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Abstract In this paper, common colour models for back-
ground subtraction and problems related to their utilisation
are discussed. A novel approach to represent chrominance
information more suitable for robust background modelling
and shadow suppression is proposed. Our method relies on
the ability to represent colours in terms of a 3D-polar coor-
dinate system having saturation independent of the bright-
ness function; specifically, we build upon an Improved Hue,
Luminance, and Saturation space (IHLS). The additional
peculiarity of the approach is that we deal with the problem
of unstable hue values at low saturation by modelling the
hue-saturation relationship using saturation-weighted hue
statistics. The effectiveness of the proposed method is shown
in an experimental comparison with an approach based on
normalised RGB.

1 Introduction

The underlying step of visual surveillance applications like
target tracking and scene understanding is the detection of
moving objects. Background subtraction algorithms are
commonly applied to detect these objects of interest by
the use of statistical colour background models. Most of
the present systems exploit the properties of the normalised
RGB to achieve a certain degree of insensitivity with respect
to changes in scene illumination.

Hong and Woontack [10] apply the normalised RGB
space in their background segmentation system. McKenna
et al. [14] use this colour space in addition to gradient in-
formation for their adaptive background subtraction. The
AVITRACK project [3] utilises normalised RGB for change
detection and adopts the shadow detection proposed by Hor-
prasert et al. [11].

Beside normalised RGB, representations of the RGB
colour space in terms of 3D-polar coordinates (hue, satu-
ration, and brightness) are used for change detection and
shadow suppresion in surveillance applications. François
and Medioni [5] suggest the application of HSV for back-
ground modelling for real-time video segmentation. In their
work, a complex set of rules is introduced to reflect the
relevance of observed and background colour information
during change detection and model update. Cucchiara et
al. [1, 2] propose a RGB-based background model which
they transform to the HSV representation in order to utilise
the properties of HSV chrominance information for shadow
suppression.
Our approach differs from the aforementioned in the way
that we build upon the IHLS colour space, which is more
suitable for background subtraction. Additionally, we pro-
pose the application of saturation-weighted hue statistics [8]
to deal with unstable hue values at weakly saturated colours.
Also, a novel technique to efficiently classify changes in
scene illumination (e.g., shadows), which explicitly models
the relationship between saturation and luminance has been
devised.

The remainder of this paper is organised as follows: In
Section 2 the normalised RGB is reviewed and the Improved
Hue, Luminance and Saturation (IHLS) colour space is out-
lined. Section 3 gives a short overview over circular colour
statistics. Section 4 presents how these statistics can be ap-
plied in order to model the background in image sequences.
The conducted experiments and their results are presented
in Section 5. Section 6 concludes this paper.

2 Colour Spaces
In this section, the Normalised RGB and IHLS colour spaces
used in this paper are described.

2.1 Normalised RGB
The Normalised RGB space aims to separate the chromatic
components from the brightness component. The red, green
and blue channel can be transformed to their normalised
counterpart by using the formulae

l = R + G + B, r = R/l, g = G/l, b = B/l (1)

if l 6= 0 and r = g = b = 0 otherwise [4]. One of these
normalised channels is redundant, since by definition

r + g + b = 1 (2)

Therefore, the Normalised RGB space is sufficiently repre-
sented by two chromatic components (e.g. r and g) and a
brightness component l.

The Normalised RGB space, however, suffers from a
problem inherent to the normalisation: low intensities result
in instable chromatic components, as Kender [12] describes.

2.2 IHLS Space
The Improved Hue, Luminance and Saturation (IHLS)
colour space was introduced in [7]. It is obtained by placing
an achromatic axis through all the grey (R = G = B)
points in the RGB colour cube, and then specifying the
coordinates of each point in terms of position on the achro-
matic axis (brightness), distance from the axis (saturation
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s) and angle with respect to pure red (hue θH ). The IHLS
model is improved with respect to the similar colour spaces
(HLS, HSI, HSV, etc.) by removing the normalisation of
the saturation by the brightness. This has the following
advantages:

• The saturation of achromatic pixels is always low.

