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Computation of the epipolar geometry in slightly overlapping views
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Abstract This paper proposes a method to compute the
epipolar geometry from slightly overlapping views. Instead
of using point correspondences alone, we additionally use
the infinite homography. Interestingly, the infinite homogra-
phy can be determined from line segments when we have the
same alignment of the scene in both views. Thereby, van-
ishing points and the intrinsic camera parameters are com-
puted when we have a Manhattan world scene and assume
cameras with square pixels. All assumptions are not too
restrictive and occur frequently. The infinite homography
and one of the epipoles determine the fundamental matrix.
The paper demonstrates a robust and automatic detection of
vanishing points and a simultaneous calibration. It further
presents a simple solution to compute the epipoles from at
least two point correspondences without requiring points in
general position. Experiments on real images confirm the
applicability of the idea.

1 Introduction

Robust and automatic methods for the computation of the
fundamental matrix are knowr8][20]. These algorithms
use putative point correspondences to compute the funda-
mental matrix. Such point correspondences are typically de-
tected by matching image features - even in wide-baseline
camera settings1][15. These methods give accurate re- Figure 1: Two views of an office scene. The computed epipolar
sults. However, the accuracy depends on the amount of geometry is shown by points and corresponding epipolar lines.
point correspondences in general position, i.e. points should

be distributed uniformly. Unfortunately, cameras with only

slightly overlapping views provide point correspondences in most digital cameraslfy. It is shown in [] that a homog-

a small part of their images. The image in Figirdoes not raphy and at Ieast_ two point correspondences determine the
provide even that, correspondences can only be establishedfundamental matrix.
by the person in the room. This work confines itself to man- This paper shows that an accurate computation of the

made environments with orthogonal and parallel structures. fundamental matrix in slightly overlapping views is possi-
These Manhattan worlds contain line segments which de- ble. The infinite homography encapsulates the rotation be-
termine vanishing points of orthogonal directions in each tween the two cameras and their intrinsic parameters. Line
view [4]. Corresponding vanishing points and the square segments compensate for the lack of point correspondences
pixel assumption define the infinite homograpl®y. [ The in general position and allow the recovery of rotation and
square pixel assumption is very general and holds for the intrinsic parameters. At least two point correspondences
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within the overlapping image area and the infinite homog-
raphy determine the epipoles. Experiments with real images
show that the proposed method gives reasonable, qualitative
results, even if only a few point correspondences are known.
It is simple and linear and can be efficiently implemented.

The background of this method is its application in vi-
sual surveillance, e.g. to handover objects between two
views [3]. The handovering will at least be simplified, if
the epipolar geometry is known. Until now, several methods
to compute a homography induced by the ground-plane ex-
ist [10][18]. However, all these methods assume substantial,
overlapping views. Only the method of Khan and Shkdj [
would also work in slightly overlapping views. Their work
use foot points of tracked people to compute the border lines
of the fields of two overlapping views. In contrast to this
work, the proposed method does not assume that any point
correspondences have to lie on the ground-plane. Such point
correspondences should in future be generated by a people
tracker.

The paper is organized as follows: Sect®muliscusses
the computation of vanishing points from line segments and
the computation of the intrinsic parameters. Sec8dreats
the proposed method to compute the fundamental matrix.
After showing and discussing the experiments with synthetic
images and the images of an office scene (sectjorthe
paper concludes with sectidn

2 Vanishing points and calibration

The basic information to estimate vanishing points are line
segments which are independently detected from an ac-
quired sequence of images in every single camera view. Our
approach is closely related to the work of Koseckd pnd
Rother [L6].

Especially lenses with wide viewing angles are substan-
tially distorted. Therefore, the acquired image should be
rectified using a lens distortion model. The type of the dis-
tortion model and the parameters of the model are either
known, i.e. a model is chosen and the parameters are pre-
computed for a specific lens, or the choice of a model and the
parameter estimation could be done by an automatic method
as suggested by Devernay].[ Tests have shown that this
method works with moderate distortions. Practically, to crop
the images uniformly at all edges reduces the distortion, be-
cause distortion decreases towards the image center.

The Canny detector computes edges in the rectified im-
age. Line segmentdy, ..., [, } are detected as linear edges
using a method suggested by Gur. [Each line segment
l; = a; x b; is defined by the line segment end poiajsand
b; which are vectors in the homogeneous image coordinates.

The gradient computation in the edge detector is not ro-
bust to noise. A preceding averaging over some images sub-
stantially improves the accuracy of the gradients.

