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Abstract In this paper, we present a novel defuzzification
approach by feature distance minimization with an adapted
Minkowski distance. The proposed approach aims at pro-
viding a segmented image through the defuzzification of
the fuzzy partitions of the original image. A mathemati-
cal derivation of which best pixel would be added/removed
to/from the alpha-region of the crisp set is described. And,
an evaluation of the proposed approach is carried out.

1 Introduction

A gray-scale object may be considered as a fuzzy set, where
each pixel is defined with a membership function [1]. The
membership values can be of real interest to conduct the seg-
mentation of an image into regions of interest, especially
that they are required in fuzzy clustering approaches. Dur-
ing this process, one should integrate more features that will
represent these regions by their geometrical properties as
shape, area, perimeter,etc. Amongst a whole set ofN pos-
sibly informative measurements, feature selection aims at
selecting a subset ofn features from the given set ofN mea-
surements, wheren<N [2].

Preserving some relevant features of the original object
in the fuzzy discrete representation aids in the recovering
of a crisp object when defuzzifying that representation. De-
fuzzification by feature distance minimization achieves such
preservation of the relevant features in the fuzzy discrete
representation. In order to get an output object that resem-
bles the original crisp object, the selection of features that
will be included in the defuzzification should take into ac-
count their relevance (i.e. shape preservation and applica-
tion), and how well is their preservation in fuzzification. In-
tuitively, points with high membership degrees to the fuzzy
object should be included in its crisp representation, and
those with low membership degrees should be assigned to
the background. This can be achieved by using the member-
ship degree values of the points as features in the distance
measure [3]. Here, one can work onsimilarity spacein-

stead of feature space (i.e. for the purpose of clustering).
Thus, if one can find a similarity measure derived from the
object features which is considered appropriate for the prob-
lem domain, then a single number can capture the essential
closeness of a given pair of objects, and any further analysis
can be based only on those numbers [4]. The effectiveness
of object recognition is highly dependent on the accurate
identification of shapes of clusters. which are determined
by the choice of the distance measure [5]. For example, the
Euclidean distance is often used to reflect dissimilarity be-
tween two patterns and is known to work well when all clus-
ters are spheroids or when all clusters are well separated [6].
The use of the Minkowski dissimilarity measure in the paper
was due to its allowance of varying the assumptions of the
shape of the clusters by varying the orderm. The most often
used value ism = 2 that assumes a circular cluster shape.
Usingm = 1 assumes that the clusters are in the shape of a
(rotated) square in two dimensions or a diamond like shape
in three or more dimensions. Form = ∞, the clusters are
assumed to be in the form of a box with sides parallel to the
axes [7].

In this paper, we present a novel defuzzification ap-
proach by feature distance minimization with an adapted
Minkowski distance. The idea is based on the use of float-
ing point search for finding the best crisp set from Fuzzy
C-Means clustering using Minkowski distance.

The novelty of the proposed approach lies in the use of
a new defuzzification that embeds an improved Minkowski
distance, which takes into account both the membership de-
gree values of the elements of the fuzzy set, and the spatial
relationships.

The paper is organized as follows: Section 2 gives an
overview of different dissimilarity measures, and the rea-
sons behind using Minkowski distance. Section 3 introduces
notations used in the paper, fuzzy and crisp sets, and Fuzzy
C-Means. In Section 4, we describe the proposed approach,
combining Fuzzy C-Means, the new defuzzification process,
and an improved Minkowski distance. We evaluate the pro-
posed approach in Section 5, and conclude the paper in Sec-
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tion 6.

2 Dissimilarity Measures

Given two sequences of measurements fromX =
{xi : i = 1, ..., n} ∈ Rn andY = {yi : i = 1, ..., n} ∈ Rn

such thatn is the size of the input image. The dissimi-
larity betweenX and Y is a measure that quantifies the
independency between the sequences [8], For the purpose
of this paper, we assume thatX andY represent the fuzzy
set and the crisp set, respectively, provided thatxi andyi

represent the membership degrees and the pixel intensities,
respectively.

The termdistanceis often used informally to refer to a
dissimilarity measureM derived from the characteristics de-
scribing the objects (i.e. Euclidean distance) [9].

A metric M(X,Y) is considered a dissimilarity measure if
a higher value is produced as corresponding values inX and
Y become less dependent, and which satisfies the following
for all X ∈ Rn andY ∈ Rn [8]:

• Non-negativity:M(X,Y ) ≥ 0;

• Reflexivity: M(X,Y ) = 0 if an only if X = Y ;

• Symmetry:M(X,Y ) = M(Y,X);

• Triangle inequality:M(X,Y ) + M(Y,Z) ≥M(X,Z).

