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Abstract This paper proposes a method to compute th
epipolar geometry from slightly overlapping views. Instea
of using point correspondences alone, we additionally u
the infinite homography. Interestingly, the infinite homogra
phy can be determined from line segments when we have
same alignment of the scene in both views. Thereby, v
ishing points and the intrinsic camera parameters are com
puted when we have a Manhattan world scene and assu
cameras with square pixels. All assumptions are not to
restrictive and occur frequently. The infinite homograph
and one of the epipoles determine the fundamental matr
The paper demonstrates a robust and automatic detection
vanishing points and a simultaneous calibration. It furthe
presents a simple solution to compute the epipoles from
least two point correspondences without requiring points
general position. Experiments on real images confirm th
applicability of the idea.

1 Introduction

Robust and automatic methods for the computation of t
fundamental matrix are known [8][20]. These algorithms
use putative point correspondences to compute the fun
mental matrix. Such point correspondences are typically d
tected by matching image features - even in wide-baseli
camera settings [1][15]. These methods give accurate re
sults. However, the accuracy depends on the amount
point correspondences in general position, i.e. points sho
be distributed uniformly. Unfortunately, cameras with onl
slightly overlapping views provide point correspondences
a small part of their images. The image in Figure1 does not
provide even that, correspondences can only be establis
by the person in the room. This work confines itself to man
made environments with orthogonal and parallel structure
These Manhattan worlds contain line segments which d
termine vanishing points of orthogonal directions in eac
view [4]. Corresponding vanishing points and the squa
pixel assumption define the infinite homography [8]. The
square pixel assumption is very general and holds for t
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Figure 1: Two views of an office scene. The computed epipola
geometry is shown by points and corresponding epipolar lines.

most digital cameras [14]. It is shown in [8] that a homog-
raphy and at least two point correspondences determine
fundamental matrix.

This paper shows that an accurate computation of t
fundamental matrix in slightly overlapping views is poss
ble. The infinite homography encapsulates the rotation b
tween the two cameras and their intrinsic parameters. Li
segments compensate for the lack of point corresponden
in general position and allow the recovery of rotation an
intrinsic parameters. At least two point correspondenc
1
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within the overlapping image area and the infinite homo
raphy determine the epipoles. Experiments with real imag
show that the proposed method gives reasonable, qualita
results, even if only a few point correspondences are know
It is simple and linear and can be efficiently implemented.

The background of this method is its application in vi
sual surveillance, e.g. to handover objects between t
views [3]. The handovering will at least be simplified, if
the epipolar geometry is known. Until now, several method
to compute a homography induced by the ground-plane e
ist [10][18]. However, all these methods assume substanti
overlapping views. Only the method of Khan and Shah [11]
would also work in slightly overlapping views. Their work
use foot points of tracked people to compute the border lin
of the fields of two overlapping views. In contrast to thi
work, the proposed method does not assume that any po
correspondences have to lie on the ground-plane. Such po
correspondences should in future be generated by a peo
tracker.

The paper is organized as follows: Section2 discusses
the computation of vanishing points from line segments a
the computation of the intrinsic parameters. Section3 treats
the proposed method to compute the fundamental matr
After showing and discussing the experiments with synthe
images and the images of an office scene (section4), the
paper concludes with section5.

2 Vanishing points and calibration

The basic information to estimate vanishing points are lin
segments which are independently detected from an
quired sequence of images in every single camera view. O
approach is closely related to the work of Kosecka [12] and
Rother [16].

Especially lenses with wide viewing angles are substa
tially distorted. Therefore, the acquired image should b
rectified using a lens distortion model. The type of the di
tortion model and the parameters of the model are eith
known, i.e. a model is chosen and the parameters are p
computed for a specific lens, or the choice of a model and t
parameter estimation could be done by an automatic meth
as suggested by Devernay [5]. Tests have shown that this
method works with moderate distortions. Practically, to cro
the images uniformly at all edges reduces the distortion, b
cause distortion decreases towards the image center.

