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Abstract The limited dynamic range of a camera may be
extended by composing differently exposed images of the
same scene. The nonlinear camera has to be calibrated ra-
diometrically first. We show that the calibration process
can be difficult for real cameras. The improvement can
be achieved if linear 12-bit RAW images are used as of-
fered by modern mid-class and professional cameras. The
knowledge of exposure time positively affects the radiomet-
ric quality of the composed high dynamic range (HDR) im-
age. This knowledge also helps in registration of differently
exposed hand held shots. This contribution presents a new
method for estimating exposure times from the histograms
of images captured using a linear response camera or gen-
erated from a RAW image. The presented method does not
require spatially aligned images. The actual process of HDR
image composition needs perfectly aligned images on its in-
put. We present a method for registering differently exposed
images captured with a hand held camera. The presented
registration method enables capture of HDR images without
the need of mounting a camera on the tripod. The methods
are implemented in Matlab and tested on real data.

1 Motivation

Since the early years of photography, the photographic pro-
cess has been limited by the dynamic range of a photosensi-
tive material which is able to record only a limited range of
light intensity.

Imagine a high contrast scene containing dark shadows
in some parts and very bright zones in the other parts of the
scene. If someone sets the exposure with the aim to capture
details in the dark zones correctly, like in Figure1a, then
details in the bright zones are lost by overexposure. The
material is saturated and is not able to record differences be-
tween light intensities above the saturation level. Likewise,
if someone exposes to capture bright zones correctly, like in
Figure1b, then details in the underexposed dark zones are
lost in sensor noise or a film grain.

Many techniques for setting proper exposure were devel-
oped during years, probably the most popular is the leg-
endary Zone System for black and white photography by
Ansel Adams [1]. This is a sophisticated method of under-
standing and controlling the exposure, development of the
negative and the print process. Similarly, the modern auto-
matic cameras have a very sophisticated metering and expo-

Figure 1: The same scene exposed for shadows (a) and lights (b).

sure programs developed by the analysis of thousands pro-
fessional photographs. However, all such systems, no mat-
ter how sophisticated, do not increase the limited dynamic
range of the sensing material. They are only trying to ex-
ploit it best by the correct exposure and image processing.

Obviously, the limited dynamic range is not a problem
of artistic photography only, but affects industrial and scien-
tific processes having images as their inputs. Such processes
become more robust if they can utilize the whole dynamic
range of a high contrast scene.

2 Problem Specification

Although the HDR image can be captured directly us-
ing special HDR sensors like Kodak KAC-9628 [11], IMS
Chips HDRC sensors [10], Silicon Vision Products [13],
SMaL Camera [14] and Pixim [12], these solutions are ex-
pensive. However, it can be shown that the HDR image can
be obtained with widely available cameras by fusing multi-
ple differently exposed images of the same scene.

2.1 Combining Differently Exposed Images

The idea of fusing images with different exposures is not
new. In the early sixties, Charles Wyckoff developed a wide
dynamic range film composed of three layers of the same
spectral sensitivity but differing in their overall sensitivity to
light. The three layers were colored exactly like in the color
negative film – cyan, magenta and yellow – so after print-
ing on the color paper Wyckoff created a pseudocolor HDR
image where the individual gray1 tones were represented by
different colors.

The same principle may be applied using a standard film
or an image sensor. Multiple images of the same scene dif-
fering only in exposure can be captured. Each captured im-
age records different range of light intensities. If there is
enough overlapping exposures ranging from dark images,

1Note that all three layers have the same spectral sensitivity, so the
recorded information is achromatic.
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Figure 2: Scheme of a camera illustrating how the scene radiance
is transformed to pixel values.

recording information in the bright zones, to light images,
recording information in the dark zones, an HDR image
can be reconstructed by properly combining the information
from captured images. This combined image will represent
the whole scene radiance in one floating point map.

2.2 Camera Response Function and HDR Fusion

There is a camera scheme in Figure2. Let us explore what
the camera measures. Generally, the pixel values are propor-
tional to the scene radiance, transformed by some nonlinear
mapping called theresponse function. This nonlinearity is
induced by different parts of the imaging process.