Thus, in order to measure dissimilarity, one of the parame-
ters that can be used isdistance. This category of measures
is known as separability, divergence, or discrimination mea-
sures [9].

In clustering analysis, choosing the appropriate dissimi-
larity measure is required. The most commonly used mea-
sures in clustering analysis are: (1) Euclidean distance, (2)
Manhattan distance, (3) Minkowski distance, and (4) Maha-
lanobis distance.

Euclidean distanced2 (xi,xj), wherexi andxj are p-
dimensional features, withp ∈ N∗

+ is the most popular mea-
sure of dissimilarity, and the most common distance metric
used. It is the usual manner in which distance is measured
in the real world [10], and is defined by [11]:

d2 (xi,xj) =

√√
√
√

p∑

k=1

(xik − xjk)2 (1)

Euclidean distance works when each cluster has a shape
of a hyper-sphere in space, but, has poor performance when
the cluster has a shape of a hyper-ellipsoid [11].

The drawback of Euclidean distance is that it ignores the
similarity between attributes, as each attribute is treated as
totally different from all other attributes, and does not work
well in high dimensions and for categorical variables [10].
In order to overcome this drawback, Gustafon and Kessel
distance can be utilized, which is able to discriminate ellip-
soidal cluster shapes [4].

Manhattan distance gets its name from the rectangular
grid patterns of streets in midtown Manhattan, and is defined
by [7]:

dManhattan (xi,xj) =
p∑

k=1

|xik − xjk| (2)

In some situations, this metric is more preferable to Eu-
clidean distance, since the distance along each axis is not
squared, and thus, a large difference in one dimension will
not dominate the total distance [7].

Mahalanobis distance is the distance between an observa-
tion and the centre for each group in a p-dimensional space
defined byp variables and their covariance. Thus, a small
value of Mahalanobis distance increases the chance of an
observation to be closer to the groups center, and the more
likely it would be assigned to that group [14]. Mahalanobis
distance is defined by [14]:

dMahalanobis (xi,xj) =

√√
√
√(xi − xj)

T
−1∑

xi − xj (3)

where
∑−1 is the inverse covariance matrix.

If there are two non-correlated variables, the Maha-
lanobis distance between the points of the variables in a 2D
scatter plot is the same as the Euclidean distance [15].

Unlike most other distance measures, Mahalanobis dis-
tance is not dependent upon the scale on which the variables
are measured since it is normalized [14].

Minkowski distance is a generalization of Euclidean and
Manhattan distances [12], and is defined by [11]:

dm (xi,xj) = m

√√
√
√

p∑

k=1

|xik − xjk|
m (4)

wherem is a real number, such thatm ≥ 1. Whenm = 1,
it represents the Manhattan distance, and whenm = 2, it
represents the Euclidean distance [13].

Minkowski distance provides a concise, parametric dis-
tance function that generalizes many of the distance func-
tions used in the literature. The advantage of using this
distance is that mathematical results can be shown for the
whole class of distance functions, and the user can adapt
the distance function to suit the needs of the application by
modifying the Minkowski parameterm [12].

3 Background Notations

In this section, the notations of crisp sets, fuzzy sets, core
of a fuzzy set, support of a fuzzy set,α − cut of a fuzzy,
and Fuzzy C-Means will be explained (sets are usually de-
noted by upper case letters, and their members by lower case
letters [16]).

A crisp setA in the universe of discourseU has a binary
membership function, and thus, has no uncertainty. It is de-
fined as a set of ordered pairs [17]:

A = {(x, φA (x)) | x ∈ U} (5)

whereφA(x) is the binary membership function:φA(x) = 1
if x ∈ A, andφA(x) = 0 if x /∈ A. φA(x) ∈ {0, 1} [17].

A fuzzy setA∼ in the universe of discourseU has a fuzzy
membership function, in which fuzziness (uncertainty) ex-
ists. It is defined as a set of ordered pairs [17]:

A∼ = {(x, μA∼ (x)) | x ∈ U} (6)
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whereμA∼ is the fuzzy membership function that mapsx
to a membership degree between 0 and 1.μA∼(x) ∈ [0, 1]
[17].