2.1 Detecting vanishing points

A vanishing pointv is an intersection point of a sub-set of
{li,...,1r}. In imaged Manhattan worlds most line seg-
ments have to intersect in a number of vanishing points
which encode the dominant and orthogonal directions. Usu-
ally, two or three orthogonal directions are present in a world
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Figure 2: Detected vanishing points in the office scene.

scenefn € {2,3}), butm > 3 is also possible.

Kosecka 2] used the orientation of the line segments to
detect vanishing points. Peaks of the orientation histogram
group{ly,...,Ir} intom sub sets. Unfortunately, line seg-
ments with the same orientation can also intersect in differ-
ent vanishing points in some situations.

Our method avoids this problem by using RANSAC
(Random Sample Consensus) and is similar to the work
of Rother [L6]. The simple idea of RANSAC is to con-
struct repeatedly a vanishing point= [; x [;. [; andl;
are chosen randomly fromiy,...,lr}. A line segment
I € {l,..., 1t} — {l;,1;} will be an inlier, if [, meets
v within a given errore. RANSAC tries to find a vanish-
ing pointv where a maximal number of line segments are
inliers.

Generally, line segments are uncertain due to noisy im-
ages. Hence, a first order error analysis is done in all esti-
mations. See Heued] for a rigorous discussion among this
topic. Following Liebowitz 3], the isotropic noise in the
end pointsa; andb; is modeled as Gaussian random vari-
able¢

a; :dj—"_&bj :b.j+§7€NN(0aUIBX3)> (1)
wherea; andb; are the true end points arfdis the3 x 3
identity matrix.

The error of; meetingv can be formulated with this sim-
ple noise model. In generdl; will never meetv perfectly
due to noise. However, a straight lihecan be constructed
which will meetv exactly. See Figur8 for the geometric
details. Liebowitz showed that is the MLE of the true line
segmenti; x b;. The errors for; andb; are the distances
d(a;, ;) andd(b;, b,).

In contrast to Rother, RANSAC is used consecutively to
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Figure 3: Geometric illustration: The line segmeit does not
meet exactly the vanishing point

detect the vanishing points. To avoid that a vanishing point
v; lies within the uncertainty of a previously detected van-
ishing pointy; a test statistic’ is computed by

T = (vi —v;) 25 (vi — v)) @)
whereX; are the variance co-variance matrices af If no
incidence happens, the set of line segments will be reduced
by the line segment inliers and RANSAC is repeated. Fig-
ure2 shows the detected vanishing points in the office scene
of Figurel. Experiments have further shown that RANSAC
will perform more robust, if line segments are chosen ac-
cording to their pixel length.

2.2 Calibration

Vanishing pointsvy, ..., v, give () constraints on the
IAC w33 (Image of the Absolute Coniclw can be inter-
preted as a metric of the uncalibrated spacé a symmet-

ric matrix and has 5 degrees of freedom. The textbook of
Hartley and Zissermar8] provides more information about
the IAC. Furthermore, our assumptions of zero skeand a
constant aspect ratioyield two more constraints an. To
assume that the principal poipt= (ug vo) " is close to the
image center gives further two constraintswon All these
constraints can be formulated with the following equations:

T

vwo, = 0 1>4,j>m,i#j5 (3)
(100)"w(010) = 0 (4)
(1r0)Tw(0 —10) = 0 (5)
wp = (001)7 (6)

Form > 1 a solution ofw can be computed. If more than
two vanishing points are detected, the linear equations sys-
tem formed by the equations 86 is over-determined. An
optimal solution ofw in a least-squares sense can then be
computed using SVD (Singular Value Decomposition).

To knoww is equal to know the intrinsic parameters

w=K TK™, (7)

with
I s uo
K= 0 rf wv
0 0 1

f is the focal length K can be computed using a Cholesky
decomposition ok.

(]

A solution for K can be incorrect, because information
about the orthogonality of world directions is lost during the
imaging process. A simple way to test the plausibility of a
solution of K is to test the relative error betwegrand the
focal length of the lengy. If the relative error is smaller
than a maximal error threshotd

J—=fo
Jo

the solution ofK is accepted, otherwise it is rejected and the
initialization method is repeated. This test is sufficient for a
correct solution ofX, if the principal point is constrained.
The condition that is positive definite and that a Cholesky
decomposition is possible is necessary but not sufficient.

< €,

®)

2.3 Refinement

The problem now is to group line segments in new im-
ages that meet the current vanishing point estimates. Si-
multaneously, these vanishing point estimates should be re-
estimated using the expected grouping. This very general
problem can be solved with the EM algorithm (Expectation
Maximization). The RANSAC-based initialization gives an
initial guess of the vanishing point estimates. The refine-
ment method uses an online version of the EM algorithm
which is discussed in Broch@]|.