As the light – characterized by scene radianceL – is pass-
ing the lens, it is attenuated by the lens aperture and yields
sensor irradianceE. The total quantity of light accumulated
on the image sensor during integration time∆t controlled
by the shutter produces the sensor exposure

I = E∆t . (1)

Typical sensors like CCD or CMOS are designed to pro-
duce electrical signals which are linearly proportional to the
sensor exposure up to some saturation level. Above this
level, the sensor is not able to distinguish between different
exposure values.

In the case of film photography, the film itself is designed
to have a nonlinear response and the development process
causes further nonlinearities.

After exposure, the accumulated charge is converted to
integer values using analog-digital converters connected to
each photosensitive element on the image sensor. The pro-
cess of digitization brings quantization noise to recorded
data. In addition, the digital values are in the case of the
typical camera further transformed to mimic film character-
istics or scaled by aγ function to properly display on CRT
monitors. At this point, we must note that many modern
cameras offer a RAW image output. The RAW image does
not suffer from in-camera software postprocessing. It is af-
fected only by sensor saturation and quantization noise.

Individual sources of nonlinearity in the imaging process
are not important and the whole process can be represented
by one nonlinear function – a camera response functionf .
The measured pixel valuesM are proportional to the sensor
exposureI scaled by the response functionf , M = f(I).

To fuse an HDR image from a set of differently exposed
images, all source images have to be transformed to the same
domain – irradianceE. There is an assumption that the
scene radiance did not change between the individual ex-
posures. To map pixel valuesM to irradiance valuesE one

needs to find inverse functiong = f −1 so that the sensor
exposureI = g(M). Knowing the integration time∆t irra-
dianceE can be obtained using expression (1). 2

2.3 Image Registration

Composition of an HDR image from a set of differently ex-
posed images of the same scene requires a perfect alignment
of the individual images. This is no problem when captur-
ing from a tripod. However, for a hand held capturing there
is a need to perform a dense registration of the source im-
ages – i.e. to find pixel-to-pixel correspondences between
the individual exposures.

Unlike a usual registration problem, there is a need to
register images with large exposure differences and small
spatial difference. The spatial difference is only caused by
a little camera shift and shakes between the individual shots.
The knowledge of the camera response may help this pro-
cess by transforming all differently exposed images in the
same domain – irradianceE.

Hand held capturing is also limited by the need of suf-
ficiently long exposure times preventing the individual im-
ages from vibration blur. This limitation may by removed
by applying multichannel deconvolition to blurred images
but it is out of the scope of this work.

3 Related Work

3.1 Camera Calibration

The camera response function can be estimated by tak-
ing a picture of the uniformly illuminated chart containing
patches of known reflectance, such as the Gretag Macbeth
chart [2]. However this process is quite complicated and
can be performed only in laboratory conditions which are
not always accessible. In addition, the camera response may
be affected by temperature changes requiring frequent recal-
ibration.

Fortunately, it has been shown that a set of differently
exposed images contains usually enough information to re-
cover a response using the images themselves [7], [3], [8],
[15], [6] and [4].

Mann and Pickard [7] modeledg as aγ function. De-
bevec and Malik [3] used a nonparametric model ofg, sam-
pled at certain values, and represented it by a vector. Mit-
sunaga and Nayar [8] assumed that the response can be mod-
eled by a low degree polynomial. Further, they are able to
start from rough estimates of exposure ratiosk and recover
bothg andk by an iterative approach.

The previous methods used pixel values selected from
images at corresponding points to constrain the solution of
g. Selection of these points had a significant impact on the
quality of the solution. Mann et al. showed [6] that all infor-
mation for response recovery available in the image pair can

2 The use of radiance and irradiance here is not entirely correct in terms
of radiometric quantity because the sensor does not have uniform spec-
tral response. The sensor measures quantity of lightI(λ) integrated over
the full range ofwavelengthsλ weighted by its spectral responseR(λ) –∫

λ
I(λ)R(λ)dλ. However, a typical sensor will not have the same spectral

response as the human eye, so the measured quantity cannot be luminance
either. In this text, we will use terms radiance and irradiance, while remind-
ing the reader that the quantities we are dealing with are weighted by the
spectral response of the imaging system.
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be represented by thebrightness transfer function T . The
function describes how the brightness transfers from one im-
age to another,MB = T (MA).