The core of a fuzzy setA
∼

in the universe of discourse
U is a crisp set that contains all the elements ofU that have
membership values inA

∼
equal to 1, that is [18]:

core (A∼) = {(x ∈ U) | μA∼ (x) = 1} (7)

Thesupportof a fuzzy setA
∼

in the universe of discourse
U is a crisp set that contains all the elements ofU that have
nonzero membership values inA

∼
, that is [19]:

supp (A∼) = {(x ∈ U) | μA∼ (x) > 0} (8)

An α − cut a fuzzy setA
∼

is a crisp setA∼
α that con-

tains all the elements inU that have membership values in
A greater than or equal toα, that is [19]:

A∼
α = {x ∈ U | μA∼ (x) ≥ α} (9)

Let X = {x1, ..., xb, ..., xn} be a set ofn objects, and
V = {v1, ..., vb, ..., vc} be a set ofc centroids in ap-
dimensional feature space. The Fuzzy C-Means partitionsX
into c clusters by minimizing the following objective func-
tion [4]:

J =
n∑

j=1

c∑

i=1

(uij)
m ‖xj − vi‖

2 (10)

where1 ≤ m ≤ ∞ is the fuzzifier, vi is the ith centroid
corresponding to clusterβi, uij ∈ [0, 1] is the fuzzy mem-
bership of the patternxj to clusterβi, and‖.‖ is the distance
norm such that,

vi =
1
ni

n∑

j=1

(uij)
m

xj where ni =
n∑

j=1

(uij)
m (11)

and

uij =
1

∑c
k=1

(
dij

dkj

) 2
m−1

where d2
ij = ‖xj − vi‖

2

(12)

FCM starts by randomly choosingc objects as centroids
(means) of thec clusters. Memberships are calculated based
on the relative distance (Euclidean distance) of the object
xj to the centroids using Eq. (12). After the memberships
of all objects have been found, the centroids of the clusters
are calculated using Eq. (11). The process stops when the
centroids from the previous iteration are identical to those
generated in the current iteration [4].

4 Defuzzification by Feature Distance
Minimization

Defuzzification by distance minimizationD(A) of a fuzzy
setA on a reference setX, with respect to the distanced, is
[3]:

D (A) ∈ {C ∈ P (X) | d (A,C) =

minB∈P (X) [d (A,B) ]}
(13)

whereP(X) is the set of crisp subsets of a power set, and
d is the Minkowski distance between the vector representa-
tions of both the fuzzy set and the crisp subset, such that the
fuzzy set is represented by its membership values that serve
as separate features for every individual pixel [3].

This type of defuzzification of a fuzzy segmented
image can be seen as an alternative to crisp segmentation,
where, instead of crisp segmentation of gray level images,
fuzzy segmentation is performed, and then followed by
defuzzification [3].

4.1 Minimizing the distance between fuzzy and crisp
sets

Floating search methods - SFFS (Sequential Forward Float-
ing Selection) and SBFS (Sequential Backward Floating Se-
lection) - are considered a development of thel-r algorithm,
in which the values (features) ofl andr are allowed tofloat,
that is, they may change at different stages of the selection
procedure [20]. Thus, floating search makes it flexible to
change features so as to approximate the optimal solution as
much as possible [21].

In FCM-FloatingSearch(see algorithm below), the en-
hancement of the floating search methods is the introduction
of the fuzzy membership values and the neighbourhood
information. Provided that both adding and removing pixels
during region growing is allowed to happen [3].

FCM-FLOATINGSEARCH()
1 call fuzzycmeans;
2 input grayscale image;
3 fuzzySet← fuzzy segmented image;
4 membershipMatrix ← μ; / ∗ μ is the degree of
5 membership ∗ /
6 n← area(support(fuzzySet)\
7 α− cut(fuzzySet);
8 C0 = α− cut(fuzzySet);
9 for i = 1 to n

10 do
11 Ci ← φ; / ∗ empty set ∗ /
12 k ← 0;
13 / ∗ add best pixel that minimizes the distance
14 between the fuzzy set and the crisp set ∗ /
15 while k < n
16 do
17 among the pixel p being 4− neighbourhood
18 of Ck and not in Ck;
19 if pixel p ∈ support(fuzzySet)
20 then
21 p← degree of membwership;
22 select the pixel p with the highest degree
23 of membership; / ∗ minimizes
24 d∼

m (fuzzySet, Ck ∪ {p}) ∗ /
25 Cnew ← Ck ∪ {p} ;
26 if Ck+1 ← 0 ‖ d∼m (fuzzySet, Cnew) <
27 d∼

m (fuzzySet, Ck+1)
28 then
29 Ck+1 ← Cnew;
30 k ← k + 1;
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31 / ∗ possibly remove pixel ∗ /
32 do
33 change← false;
34 among the pixels p being 4− neighbourhood of
35 ∼ Ckand not in α − cut(fuzzySet); /∗ ∼ Ck is
36 the complementof Ck ∗ /
37 if pixels ∈ Ck