The Canny detector computes edges in the rectified i
age. Line segments{l1, . . . , lL} are detected as linear edge
using a method suggested by Guru [7]. Each line segment
lj = aj×bj is defined by the line segment end pointsaj and
bj which are vectors in the homogeneous image coordinat

The gradient computation in the edge detector is not r
bust to noise. A preceding averaging over some images s
stantially improves the accuracy of the gradients.

2.1 Detecting vanishing points

A vanishing pointv is an intersection point of a sub-set o
{l1, . . . , lL}. In imaged Manhattan worlds most line seg
ments have to intersect in a number of vanishing poin
which encode the dominant and orthogonal directions. Us
ally, two or three orthogonal directions are present in a wor
2
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Figure 2: Detected vanishing points in the office scene.

scene (m ∈ {2, 3}), butm > 3 is also possible.
Kosecka [12] used the orientation of the line segments t

detect vanishing points. Peaks of the orientation histogra
group{l1, . . . , lL} into m sub sets. Unfortunately, line seg-
ments with the same orientation can also intersect in diffe
ent vanishing points in some situations.

Our method avoids this problem by using RANSAC
(Random Sample Consensus) and is similar to the wo
of Rother [16]. The simple idea of RANSAC is to con-
struct repeatedly a vanishing pointv = li × lj . li and lj
are chosen randomly from{l1, . . . , lL}. A line segment
lk ∈ {l1, . . . , lL} − {li, lj} will be an inlier, if lk meets
v within a given errorσ. RANSAC tries to find a vanish-
ing point v where a maximal number of line segments ar
inliers.

Generally, line segments are uncertain due to noisy im
ages. Hence, a first order error analysis is done in all es
mations. See Heuel [9] for a rigorous discussion among this
topic. Following Liebowitz [13], the isotropic noise in the
end pointsaj andbj is modeled as Gaussian random var
ableξ

aj = āj + ξ, bj = b̄j + ξ, ξ ∼ N (0, σI3×3), (1)

whereāj and b̄j are the true end points andI is the3 × 3
identity matrix.

The error oflj meetingv can be formulated with this sim-
ple noise model. In general,lj will never meetv perfectly
due to noise. However, a straight linēlj can be constructed
which will meetv exactly. See Figure3 for the geometric
details. Liebowitz showed that̄lj is the MLE of the true line
segmentāj × b̄j . The errors foraj andbj are the distances
d(aj , āj) andd(bj , b̄j).

In contrast to Rother, RANSAC is used consecutively t
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Figure 3: Geometric illustration: The line segmentlj does not
meet exactly the vanishing pointv.

detect the vanishing points. To avoid that a vanishing poi
vi lies within the uncertainty of a previously detected van
ishing pointvj a test statisticsT is computed by

T = (vi − vj)>Σ−1
j (vi − vj) (2)

whereΣj are the variance co-variance matrices ofvj . If no
incidence happens, the set of line segments will be reduc
by the line segment inliers and RANSAC is repeated. Fi
ure2 shows the detected vanishing points in the office sce
of Figure1. Experiments have further shown that RANSAC
will perform more robust, if line segments are chosen a
cording to their pixel length.

2.2 Calibration

Vanishing pointsv1, . . . , vm give
(
m
2

)
constraints on the

IAC ω3×3 (Image of the Absolute Conic).ω can be inter-
preted as a metric of the uncalibrated space.ω is a symmet-
ric matrix and has 5 degrees of freedom. The textbook
Hartley and Zisserman [8] provides more information about
the IAC. Furthermore, our assumptions of zero skews and a
constant aspect ratior yield two more constraints onω. To
assume that the principal pointp = (u0 v0)> is close to the
image center gives further two constraints onω. All these
constraints can be formulated with the following equation

v>i ωvj = 0 1 ≥ i, j ≥ m, i 6= j (3)

(1 0 0)>ω(0 1 0) = 0 (4)

(1 r 0)>ω(0 − 1 0) = 0 (5)

ωp = (0 0 1)> (6)

For m > 1 a solution ofω can be computed. If more than
two vanishing points are detected, the linear equations s
tem formed by the equations in3-6 is over-determined. An
optimal solution ofω in a least-squares sense can then b
computed using SVD (Singular Value Decomposition).