Grossberg and Nayar showed [4] that T can be recov-
ered using image histograms only, requiring no registration.
They modified the solution of Mitsunaga and Nayar [8] to
constrain the polynomial model by values ofT .

3.2 Image Registration

Techniques used to register differently exposed images be-
fore an HDR image composition are similar to those used in
mosaic and panorama stitching applications. Schechner and
Nayar [9] mentioned traditional registration methods based
on optimizing the sum of square or absolute differences,
correlation or mutual information between frames, over the
general motion parameters.

Kang et al. [5] implemented a sophisticated registration
algorithm which was used in their HDR video application.
Before registration, they boosted the brightness of darker
frames to bring all frames in the video stream to the same
brightness level. To register exposure compensated frames,
they used motion modeling together with hierarchical ho-
mography. The motion model is used to compensate cam-
era movement while the hierarchical homography is used to
compensate for camera shake.

Ward described [16] a fast image registration method for
HDR image composition. The median thresholded images
are registered using his approach. The registration process
is performed using the fast bit manipulation routines applied
on an image pyramid. However, to keep this method fast it
is possible to compensate for image shifts only and not for
rotation or general homography which would require image
warping. For the same reason it is not possible to register
shifts at subpixel precision.

4 Estimate of the Camera Response Function

4.1 Implemented Calibration Methods

For a comparison and a performance test, we decided to
implement more than one response recovery method. We
implemented both versions of polynomial approximation –
the original one by Mitsunaga and Nayar [8] and the his-
togram based modification by Grossberg and Nayar [4]. We
also implemented the original nonparametric method of De-
bevec and Malik [3] according to their sample implementa-
tion, which was published in the appendix of their article.

Additionally, we modified the original method of De-
bevec and Malik [3] to recover a nonparametric model of
g from image histograms. We followed the idea of Gross-
berg and Nayar [4] originally used for the polynomial model
of Mitsunaga and Nayar.

4.2 Experimental Verification

To verify the usability of response recovery methods de-
scribed in articles [3], [8] and [4] we tested our implementa-
tion of these methods on synthetic images created with the
known response function.

4.2.1 Synthetic Data Without Noise We created six vir-
tual grayscale images generated from a green channel of an
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Figure 3: (a) Synthetic nonlinear images. Plots: Green line rep-
resents inverse of camera response function actually used. The
other lines represent curves estimated by using different algorithms
– nonparametric model of Debevec and Malik (blue), histogram
based version of the same algorithm (red), polynomial model by
Mitsunaga and Nayar (cyan) and histogram based version of this
algorithm (black). (b) estimates from data without noise and quan-
tization. (c)–(e) estimages from noisy and quantized data.

HDR image. The individual images were generated using
formula Mij = g−1(s(Ei∆tj)), whereEi is normalized
irradiance value of pixeli. ∆tj is exposure time of im-
agej, we used values{1, 4, 16, 64, 256, 1024} which pro-
vide 2 stops difference between the individual exposures.
s(I) is saturation function

s(I) =
{

I for I ≤ 1
1 for I > 1 . (2)

g−1 is the known camera response function, we used a 3rd
order polynomial.Mij is the generated brightness value of
pixel i in the virtual imagej.

The results of different response recovery algorithms are
plotted in Figure3b. The true response functiong is painted
by the green line. The original method by Debevec and Ma-
lik [ 3] is painted blue, the modified version of their algo-
rithm utilizing only image histograms is displayed in red.

We used 10th order polynomial to estimate camera re-
sponse using the polynomial model of Mitsunaga and Na-
yar [8]. The original method of Mitsunaga and Nayar is
shown in cyan. The histogram based version of this method
described by Grossberg and Nayar [4] is shown in black.

It is obvious that the results of all methods are very sim-
ilar and close to the true responseg when applied to data
without noise and quantization.