38 then p← degree of membership;
39 select the pixel p with lowest degree of
40 membership; / ∗ minimizes d∼

m(fuzzySet,
41 Ck\{p}) ∗ /
42 Cnew ← Ck \ {p} ;
43 k ← k − 1;
44 change← true;
45 while change && k > 0

In each iteration of theFCM-FloatingSearchalgorithm,
either for adding or removing a pixel, that selected pixel
would be the pixel being a 4-neighbourhood of a crisp set
Ck, and the one that minimizes the distance between the
fuzzy set (fuzzy partition) and the crisp set (segmented im-
age), including the added pixel in the iteration where we add
pixels, and between the fuzzy set and the crisp set excluding
the removed pixel in the iteration where we would possibly
remove pixels. Fig.1 depicts theFCM-FloatingSearchal-
gorithm general process. In sections 4.2 and 4.3, we show
what would be considered the best added/removed pixel that
minimizes the distance between the fuzzy set and the crisp
set.

Figure 1: FCM-FloatingSearch

4.2 Adding best pixel

The pixel to be added to the crisp set at each iteration of the
floating search algorithm has to meet three conditions: (1)
belonging to the support and not theα − cut of the fuzzy
set, (2) being a 4-neighbourhood of the crisp set, and (3)
minimizing the distance between the fuzzy set and the crisp
set including the added pixel.

The Minkowski distance between the fuzzy setf (i.e.
fuzzy segmented image) and the crisp setCk at iterationk
is:

dm (Ck, f) = m

√√
√
√

length(Ck)∑

i=1

| Ck (i)− f (i) |m (14)

After adding a pixel pi to the crisp set, the
Minkowski distance betweenf and the new crisp set
Cnew

(
Ck∪{pi}

)
becomes:

dm (Cnew, f) = m

√√
√
√

length(Ck)∑

i=1

| Cnew (i)− f (i) |m (15)

Eq. (15) can be rewritten as:

dm (Cnew, f) = ( | Cnew (pi)− f (pi) |
m +

length(Ck)∑

i=1;i 6=pi

| Ck (i) − f (i) |m )1/m (16)

The difference betweenCk andCnew is only in the element
at locationpi. Thus, in order to includepi in Ck, |Ck (pi) −
f (pi) |m would be subtracted from|Cnew (pi) − f (pi) |m,
and the conditionj 6= pi in the summation of Eq. (16)
would be removed.

As the singleton pixelpi is added toCnew, Cnew (pi) =
1, and the corresponding location inCk (pi) = 0. By sub-
stituting those values , we get:

d∼
m (Cnew, f) = ( | 1− f(pi) |

m −| − f(pi)|
m+

length(Ck)∑

i=1

| Ck (i) − f (i) |m )1/m (17)

Assuming thatf(pi) represents the degree of membership of
some pixel, which, at the same time, represents the feature
of that pixel, it can be noticed from Eq. (17) that as the value
of f(pi) increases, the distance value decreases.

So, when selecting the pixel that minimizes the distance
between the fuzzy set and the crisp set, the pixel with the
highestdegree of membership is the pixel which will be
added.

4.3 Removing pixels

The pixel to be removed from the crisp set at each iteration
of the floating search algorithm has to meet three conditions:
(1) belonging to the crisp set and not to theα-cut of the
fuzzy set, (2) being a 4-neighbourhood of the crisp set com-
plement, and (3) minimizing the distance between the fuzzy
set and the crisp set excluding the removed pixel.

After removing a pixel pi from the crisp set, the
Minkowski distance betweenf and the new crisp set
Cnew

(
Ck\{pi}

)
becomes:

dm (Cnew, f) = m

√√
√
√

length(Ck)∑

i=1

| Cnew (i)− f (i) |m (18)
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Following the procedure as that in section 4.2, we conclude:

d∼m (Cnew, f) = ( | −f(pi) |
m −|1− f(pi)|

m+
length(Ck)∑

i=1

| Ck (i) − f (i) |m )1/m
(19)

It can be noticed from Eq. (19) that as the value off(pi)
decreases. the distance value decreases.

So, when selecting the pixel that minimizes the distance
between the fuzzy set and the crisp set, the pixel with the
lowestdegree of membership is the pixel which will be re-
moved.