• The saturation is independent of the brightness function
used. One may therefore choose any function of R, G
and B to calculate the brightness.

It is interesting that this normalisation of the saturation
by the brightness, which results in the colour space having
the shape of a cylinder instead of a cone or double-cone, is
usually implicitly part of the transformation equations from
RGB to a 3D-polar coordinate space. This is mentioned in
one of the first papers on this type of transformation [16],
but often in the literature the equations for a cylindrically-
shaped space (i.e. with normalised saturation) are shown
along with a diagram of a cone or double-cone (for example
in [6, 9]).

The following formulae are used for the conversion from
RGB to hue θH , luminance y and saturation s of the IHLS
space:

s = max(R,G,B)−min(R,G,B)
y = 0.2125R + 0.7154G + 0.0721B

cr1 = R− G + B

2
, cr2 =

√
3

2
(B −G) (3)

cr =
√

c2
r1 + c2

r2

θH =


undefined if c = 0
arccos

(
c1
c

)
if c 6= 0 ∧ c2 ≤ 0

360◦ − arccos
(

c1
c

)
if c 6= 0 ∧ c2 > 0

where cr1 and cr2 denote the chrominance coordinates and
cr ∈ [0, 1] the chroma. The saturation assumes values in
the range [0, 1] independent of the hue angle (the maximum
saturation values are shown by the circle on the chromatic
plane in Figure 1). The chroma has the maximum values
shown by the dotted hexagon in Figure 1.

The inverse transformation is easily derivable. When us-
ing this representation, it is important to remember that the
hue is undefined if s = 0, and that it does not contain much
useable information when s is low.

One may ask why the CIELAB space is not used, as it
is standardised and also separates chrominance and lumi-
nance information. The problem with the conversion from
the RGB to CIELAB space is that the coordinates of the
white point are needed. As surveillance cameras are re-
quired to work at all hours of the day in many different light-
ing conditions, this calibration is not possible. Instead of in-
troducing extra uncertainty into the process by a white point
estimation, it was decided to use an alternative representa-
tion of the RGB coordinates which attempts to separate the
luminance and chrominance information.

3 Colour statistics
In a 3D-polar coordinate space, standard (linear) statistical
formulae can be utilised to calculate statistical descriptors
2

for brightness and saturation coordinates. The hue, how-
ever, is an angular value, and consequently the appropriate
methods from circular statistics are to be used. Before we
introduce the concept of saturation-weighted hue statistics,
a brief review on the application of circular statistical de-
scriptors to the hue channel is given.

3.1 Hue statistics
Let θH

i , i = 1, . . . , n be n observations sampled from a pop-
ulation of angular hue values. Then, the vector hi pointing
from O = (0, 0)T to the point on the circumference of the
unit circle, corresponding to θH

i , is given by the Cartesian
coordinates (cos θH

i , sin θH
i )T 1

The mean direction θ
H

is defined to be the direction of
the resultant of the unit vectors h1, . . . ,hn having directions
θH

i . That is, we have

θ
H

= arctan2 (S, C) , (4)

where

C =
n∑

i=1

cos θH
i , S =

n∑
i=1

sin θH
i (5)

and arctan2(y, x) is the four-quadrant inverse tangent func-
tion.
Therefore, since

R =
√
C2 + S2 (6)

is the length of the resultant, its mean length is

R =
R
n

. (7)

The mean length of the resultant is an indicator of the dis-
persion of the observed data. If the n observed directions
θH

i cluster tightly about the mean direction θ
H

then R will
approach 1. Conversely, if the angular values are widely dis-
persedR will be close to 0. The circular variance is defined
as

V = 1−R (8)

While the circular variance differs from the linear statistical
variance in being limited to the range [0, 1], it is similar in
the way that lower values represent less dispersed data. Fur-
ther measures of circular data distribution are given in [13].