4.2.2 Noisy Synthetic Data The previous experiment
verified the ability of all tested algorithms to recover camera
response, but only for images without noise and quantiza-
tion errors. However, the real situation is rather different. To
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make our experiment more natural, the images in the testing
series were quantized to 256 discrete levels. A normally dis-
tributed noise with zero mean and unit variance was added to
each pixel value. Noisy values smaller than 0 were clamped
to 0. Similarly, values over 1 were clamped to 1.

We used the same algorithms to estimate the response
function from the noisy data like in the previous experiment.
The resulting estimates are plotted in Figure3c. It can be
seen that all methods used failed to recover the true camera
response shown by the green line.

Duiker, Hawkins, and Debevec provided the program
mkhdr based on the algorithm by Debevec and Malik [3].
The program works quite well even if quantization errors
and noise are present. When we closely examined the re-
sponse function generated bymkhdr, we learned that it
is cut above some unknown level. The level was differ-
ent for each color channel and varied between different
image series. According to this new knowledge, we de-
cided to recover response function only from values in the
range〈0, 0.98〉. The value of response function at interval
(0.98, 1〉was set to be constant value ofg(0.98). The results
of such an improved algorithm were very similar to those of
mkhdr utility. The results of this improved algorithm with
noisy synthetic data from previous experiment are plotted in
Figure3d. We see that the two methods based on the non-
parametric model of Debevec and Malik provided results
that were very close to the real response function even for
noisy and quantized data. However, the polynomial approx-
imation still failed to recover the true camera response.

In the last experiment, we tried to estimate the response
function using a polynomial of the same order (third) as
the real response function. It can be seen in Figure3e that
the third order polynomial models fitted well to the real re-
sponse function.

4.2.3 Summary of Response Recovery Test It is obvi-
ous from the experiments presented above that the naive im-
plementation of the algorithms described in articles [3], [8]
and [4] does not give the reasonable results. There are many
unknown aspects affecting the quality of results provided by
these algorithms.

We showed that the method of Debevec and Malik [3] can
be strengthened by ignoring the brightness values greater
than some value near the saturation point. Additionally, we
showed that the polynomial based methods are, in practise,
useful to model polynomial response of a known order only.
Is question, how the estimate improves if the monotocity
was enforced to the polynomial.

Regarding the problems associated with the camera re-
sponse recovery, we would recommend to use a linear cam-
era or a modern camera with the RAW output available to
capture the HDR images. The usage of RAW data has one
additional advantage – the 12-bit precision. The four extra
bits in every pixel value result in a lesser quantization error
and a wider dynamic range in the input images.

5 Estimate of the Exposure Times

Exposure times reported by the camera on the status display
or in the EXIF data are not the times actually used as noted

by Debevec and Malik [3] or Mitsunaga and Nayar [8]. The
typical camera provides the exposure times usually rounded
to one half stop or one third stop to conform with photo-
graphic tradition in marking exposure times. For example,
if the camera claims1/30s or1/60s was used then the real
value could be1/32s or 1/64s. Even worse, some cheap
cameras may have a significant variance in reproducing the
same exposure setting. The knowledge of the real exposure
times positively affects the radiometric quality of the com-
posed HDR image.

While the produced HDR image is normalized – to have
brightness values ranging from 0 to 1 – there is no need to
know the absolute value of the exposure times. It is suffi-
cient to estimate the relative exposures against the darkest
image. We set the exposure time of the darkest image∆t1

to be unit,∆t1 = 1. The relative exposures of the other
images can be computed from the exposure ratiosk j of the
consecutive image pairs using formula∆tj = kj−1∆tj−1.

Recovering exposure times from images themselves can
also compensate for uniform changes in illumination be-
tween the individual shots provided the change is uniform
across the whole scene. The difference in the scene illumi-
nation is contained in the recovered exposure times.

5.1 Exposure Ratio Estimate for Linear Camera

For images captured with a nonlinear response camera, Mit-
sunaga and Nayar [8] described an iterative scheme recov-
ering both – the camera response function and the exposure
ratios.