2.4 Likelihood function

The likelihood of each; to meet av;,, can be written as a
weighted mixture of likelihood functions

Zm: Pr(vg)p(l;|vg, o) + Pr(noise)p(noise|o).  (9)
k=1

Pr(vy) are the prior probabilities af,. These priors are ini-
tialized with the relative frequency between line segments
meetingv;, and the total numbef. of line segments de-
tected. Ifi; does not meet anyy, it will be a noisy line
segment. The prior probability of the occurrence of noisy
line segments is always
Pr(noise) =1 —

Pr(vy). (10)

k=1
We assumed, that the likelihood valpgroise|o) can be
evaluated with a one-sided Gaussian pdf

V2 1

O'\/;T exp(f;)
at location20, i.e. line segments meeting non of thg
within 20 are more likely to be noisy. The likelihood
p(l;|vg, o) can be expanded to

(11)

p(noise|o) =

p(li|vk70) :p(ai|vk7o—)p(bi|vk70—)a (12)

becausea; and b; are independent from each other.
p(a;|vg, o) andp(b;|vk, o) are one-sided Gaussian pdfs

—d%(a; a:
plai|vx,0) = U\\//é%exp( dég;’az)), (13)

—d2(b; b:
st = oo =Ll aa
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whered?(a;, a;) andd?(b;, b;) are the squared distances be-
tween the end points;, a; andb;, b; respectively. Now,
the online EM algorithm tries to find optimal estimates of

V1, ..., Uy, andPr(vy),. .., Pr(v,,) under the giver; and
a giveno.
2.5 E-step

The goal of the E-step is to compute the posterior member-
ship probability

p(l;|vg, o) Pr(vg)
p(l:) ’

that I; meetsvy, given the prior probabilitie®r(v,) and
the likelihood functiorp(l;|vk, o). p(l;) is a normalization
factor to ensure

Qri = Pr(vg|l;) = (15)

m

Z qri + Pr(l;|noise) =1,
k=1

(16)
and can be written as

p(l;) = Zp(mvk, o) Pr(vg) + p(noise|o) Pr(noise).
k=1

17)
Pr(l;|noise) is the probability that line segmeitis noisy
and can be computed from equatib6 The E-step gives
us the best guess of the membership of unknown line
segments; to the current vanishing point estimatgswith
prior probabilitiesPr(vy). If somel; do not meet any of the
vk, they are expected to be noisy line segments.

2.6 M-step

In the M-step the current vanishing point estimatgare re-
estimated using the previously computed membership prob-
abilities. This is done by maximizing the expected log-
likelihood function

max J(vi) = grs log p(Li[ v}, o) (18)

k
with respect to new estimates of vanishing points
Section 2.4 showed thatp(l;|v},0) and consequently
log p(I;|v;, o) are likelihood functions based on geometric
error distances betweépand its MLE with respect te;.
Unfortunately, no explicit and optimal estimate @f can
be given, becausé(v;) is a non-linear function. However,
iterative, numerical algorithms like Levenberg-Marquardt
can be used to find optimal estimateswjf We refer to
Liebowitz [13, 3.6, p.63-69], who shows in all details the
MLE of line segment intersections.
Now, the old estimatev, ' is adapted in terms of
weighted-means with the new estimatgsby
v = (1= Nop !+ v, (19)
where) is a constant learning rate.
Similarly, the prior probabilities are adapted by

L
Pr(ug)’ = (1 - A) Pr(y)/~! 4 A2 0

(20)
with the number of line segmenis
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Figure 4: A sketch of the epipolar geometry.

2.7 Correspondence of vanishing points

The correspondences between the detected vanishing points
of the same world directions in two views are manually de-
fined. In future this step should also work automatically.
Hartley [8] and Rother 17] then show the computation of

the camera’s rotation - in the remainder of the paReand

R, - from vanishing points and the intrinsic parameters of
both cameras - in the remainder of the pafigrand K.

3 Proposed method

The fundamental matrixt® completely encapsulates the
epipolar geometry between the images of two views. See the
illustration in Figured. It is known thatF' can be computed
from at least seven point correspondences in these images.
Corresponding points are popular. Methods like the eight
point algorithm does not deliver accurate results. However,
another less known idea exists which also works in slightly
overlapping views.

Theorem 1. From [6]: One of the epipolegs; in image

I or e15 inimagel, and every plane induced homography
such as the infinite homograpt#y..2; or its dual H..15 =
H_, determineF. More formally,

F ~ [eo1]x Hoomt ~ H 3 [e1a]x ~ Ho pplern] . (21)

[[]x is the skew-symmetric matrix operator definedéh [
The ~ comparator denotes similarity up to a scalar factor
due to the use of homogeneous coordinates. We will now
show, thatH.»; can be computed fronk;, Ry, K; and
K. eq is then computed witl ., and at least two point
correspondences that do not necessarily have to lie in gen-
eral position. Analogously, the same is valid fdg.,» and
€12.

