtering is to rep-
resent the required posterior density function (1) by a set
of random samples with associated weights and to compute
estimates based on these samples and weights. Particle fil-
tering consists of three recurrent steps (see Figure 1):

1. Importance sampling - Weights of all particles are deter-
mined according to measurement on image.

2. Re-sampling - New set of N particles is generated based
on the weights of particles.

3. Prediction - Particles are drifted in agreement with sys-
tem model and some noise is added as well.

2.2 Structure of particles
There are two basic options for multiple object tracking.
One can use a number of independent trackers that cor-
respond to individual objects, or just one complex tracker
for all objects in the scene. The presented approach is
based on the second concept. Then each particle pi is
a collection of several objects of possibly different types
pi = {o1,i, o2,i, · · · , oRi,i}, where Ri denotes actual num-
ber of distinct objects in the particle pi. Number Ri of ob-
jects in the scene may vary for different particles. Each ob-
ject oj,i is described by several parameters like position in
3D world coordinates, velocity etc. Object parameters will
be described in detail in Section 3.

2.3 Importance sampling
Weight of each particle is determined based on the measure-
ment on the input image. We assume binary motion images
as input to our method. Weights of the particles are com-
puted according to their ability to explain the current scene
that is reflected in the input image. As described above, each
particle pi consists of Ri object instances (e.g. vehicles,
2

qi \ vi 0 1
0 0 1
1 1 0

Table 1: Matching penalty

humans). Weight of one particle is computed in following
steps:

1. Particle projection and matching - scene configuration
coded in a particle pi is projected from 3D coordinates
to 2D image. This synthesized virtual scene vi has the
same size like the input image, which allows to compute
the matching penalty mi between the input image q and
the virtual scene vi in a straightforward way:

mi =
W∑

w=1

H∑
h=1

diff(q(w, h), vi(w, h)), (4)

where W,H are image width and height, diff is logical
XOR defined in Table 1.

2. Complexity penalty ci is computed as follows:

ci =
R(i)∑
r=1

[
ar + bre

−τ
]
, (5)

where ar, br are static object parameters and τ is the
period of time for which the given object is involved in
given particle. Complexity penalty was introduced based
on early experiments to avoid incorect placing more ob-
jects in very similar 3D position improving matching
penalty mi.

3. Weight computation - overall weight of the particle wi is
computed as follows:

wi = e−
mi+ci

W H s, (6)

where W ,H are dimensions of image and s is a scaling
constant which controls greediness of the re-sampling.

2.4 Re-sampling
Not all particles are used in the prediction step. Particles are
sampled according to their weights so that particles with a
higher weight may be selected more than once, while some
others may not be selected at all. Selection is done sim-
ply using cumulative weight of particles. Assume that we
have indexed set of particles P = {p1, · · · , pN}. Cumula-
tive weight wcum(i) of particle pi is given by:

wcum(i) =
i∑

j=1

wi, (7)

wi is weight of particle pi, as defined in 2.3.
New set Pn = {pn

1 , · · · , pn
N} of N particles is gener-

ated from the current particle set P as follows. First, set of
random numbers Γ = {γ1, · · · , γN} is generated from uni-
form distribution U [0, wcum(N)]. Second, new particles are
selected such that: pn

i = psi
, where index si can be deter-

mined from: wcum(si) > γi ∧ wcum(si−1) < γi.
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Figure 2: Template for human.

2.5 Prediction
Prediction consists of two separate steps:

1. Stochastic diffusion - Firstly objects are added or deleted
in some particles during stochastic diffusion (for details
see Section 4). Further the noise is added to some object
parameters, as described in Section 3. Addition of Gaus-
sian noise allows generation of new hypothesis about ob-
jects.

2. Deterministic drift - Parameters of all objects in each par-
ticle are updated according to template dynamics, which
is described in the next section.

3 Templates
3D templates of a human and a vehicle were developed.
Each template has a different set of parameters and also a
different model of dynamics. Simplicity of the models was
prefered because of lower computational effort.