When capturing with a linear response camera there is
no need for response recovery. Hence, we use a differ-
ent approach to estimate the exposure ratio from the cap-
tured images. Unlike the method of Mitsunaga and Nayar
our method does not require the knowledge of rough expo-
sure estimates. It only needs the brightness transfer function
which can be recovered using the image histograms only [4].

In our approach, we fit the brightness transfer function
using a linear function. The derivative of this linear function
is the unknown exposure ratio. If the camera has a linear
response then the brightness values of the image pair are
related by the equations

kjMA = Tj(MA)
MB = kjT

−1
j (MB) , (3)

wherekj is the exposure ratio ofj-th image pair.Tj is the
brightness transfer function relating brightness valuesMA

of the imagej to the brightness values of the imagej +
1. T−1

j is the inverse brightness transfer function relating
brightness valuesMB of the imagej + 1 to the brightness
values of the imagej.

From (3), MA ∈ {M : Tj(M) < Z} and MB ∈
{M : M < Z}, whereZ is some saturation level, we can
construct systemS0 of equations linear inkj

kjMA

√
hj(MA) = Tj(MA)

√
hj(MA)

MB

√
hj+1(MB) = kjT

−1
j (MB)

√
hj+1(MB) . (4)

We used square roots of image histogramshj , hj+1 to weigh
the solution of the equations system in the least square sense.
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Figure 4: Plots show a linear fit to the blue painted brightness
transfer function (BTF). The red line shows initial estimate, the
green line (it is covered by the black line in the left plot) shows
the result after a final iteration with outliers removed. The left
plot is BTF of the two darkest synthetic images. The real BTF
used to generate these images is shown in black. The right plot is
a real world example. The black line expresses BTF as it would
correspond to exposure times reported by the camera.

We solved the linear system in Matlab. Because of noise in
the data, there are outliers affecting the least squares fit. An
iterative scheme was applied to remove the outliers.

First, the initial ratiok
(0)
j is estimated using the system

S0. Next, the following steps are repeated until the change
of kj is smaller than the required precision. (1) The average
square errorVi of the solutionSi is computed. (2) Using
current estimatek(i)

j , the square errors of all equations in
the systemS0 are computed. (3) Equations having errors
smaller than3Vi – the inliers – are incorporated in the next
linear systemSi+1. (4) The systemSi+1 is used to estimate
the next exposure ratiok(i+1)

j .

5.2 Limitations of Exposure Times Recovery

The process of exposure times recovery requires that the im-
ages sufficiently overlap in the brightness domain. If there
is no information to relate brightness values in one image to
the brightness values in the other image then the exposure
ratio of the two images cannot be estimated.

5.3 Experimental Verification

The test using both the synthetic and the real images was
conducted to verify our algorithm estimating exposure ratio
of the two differently exposed images captured with a linear
response camera.

For the synthetic test, we created six virtual grayscale
photographs from an HDR image using the similar approach
to the one described in Section4.2. We used a linear re-
sponse function instead of a third order polynomial. Simi-
larly we quantized brightness values to 256 discrete levels
and added normally distributed noise with mean zero and
unit variance.

The left plot in Figure4 illustrates the estimate of the ex-
posure ratio for the two darkest synthetic images. The dark-
est images were chosen because they suffer from noise more
than brighter images. The initial guess was 3.1378. After
seven iterations removing outliers the estimate converged to
the value 4.0178. The real exposure ratio used to generate
the images was 4.

The right plot in Figure4 illustrates the estimate of the
exposure ratio of two real, differently exposed photographs.
The initial guess was 2.1406. It converged to the value
2.1868 after four iterations. The ratio computed from the

exposure times reported by the camera was 1.8750. It can
be seen that the estimated value fits the brightness transfer
function much better than the value computed from camera
data.

6 Image Registration

6.1 The Algorithm

The image registration algorithm is necessary in the case of
image capturing with a hand held camera is considered.

Before the registration itself, the camera response func-
tion and exposure times are estimated from the histograms
of unregistered images.