3.2 Saturation-weighted hue statistics
The use of statistics solely based on the hue, as described
above, has the disadvantage of ignoring the relationship be-
tween the chrominance components hue and saturation. For
weakly saturated colours the hue channel is unimportant and
behaves unpredictably in the presence of colour changes in-
duced by image noise (e.g. sensor- or compression noise).
In fact, for colours with zero saturation the hue is undefined.

By projecting the RGB-space onto the chromatic plane,
we arrive at a hexagon, as shown in Figure 1. This hexagon
is slightly deformed into a circle for the calculation of the
saturation so that the maximum saturation is 1 for all hue

1Note that, when using the IHLS space (Eq. 4), no costly trigonometric
functions are involved in the calculation of hi, since cos(θH

i ) = cr1/cr

and sin(θH
i ) = −cr2/cr .
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Figure 1: The chromatic plane of the IHLS color space.

values. As one can see, the chromatic components may
be represented by means of Cartesian coordinate vectors ci

with direction and length given by hue and saturation respec-
tively. Using this intuitive approach, we are able to intro-
duce the aforementioned relationship into the hue statistics
by weighting the unit hue vectors hi by their corresponding
saturations si.

Now, let (θH
i , si), i = 1, . . . , n be n pairs of observations

sampled from a population of hue values and associated sat-
uration values. We proceed as described in Section 3.1, with
the difference that instead of calculating the resultant of unit
vectors, the vectors ci, which we will dub chrominance vec-
tors throughout this paper, have length si.

That is, we weight the vector components in Eq. 5 by the
saturation values si

Cs =
n∑

i=1

si cos θH
i , Ss =

n∑
i=1

si sin θH
i , (9)

and replace C and S in Eq. 6 by their weighted counterparts
Cs and Ss getting

Rs =
√
C2s + S2

s . (10)

Although other formulations are possible (see, e.g. [8]) we
choose the mean resultant length of the chrominance vectors
to be

Rn =

√
C2s + S2

s

n
. (11)

Consequently, for the mean resultant chrominance vector we
get

cn = (Cs/n,Ss/n)T . (12)

Here, the length of the resultant is compared to the length
obtained if all vectors had the same direction and maximum
saturation. Hence, Rn gives an indication of the saturations
of the vectors which gave rise to the mean of the chromi-
nance vector, as well as an indication of the angular disper-
sion of the vectors. Alternatively, cn can be interpreted as
the mean of mean vectors, where the vectors have disper-
sions given by the saturations si.
O

θo
θn

so
Rn

R

D

cn

co

Figure 2: The combined resultant length R.

In order to test if a mean chrominance vector cn is similar
to an observed chrominance vector, we use the Euclidean
distance in the chromatic plane:

D =
√

(cn − soho)T (cs − soho) (13)

Here, ho and so denote the observed hue vector and satura-
tion respectively. A rational justification for the use of the
Euclidean distance follows. We have (see Fig. 2)

D2 = R2

n + s2
o − 2Rnsocos(θ

H

n − θH
o ) (14)

and
R2 = R2

n + s2
o + 2Rnsocos(θ

H

n − θH
o ). (15)

So that if the difference of the observed angle θH
o and the

mean angle θH
n is zero then R = Rn + so and D = |Rn −

so|. Conversely, for increasing angular differences, R and
D approach |Rn − so| and Rn + so respectively. As one
can see, the use of the Euclidean distance provides a simple
and efficient means of taking into account the dispersions as
well as the directions when comparing cn and co.

4 The IHLS Background Model
With the theoretical foundations laid out in Section 3.2 we
proceed with devising a simple background subtraction al-
gorithm based on the IHLS colour model and saturation-
weighted hue statistics. Specifically, each background pixel
is modelled by its mean luminance µy and associated stan-
dard deviation σy , together with the mean chrominance vec-
tor cn and the mean Euclidean distance σD between cn and
the observed chrominance vectors (see Eq. 13).