To knowω is equal to know the intrinsic parameters

ω = K−>K−1, (7)

with

K =

 f s u0

0 rf v0

0 0 1

 .

f is the focal length.K can be computed using a Cholesk
decomposition ofω.
d

-

A solution for K can be incorrect, because information
about the orthogonality of world directions is lost during th
imaging process. A simple way to test the plausibility of
solution ofK is to test the relative error betweenf and the
focal length of the lensf0. If the relative error is smaller
than a maximal error thresholdε

f − f0

f0
< ε, (8)

the solution ofK is accepted, otherwise it is rejected and th
initialization method is repeated. This test is sufficient for
correct solution ofK, if the principal point is constrained.
The condition thatω is positive definite and that a Cholesky
decomposition is possible is necessary but not sufficient.

2.3 Refinement

The problem now is to group line segments in new im
ages that meet the current vanishing point estimates.
multaneously, these vanishing point estimates should be
estimated using the expected grouping. This very gene
problem can be solved with the EM algorithm (Expectatio
Maximization). The RANSAC-based initialization gives an
initial guess of the vanishing point estimates. The refin
ment method uses an online version of the EM algorith
which is discussed in Brochu [2].

2.4 Likelihood function

The likelihood of eachli to meet avk can be written as a
weighted mixture of likelihood functions

m∑
k=1

Pr(vk)p(li|vk, σ) + Pr(noise)p(noise|σ). (9)

Pr(vk) are the prior probabilities ofvk. These priors are ini-
tialized with the relative frequency between line segmen
meetingvk and the total numberL of line segments de-
tected. If li does not meet anyvk, it will be a noisy line
segment. The prior probability of the occurrence of nois
line segments is always

Pr(noise) = 1−
m∑

k=1

Pr(vk). (10)

We assumed, that the likelihood valuep(noise|σ) can be
evaluated with a one-sided Gaussian pdf

p(noise|σ) =
√

2
σ
√

π
exp (− 1

σ
) (11)

at location2σ, i.e. line segments meeting non of thevk

within 2σ are more likely to be noisy. The likelihood
p(li|vk, σ) can be expanded to

p(li|vk, σ) = p(ai|vk, σ)p(bi|vk, σ), (12)

becauseai and bi are independent from each other
p(ai|vk, σ) andp(bi|vk, σ) are one-sided Gaussian pdfs

p(ai|vk, σ) =
√

2
σ
√

π
exp (

−d2(ai, āi)
2σ2

), (13)

p(bi|vk, σ) =
√

2
σ
√

π
exp (

−d2(bi, b̄i)
2σ2

), (14)
3
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whered2(ai, āi) andd2(bi, b̄i) are the squared distances be
tween the end pointsai, āi and bi, b̄i respectively. Now,
the online EM algorithm tries to find optimal estimates o
v1, . . . , vm andPr(v1), . . . ,Pr(vm) under the givenli and
a givenσ.

2.5 E-step

The goal of the E-step is to compute the posterior memb
ship probability

qki = Pr(vk|li) =
p(li|vk, σ) Pr(vk)

p(li)
, (15)

that li meetsvk, given the prior probabilitiesPr(vk) and
the likelihood functionp(li|vk, σ). p(li) is a normalization
factor to ensure

m∑
k=1

qki + Pr(li|noise) = 1, (16)

and can be written as

p(li) =
m∑

k=1

p(li|vk, σ) Pr(vk) + p(noise|σ) Pr(noise).