Only consecutive image pairs are registered. To warp dis-
junct images a composed transformation is created from the
tranformations coupling the registered pairs. At the start,
each image pair is linearized using the estimated camera re-
sponse function. Next, the darker image is multiplied by the
exposure ratio of the two images. Values above some satu-
ration level are discarded in both images. Similarly values
below some noise level are discarded in both images.

The rough estimate of the image shift(∆x0, ∆y0) at a
pixel precision is found using correlation in Fourier space

(∆x0, ∆y0) = max(F−1(F(I1) · F(I2))) , (5)

whereI1 andI2 are the two images in the pair andF is the
complex Fourier spectrum.

The estimates(∆x0, ∆y0) and angleϕ0 = 0 are used to
initialize the local search for the image shift(∆x, ∆y) and
rotationϕ with subpixel precision. The search is performed
by the Matlab functionfminsearch which uses the iter-
ative simplex search method. The optimized criterionε is
the square of normalized difference summed across all cor-
responding pixel candidates

εi =
∑
x,y

(
I1(x, y)−W2(x, y)

n(x, y)

)2

, (6)

whereW2 is imageI2 warped using current(∆xi, ∆yi) and
angleϕi = 0 in the iterationi. n(x, y) is the normalizing
function balancing the importance of bright and dark pixels.
We used the average value of the potentially corresponding
pixels as the normalization term

n(x, y) =

{
I1(x,y)+W2(x,y)

2 for I1(x,y)+W2(x,y)
2 ≥ t

t for I1(x,y)+W2(x,y)
2 < t

,

(7)
wheret is normalization threshold preventing the boost of
importance of the very dark noisy pixels.

6.2 Experimental Verification

Figure5 demonstrates the performance of the implemented
registration algorithm. The left picture shows a tonemapped
version of the HDR image captured with a hand held cam-
era. The image was stitched from three photographs differ-
ing by two stops in exposure. The photographs were cap-
tured at a wide end of the zoom lens – a 28mm focal length
in 35mm camera equivalent. The use of a short focal length
makes the registration process difficult due to the wide field
of view and the lens distortion.
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Figure 5: The HDR image taken with a hand held camera. (top)
mid-exposed photograph from the source image set. (middle) HDR
image from photographs registered for shift. (bottom) HDR image
from photographs registered for shift and rotation.

The right side of Figure5 shows enlarged details. Details
in the first row were taken from the second source photo-
graph and provide a sharpness comparison with the HDR
stitches. Details in the middle row were taken from the
HDR image stitched from photographs registered by mod-
eling shift only. The registration process was performed us-
ing the correlation in Fourier domain at a pixel precision.
Details in the bottom row were taken from the HDR image
stitched from photographs registered by shift and rotation
modeling at a subpixel resolution. This was done by a non-
linear optimization using a simplex method. Details in the
first column were taken from the middle of the scene while
details in the second column were from the lower left corner.

From the details shown, it can be seen that the registra-
tion by modeling shift at a pixel precision is not sufficient.
On the other side, the images registered at a subpixel pre-
cision by modeling shift and rotation provide a HDR image
which is only slightly softer than the source images. The
stitched HDR image provides almost the same amount of de-
tail compared to the information contained in the all source
images. However, the total amount of detail in the HDR
image is much higher when comparing to one source im-
age only. This is caused by the missing information in the
overexposed or underexposed areas of the source image.

7 Conclusions

We showed that the recovery of camera response function
using the differently exposed images is a difficult task. We
implemented state-of-the-art algorithms according to de-
scriptions given by their authors. We learned that they are
very sensitive to the noise in data. In agreement with our re-
sults, we see the way around the problem in the use of linear
12-bit RAW images which are now offered by many modern
mid-class and professional cameras.

We proposed a robust method recovering exposure times
from unregistered photographs captured by a linear response
camera. The method can be used with linear RAW images.
Next, we showed that capturing HDR images is possible

without mounting the camera on a tripod and described a
method to register captured images differing in exposure.
The presented method expands the usability of HDR widen-
ing to hand held photography. Methods were implemented
in Matlab and tested on both synthetic and real data.
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