On observing the luminance y, saturation s, and a Carte-
sian hue vector h for each pixel in a newly acquired image,
the pixel is classified as foreground if:

|(y − µy)| > ασy ∨ ‖cn − c‖ > ασD (16)

where c = sh and α is the foreground threshold, usually set
between 2 and 3.5.
3
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In order to decide whether a foreground detection was
caused by a moving object or by its shadow cast on the static
background, we exploit the chrominance information of the
IHLS space. A foreground pixel is considered as shaded
background if the following three conditions hold:

y < µy ∧ |y − µy| < βµy, (17)
s−Rn < τds ∧ |sµy −Rny| < τsl, (18)

‖hRn − cn‖ < τh, (19)

whereRn = ‖cn‖ (see Eq. 11).
These equations are designed to reflect the empirical ob-

servations that cast shadows cause a darkening of the back-
ground and usually lower the saturation of a pixel, while
having only limited influence on its hue [2]. The first con-
dition (Eq. 17) works on the luminance component, using
a threshold β to take into account the strength of the pre-
dominant light source. Eq. 18 performs a test for a lowering
in saturation, comparable to the approach proposed by Cuc-
chiara et al. [1, 2]. However, our approach is different in
two respects. Namely, the use of the mean resultant vector
lengthRn as an estimate of the mean saturation µs, and the
explicit modelling of the relationship between saturation and
luminance in the IHLS space. If, assuming a linear camera
response, a shadow scales light intensity by a certain factor
then a pixel’s R, G, and B values scale by the same factor;
which is also exploited in the normalised RGB space (see
Eq. 1). I.e., also the luminance y and saturation s are lin-
early scaled by the same factor.Finally, in (Eq. 19) the ob-
served hue vector is h is scaled to the same length as the
mean chrominance vector cn and their deviation is tested
using the Euclidean distance.

The choice of the thresholds τds, τsl, and τh, for now,
is done empirically with the assumption that the variation
of chrominance caused by shading is rather small. The ex-
periments presented in the following section confirmed this
assumption, since in all cases it sufficed to choose very small
positive values for all three thresholds. In fact, τh and τds

were set to 0.0015 and 0.05 respectively for all tests. τsl had
to be varied in the range of [0.02, 0.03].

5 Experiments and Results

We compared our approach described in Section 4 with the
NRGB using the Colour Mean and Variance approach to
model the background [17]. A pixel is considered fore-
ground if |oc − µc| > ασc for any channel c ∈ {r, g, l},
where oc denotes the observed value, µc its mean, σc the
standard deviation, and α the foreground threshold.

Both background models are maintained by means of ex-
ponential weighted averaging [17] using different learning
rates for background and foreground pixels. Furthermore, it
is ensured that the σ values do not fall below a predefined
value in order to avoid oversensitivity whenever pixels do
not change over a long period of time.

For the normalised RGB space, shadow suppression was
implemented based on Horprasert’s approach [11]: each
4
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Figure 3: Receiver operating characteristic of normalised RGB
and our approach evaluated on Test Sequence 1

foreground pixel is classified as shadow if:

ol < µl ∧ ol > βµl ∧
|or − µr|+ |og − µg| < τc (20)

where β and τc denote thresholds for the maximum allow-
able change in the intensity and colour channels, so that a
pixel is considered as shaded background.

As an example for an achromatic scene Test Sequence 1,
recorded by an AXIS-211 network camera, shows a moving
person in a stairway. For this sequence, ground truth was
generated manually for 31 frames2. The background model
was initialised with 200 training frames. The same learning
and update parameters were used for both background mod-
els. Before evaluation the segmented images are subject to
morphological opening with a 3 × 3 structure element to
eliminate salt noise. For the evaluation of the results, we
defined the detection rate DR and the false alarm rate FR
similar to Oberti et al. [15] as follows:

DR =
TP

FN + TP

FR =
FP

N − (FN + TP )
(21)

where TP denotes the number of true positives, FN the
number of false negatives, FP the number of false positives,
and N the total number of pixels in the image.