(17)
Pr(li|noise) is the probability that line segmentli is noisy
and can be computed from equation16. The E-step gives
us the best guess of the membershipqki of unknown line
segmentsli to the current vanishing point estimatesvk with
prior probabilitiesPr(vk). If someli do not meet any of the
vk, they are expected to be noisy line segments.

2.6 M-step

In the M-step the current vanishing point estimatesvk are re-
estimated using the previously computed membership pro
abilities. This is done by maximizing the expected log
likelihood function

max
v∗

k

J(v∗k) = qki log p(li|v∗k, σ) (18)

with respect to new estimates of vanishing pointsv∗k.
Section 2.4 showed thatp(li|v∗k, σ) and consequently
log p(li|v∗k, σ) are likelihood functions based on geometri
error distances betweenli and its MLE with respect tov∗k.
Unfortunately, no explicit and optimal estimate ofv∗k can
be given, becauseJ(v∗k) is a non-linear function. However,
iterative, numerical algorithms like Levenberg-Marquard
can be used to find optimal estimates ofv∗k. We refer to
Liebowitz [13, 3.6, p.63-69], who shows in all details the
MLE of line segment intersections.

Now, the old estimatevt−1
k is adapted in terms of

weighted-means with the new estimatesv∗k by

vt
k = (1− λ)vt−1

k + λv∗k, (19)

whereλ is a constant learning rate.
Similarly, the prior probabilities are adapted by

Pr(vk)t = (1− λ) Pr(vk)t−1 + λ

∑L
i=1 qki

L
(20)

with the number of line segmentsL.
4
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Figure 4: A sketch of the epipolar geometry.

2.7 Correspondence of vanishing points

The correspondences between the detected vanishing po
of the same world directions in two views are manually de
fined. In future this step should also work automaticall
Hartley [8] and Rother [17] then show the computation of
the camera’s rotation - in the remainder of the paperR1 and
R2 - from vanishing points and the intrinsic parameters o
both cameras - in the remainder of the paperK1 andK2.

3 Proposed method

The fundamental matrixF completely encapsulates the
epipolar geometry between the images of two views. See
illustration in Figure4. It is known thatF can be computed
from at least seven point correspondences in these imag
Corresponding points are popular. Methods like the eig
point algorithm does not deliver accurate results. Howev
another less known idea exists which also works in slight
overlapping views.

Theorem 1. From [6]: One of the epipolese21 in image
I1 or e12 in imageI2 and every plane induced homograph
such as the infinite homographyH∞21 or its dualH∞12 =
H−1
∞21 determineF . More formally,

F ' [e21]×H∞21 ' H−>
∞21[e12]× ' H>

∞12[e12]×. (21)

[·]× is the skew-symmetric matrix operator defined in [6].
The' comparator denotes similarity up to a scalar facto
due to the use of homogeneous coordinates. We will no
show, thatH∞21 can be computed fromR1, R2, K1 and
K2. e21 is then computed withH∞21 and at least two point
correspondences that do not necessarily have to lie in g
eral position. Analogously, the same is valid forH∞12 and
e12.

3.1 Infinite homography

The infinite homographyH∞21 is the homography from im-
ageI2 to imageI1 induced by the plane at infinityΠ∞.
H∞21 maps a vanishing pointv2 in I2 to a vanishing point
v1 in I1 with v1 ' H∞21v2. Basically,H∞21 can be de-
composed in a homographyH−1

∞2 from I2 to Π∞, a rotation
R and a second homographyH∞1 fromΠ∞ to I1. H∞1 and
H∞2 map a direction in the scene to a vanishing point inI1

with v1 ' H∞1d1 andI2 with v2 ' H∞2d2 respectively.
d1 andd2 are the same direction in the scene but are diffe
ent coordinate vectors, because the cameras are differe
aligned in the scene. If we assume an identical alignment
the scene in both views and as the alignment of the came
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is already known byR1 andR2, the rotation betweend1 and
d2 will be d1 = Rd2 with

R = R1R
−1
2 . (22)

This assumption is valid in many scenes of a Manhatt
world and can be used in many practical applications. Coro
lary 2 follows immediately from this assumption.