3.1 Human
3D joint models of human have been already used for track-
ing, see for example [14]. Simplified 3D template (see Fig-
ure 2) has been found suitable for typical end-use applica-
tions of the presented approach. A complete state of the
model can be described as follows:

~ohuman = {~d,~l, ~v},

where ~d is vector of body measurements (e.g. height, head
radius, etc.), ~l is location of human in world coordinates and
~v is velocity vector. Model dynamics used in prediction
step of the particle filter is:

~dt = ~dt−1 + N(0, σ2
d),

~vt = ~vt−1 + N(0, σ2
v),

~lt = ~lt−1 + ~vt∆t, (8)

where N(0, σ2) is usual normal distribution with zero mean
and variance σ2

d, σ2
v , resp.

3.2 Vehicle
The template used for vehicle modeling is shown in Figure
3. The template is designed to cover most types of common
vehicles (sedan, pick-up, truck, etc.). In comparison to hu-
man template there is an additional parameter, namely ori-
entation, which specifies vehicle orientation ~α. A complete
Figure 3: Template for vehicle.

state of the model can be described as follows:

~ovehicle = {~d,~l, ~α, ~θ, v}

where ~d is vector of dimensions, ~l is location of the vehicle
in world coordinates, ~α is orientation the vehicle in ground
plane, v is velocity of the vehicle and ~θ is the angular veloc-
ity that characterizes car’s turning.

Model dynamics used in the prediction step of particle
filter is following:

~dt = ~dt−1 + N(0, σ2
d),

~θt = ~θt−1 + N(0, σ2
θ),

~αt = ~αt−1 + ~θt−1∆t,

vt = vt−1 + N(0, σ2
v),

~lt = ~lt−1 + vt−1∆t~αt. (9)

4 Object addition and deletion
The overall accuracy of multiple object tracking techniques
is influenced by object addition and deletion methods used.
This topic is not frequently discussed in the literature, some-
times the manual initialization of new objects is assumed
[16, 14, 17, 3]. Object initialization using unmatched mo-
tion cues is proposed in [9], which has disadvantage that
one has to identify particular connected components in the
input image. Appearance probability as a function of image
coordinates is introduced in [8]. This probability distribu-
tion is dependent on concrete scene. Position is randomly
sampled from uniform distribution in [11], while initializa-
tion based on color segmentation is used in [1]. In [26] a
method for new object proposal is randomly selected from
the following three methods: head detection on image cues,
head detection from intensity and residue foreground analy-
sis. Deletion of objects is usually done randomly.

We introduce novel statistics called Uncovered Object
Histogram (UOH) that can improve the efficiency of new
objects initialization. Based on this statistics we formulate
addition of new object as minimization problem. Great ad-
vantage of UOH is that it can be computed very fast during
importance sampling stage.

4.1 Uncovered Object Histogram
Uncovered Object Histogram (UOH) is 2D histogram of the
same proportions like the input motion image. The value of
the UOH in the position (w, h) is given by:

UOH(w, h) =
{ ∑N

i=1 ¬(vi(w, h)), if q(w, h) = 1,
0, otherwise.

(10)
3
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Figure 4: (a) input image. (b) UOH.

where vi is binary projection of particle pi, q is input image
and ¬ is logical unary operator NOT. Simply said, UOH ex-
presses how many particles do not cover the input image at
given position (m,n). Example of computed UOH can be
seen in Figure 4. The right person is not tracked yet, hence
UOH is clearly higher in this region than in area where the
left person is situated.

4.2 Object Addition
In selected particles UOH is used for adding new objects
to be tracked. New object is initialized in 3D so that de-
creases the overall sum of UOH as much as possible. Cri-
terion for optimal initialization can be formulated in the fol-
lowing way:

onew = argmino

W∑
w=1

H∑
h=1

UOHo(w, h), (11)

where UOHo is defined by (10) but the object o is virtually
added to all particles.