Test Sequence 2 was recorded with the same equipment
mentioned above and shows moving objects in front of a
coloured background. 50 frames were used for initialisation.
Furthermore the approaches were tested on the Laboratory
sequence of the ATON project3 (using the first 140 frames
for initialisaton) and on the camera 2 testing sequence of
the PETS2001 Dataset 1 (using 100 frames for initialisation,
starting with frame 2650).

5.1 Results
Figure 3 shows the receiver operating characteristic for both
approaches evaluated on Test Sequence 1. The abscissa and

2Test Sequence 1 and Test Sequence 2 can be downloaded from the
authors’ homepage

3The video sequence may be found at http://cvrr.ucsd.edu/aton/testbed/.



Philipp Blauensteiner, Horst Wildenauer, Allan Hanbury, and Martin Kampel [←]

Sequence Original Image Our Approach Normalised RGB

Test Sequence 1
Frame # 282

Test Sequence 2
Frame # 70

ATON
Lab
Frame # 685

PETS2001
Dataset 1
Camera 2
Frame # 2982

Table 1: Results of our approach in comparison with NRGB.
the ordinate denotes the false alarm rate and the detection
rate, respectively. For this characteristic, the two approaches
were tested for values of the foreground threshold α between
1.5 and 5.0. One can see that our approach yields better
results in terms of low false alarm and high detection rate
for the tested parameters.

Table 1 displays the results of the comparison of our
approach and normalised RGB on the aforementioned se-
quences. For each sequence, parameters yielding the best
balance between false alarm and detection rate are given in
Table 2.

The example image of Test Sequence 1 shows that the
light beige t-shirt is better segmented in our approach, indi-
cating a higher sensitivity w.r.t. to colour changes. In the
results of the normalised RGB worse shadow detection per-
formance as well more noise in dark background regions can
be noticed. The comparison of the results in Test Sequence
2 shows that the normalised RGB approach fails to classify
the strong shadow in the lower left corner correctly. On the
Laboratory sequence our approach yields a better segmen-
tation of the right person as well as the inside of the opened
locker. Finally, it can be noticed that for the PETS2001 se-
quence, our approach yields a comparable segmentation re-
sult on the car; however, the present JPEG noise had greater
impact on the normalised RGB approach.
6 Conclusion

We proposed the usage of the IHLS colour space for change
detection and shadow suppression in visual surveillance
tasks. In the proposed framework, we advocate the appli-
cation of saturation-weighted hue statistics to deal with the
problem of the unstable hue channel at weakly saturated
colours.

Furthermore, we proposed a novel technique for detect-
ing shadows exploiting the chrominance information and
explicitly modelling the saturation-luminance relationship.
The results on several challenging image sequences showed
that our approach outperforms the normalised RGB colour
space in terms of higher detection rate and less noise sensi-
tivity.

One problem of our approach, however, is the fact that
due to the use of saturation weighted hue statistics, it is
impossible to tell whether a short chrominance vector in
the background model is the result of unstable hue infor-
mation or of a permanent low saturation. Although in the
conducted experiments no impairments were evident, it is
subject of further research in which cases this shortcoming
poses a problem. Other fields of interest are the examination
of alternatives to the Euclidean distance for the comparison
of the chrominance vectors and an experimental in-depth-
investigation of the shadow classification.
5
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Sequence
Test Sequence 1 Test Sequence 2 Laboratory PETS2001

NRGB
α 3.5 3.5 3.5 3.5
β 0.5 0.9 0.5 0.5
τc 0.02 0.1 0.02 0.05

Our Approach

α 3.5 3.5 3.5 3.5
β 0.5 0.9 0.5 0.5
τds 0.05 0.05 0.05 0.05
τsl 0.02 0.02 0.025 0.03
τh 0.0015 0.0015 0.0015 0.0015

# Initialisation Frames 200 50 140 100
Foreground Learning Rate 0.9999
Background Learning Rate 0.995
Minimum σ-Value 0.01

Table 2: Parameters used for evaluation of the approaches
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