Corollary 2. If the identical alignment assumption is valid
andR1, R2, K1 andK2 are known, then

H∞21 ' H∞1RH−1
∞2 ' K1R1R

−1
2 K−1

2 . (23)

3.2 Epipoles

The infinite homography holds the rotational and the intrin
sic information of the epipolar geometry. The only missin
information is the translation between the views which
given by the epipoles. The epipolee21 in I1 is the non-trivial
left null-space solution ofF>e21 = 0. Equivalently,e12 in
I2 is the non-trivial right null-space solution ofFe12 = 0.
Consequently,e21 must lie on every epipolar lineFx2 for
all pointsx2 in I2. Analogously, the same applies fore12.
Conversely, at least two known epipolar lines will define th
epipole. In [8, 13.3,336] it was shown that a homograph
and a pair of corresponding points define the correspond
epipolar line. The reason for that is called plane induce
parallax as illustrated schematically in Figure4. Consider
without loss of generality the case where this homograp
is H∞21. The ray through one of the corresponding poin
maps to its corresponding epipolar line. Because all poin
on the ray lie on the epipolar line, the ray’s direction whic
is the intersection of the ray withΠ∞ must also map onto
the epipolar line.

Definition 1. Let {(xi
1, x

i
2) | 1 ≤ i ≤ N,N ≥ 2} be tu-

ples of corresponding points. Let allxi
2 map toxi

21 in I1

with xi
21 ' H∞21x

i
2. A measurement matrixM can be con-

structed with

M =
(

x1
1 × x1

21 · · · xN
1 × xN

21

)>
. (24)

The result is thatM can be used to compute the epipoles

Lemma 3. The epipolee21 is the non-trivial solution of the
right null-space ofMe21 = 0.

The problem of estimating the intersection ofN lines is
a least-squares problem and can be solved using Singu
Value Decomposition. The problem is shown with proofs i
more detail in [6] and [8]. Analogously, the same applies for
e12. Instead ofH∞21 we useH∞12 = H−1

∞21. Alternatively,
e12 is also given by equation (21) with [e12]× = H>

∞21F .

4 Experiments

We tested the proposed method on a real office scene.
though no overlap of the background exists, the fields
view of the cameras overlap substantially. Manually define
r

-

points and their corresponding epipolar lines are shown
Figure1. We used the person in the images to get two poi
correspondences. A fundamental matrix was also compu
with the self-calibration method discussed in [19] which
uses hundreds of point correspondences produced by a m
ing light source. To compare fundamental matrices wi
each other we used the error measure of Zhang [6, p. 338-
339]. The difference of our fundamental matrix compared
the result of the self-calibration method was only 6.42pixe

In a second experiment, we computed the fundamen
matrix between two images of a corridor scene (see F
ure 5). The scene is difficult, because occlusion and th
perspective distortion allows only a few reliable point cor
respondences. Three point correspondences (green) w
used to compute the epipoles. A qualitative test on oth
point correspondences suggests a reasonable result for
fundamental matrix.

5 Conclusion

This paper presented a method to compute the fundame
matrix in slightly overlapping views. The idea is to com
pute the infinite homography from vanishing points and th
intrinsic parameters and the epipoles from point correspo
dences not necessarily in general position. The vanishi
points and the intrinsic parameters can be simultaneou
computed from line segments. The necessary assumpti
are not too restrictive and are valid in many real scenes. E
periments on a real office scene and a real corridor sce
confirm the applicability of the proposed method and sho
reasonable results. Our future work will concentrate to
wards an automatic matching of vanishing points in differe
views. Moreover, the computation of the epipolar geomet
should adapt to a changing environment.
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