Object onew is added randomly to particle pi if:

randi < Tadd, (12)

where randi ∈ U[0, 1] is a random number and Tadd is a
predefined static threshold for objects addition.

4.3 Object Deletion
Situation when some object leaves the scene, or there is a
wrongly placed template which does not correspond to any
real object, must be covered as well. Object or,i (r − th
object in particle pi) is deleted from the given particle if:

randr,i < Tdel, (13)

where randr,i ∈ U[0, 1] is a random number and Tdel is a
predefined threshold for deletion of objects.

5 Experiments
Testing of the template-based concept has been conducted
using ten different sequences that varied in both diversity
and complexity. The moving objects were either humans,
cars, or combinations of humans and cars in one scene. Peo-
ple were moving randomly or in a group. Cars were mov-
ing straight, crossing each other, or doing an U-turn. As
a part of the testing, special attention was paid to occlu-
sions that were present in a majority of sequences. Before
applying the tracker all sequences were pre-processed by a
background subtraction algorithm. Two specific approaches
were applied with almost equivalent results: the algorithm
of Stauffer and Grimson [19], and the background subtrac-
tion technique developed at University of Maryland [12].
4

Type of the scene FPS Accuracy
People walking randomly (no cars,

up to 5 objects) 12.5 > 0.9
Cars only (up to 3 objects) 12.2 > 0.88

Groups of people
(no cars, 5 and more objects) 13.6 > 0.92

Combined scenes
(2 cars, 2 persons in average) 13.2 > 0.8

Table 2: Results

5.1 Testing Process
Ground truth information was generated for all sequences so
that each sequence was provided with the following details:

• Number of human tracks in each sequence

• Number of vehicle tracks in each sequence

• Length of each track in terms of the number of frames,
start and end of each track in terms of the frame number

Then the testing was done by an automated comparison of
results against the ground truth information. Due to the
probabilistic nature of the tracker, each sequence was eval-
uated six times and results averaged. All presented results
were achieved on a computer with 2.8 GHz processor and
1GB memory.

5.2 Performance Criteria
Two criteria were used to measure the performance one in
terms of computation speed (frames per seconds), the other
in terms of algorithms accuracy. The algorithms accuracy
was defined as a product of the tracking accuracy, which
equals to the percentage of correctly tracked objects, and the
classification accuracy defined as the percentage of objects
modeled by the right template.

5.3 Results
The average results for each specific type of scene are sum-
marized in Table 2. The computation speed was always
above 12 fps and more or less stable, which indicates that
the presented approach is suitable for real-time applications.
The achieved accuracy differs more significantly from scene
to scene. The best results were obtained for scenes with-
out cars where people were walking either randomly or in a
group typical accuracy was above 90%, sometimes above
95%. Figure 7 illustrates results for a scene with five people
walking in a longer distance from camera. Almost all oc-
clussions were correctly captured in the synthesized scene.
A little worse results correspond to scenes with car objects.
Scenes including cars only were modeled with a similar ac-
curacy exceeding 88%, while in the most complex scenes
with cars and people the accuracy decreased to 80%. Figure
6 shows a part of the sequence where two cars were crossing
each other in the middle of the scene. Also in this case the
oclussion was modeled correctly. Figure 6 illustrates track-
ing of two turning cars.
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Figure 5: Tracking results on the cars sequence with oclussion.
Yellow numbers in the synthesized scene (right) indicate the real
world coordinates of each car.

6 Conclusion

A model-based technology for tracking multiple objects us-
ing 3D templates has been presented. The core part of this
concept is based on particle filtering, which provides up-
dated estimates of the state vector comprising positions, di-
mensions and other parameters of all moving objects. Spe-
cific approach to probabilistic initialization of new objects
has been proposed. The algorithm was tested on a number
of sequences of different type that correspond to realistic
scenarios and included cars and humans as visual objects to
be tracked. The achieved results have confirmed the solution
complies with real-time requirements and copes efficiently
with oclussions.
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