3.1 Infinite homography

The infinite homography/.»; is the homography from im-
age I, to image/; induced by the plane at infinityl..
H..21 maps a vanishing point, in I, to a vanishing point

vy in Iy with vy ~ H,91v9. Basically, H,2; can be de-
composed in a homograptfy;ol2 from I, to 11, a rotation

R and a second homograpl.; fromIl, to ;. H.,; and

H..> map a direction in the scene to a vanishing poink;in
with v; ~ H,,1d; and I, with vy ~ H,,ods respectively.

d, andd, are the same direction in the scene but are differ-
ent coordinate vectors, because the cameras are differently
aligned in the scene. If we assume an identical alignment of
the scene in both views and as the alignment of the cameras
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is already known by?; andRs, the rotation betweet, and

do will be di1 = Rds with
R=RR;". (22)

This assumption is valid in many scenes of a Manhattan

world and can be used in many practical applications. Corol-
lary 2 follows immediately from this assumption.

Corollary 2. If the identical alignment assumption is valid
and Ry, Rs, K7 and K> are known, then

-1
002 —

Hoor ~ Hooi RH KiRiR;'K;Y. (23)

3.2 Epipoles

The infinite homography holds the rotational and the intrin-
sic information of the epipolar geometry. The only missing
information is the translation between the views which is
given by the epipoles. The epipalg, in I; is the non-trivial

left null-space solution of "ey; = 0. Equivalently,e; in

15 is the non-trivial right null-space solution dfe;, = 0.
Consequentlyes; must lie on every epipolar liné'z, for

all pointsz, in 1. Analogously, the same applies fof,.
Conversely, at least two known epipolar lines will define the
epipole. In B, 13.3,336] it was shown that a homography
and a pair of corresponding points define the corresponding
epipolar line. The reason for that is called plane induced
parallax as illustrated schematically in Figute Consider
without loss of generality the case where this homography
is Ho.21. The ray through one of the corresponding points
maps to its corresponding epipolar line. Because all points
on the ray lie on the epipolar line, the ray’s direction which
is the intersection of the ray witl., must also map onto
the epipolar line.

Definition 1. Let {(z%,25) |1 < i < N,N > 2} be tu-
ples of corresponding points. Let at, map tozs, in I

with 2%, ~ H..2;2%. A measurement matrix/ can be con-
structed with

e x )’

M= ( x% X x%l (24)

The result is thaf\/ can be used to compute the epipoles.

Lemma 3. The epipole:s; is the non-trivial solution of the
right null-space ofM ey, = 0.

The problem of estimating the intersection/éflines is
a least-squares problem and can be solved using Singular
Value Decomposition. The problem is shown with proofs in
more detail in §] and [8]. Analogously, the same applies for
e1o. Instead offf .01 we useH .12 = H_5,. Alternatively,

o0

e12 is also given by equatior2() with [e12]x = HL 5, F.

4 Experiments

We tested the proposed method on a real office scene. Al-
though no overlap of the background exists, the fields of
view of the cameras overlap substantially. Manually defined

(]

points and their corresponding epipolar lines are shown in
Figurel. We used the person in the images to get two point
correspondences. A fundamental matrix was also computed
with the self-calibration method discussed @] which

uses hundreds of point correspondences produced by a mov-
ing light source. To compare fundamental matrices with
each other we used the error measure of Zhé&ng.[ 338-
339]. The difference of our fundamental matrix compared to
the result of the self-calibration method was only 6.42pixel.

In a second experiment, we computed the fundamental
matrix between two images of a corridor scene (see Fig-
ure 5). The scene is difficult, because occlusion and the
perspective distortion allows only a few reliable point cor-
respondences. Three point correspondences (green) were
used to compute the epipoles. A qualitative test on other
point correspondences suggests a reasonable result for the
fundamental matrix.

5 Conclusion

This paper presented a method to compute the fundamental
matrix in slightly overlapping views. The idea is to com-
pute the infinite homography from vanishing points and the
intrinsic parameters and the epipoles from point correspon-
dences not necessarily in general position. The vanishing
points and the intrinsic parameters can be simultaneously
computed from line segments. The necessary assumptions
are not too restrictive and are valid in many real scenes. Ex-
periments on a real office scene and a real corridor scene
confirm the applicability of the proposed method and show
reasonable results. Our future work will concentrate to-
wards an automatic matching of vanishing points in different
views. Moreover, the computation of the epipolar geometry
should adapt to a changing environment.
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