4.4 Novelty of the proposed distance

The proposed distance, in contrast to other distance mea-
sures, takes into account themembership degreevalues of
the elements in the fuzzy set, in addition to thespatial rela-
tionship(neighbourhood information). It is also very flexi-
ble in trying to minimize the distance, as the approach tries
to enhance the result when adding/removing pixels.

Example: A = {1.3, 5.4, 3.7, 2.1, 4.5}; B =
{6.8, 2.3, 7.9, 10.1, 3.7}; C = {5.3, 9.4, 3.1, 4.8, 9.9};
(assumptions:m = 2, degree of membership when adding
pixel = 1, degree of membership when removing
pixel = 0)

For comparing the result of the proposed distance
with the Euclidean distance, Manhattan distance, and
the classical Minkowski distance, two approaches can be
used (Since we need to know the covariance of the data
for Mahalanobis distance, which is not always available,
Mahalanobis distance was not used in this example as it is
beyond its scope) :
(i) Calculate the distance between themedianof the two
sets:
d2 (A,B) = 3.1
dManhattan (A,B) = 3.1
dm (A,B) = 3.1
d∼

m(A,B) = 2,93

(ii) Find the average of the distances between each
pair:
d2 (A,B) = 4.32
dManhattan (A,B) = 4.32
dm (A,B) = 4.32
d∼

m(A,B) = 4.12

It can be noticed that the proposed distance gives the
lowest value among the other distances, which is an
important characteristic inFCM-FloatingSearch.

The proposed distance can be considered as ametric, as it
complies with the metric postulates mentioned insection 2,
that is,non-negativity, reflexivity, symmetry, andtriangle in-
equality. Provided that, in the case of reflexivity, the fuzzy
set is considered a crisp set as they are equal, and can be
treated as the classical Minkowski distance (fuzzy member-
ship values omitted).

• Non-negativity:d∼m(A,B) = 11.00

• Reflexivity: d∼m(A, A) = 0

• Symmetry:d∼m(A,B) = d∼
m(B,A) = 11.00

• Triangle inequality:d∼m(A,B) + d∼m(B,C){22.88}> d∼
m(A,C)

{8.23}

5 Evaluation

In this section, we will quantitatively evaluate our seg-
mentation results produced by theFCM-FloatingSearch
algorithm. We will follow a low level supervised evaluation
criteria, that is, the segmentation output is what would only
be considered in the evaluation, and the original image
information will not be taken into account. Such assessment
of the quality of segmentation is achieved by comparing the
segmentation output to a ground truth [24].

5.1 Image database

An image database [25] composed of synthetic images hav-
ing a ground truth was used. The database1 includes 8400
images. Images used in the study were specifically extracted
from theB0U group which is composed of 100% textured
regions.

5.2 Influence of the FCM fuzzifier

The fuzzifierm ∈ [1, +∞) has a significant impact on the
performance of FCM. It controls the amount of fuzziness
of the final C-partition in the FCM algorithm [22]. Pal and
Bezdek suggested that the value ofm is probably in the in-
terval [1.5, 2.5] [23]. Huang et al [22] suggest that the range
of values ofm that create significant changes in the FCM
membership values, and which are considered as effective
boundaries for the level of fuzziness, is approximately
[1.4, 2.6]. They also recommend that an analyst should
not be concerned about the changes of the membership
values outside of these boundaries, as they encapsulate the
uncertainty associated with the level of fuzziness parameter.
For m, most researchers adoptm = 2 when performing
the FCM algorithm [22]. Although, if we take the average
of the above two suggested boundaries: (1.5+2.5)/2=2 and
(1.4+2.6)/2=2. Thus, the fuzziness parameter value chosen
in this paper is 2.

5.3 Segmentation results

Images extracted from theB0U group of the database were
segmented according to theFCM-FloatingSearchprocess
shown in Fig. 1. In order to analyze the segmentation re-
sults (quality, accuracy, extracted information, ...etc), nine
observation criteria have been used [26]:Precision, Recall,
and theDice index(or F-measure), which characterize the
overall quality of the segmentation area. TheManahattan
(or Matching) indexgives the ability to study the similarity
rate of the entire image. TheJaccard(or Tanimoto) index
studies the similarity rate between two segmentation areas.
The above criteria are based on statistical tests of true or
false positives, denoted TP and FP, respectively. And, true
or false negatives, denoted, TN and FN, respectively.

1 http://www.ecole.ensicaen.fr/˜rosenber/ressources UK.html
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PrecisionandRecallare defined by:

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
(20)

TheDice indexis defined by:

Dice index = 2.0×
Precision ×Recall

Precision + Recall
(21)

TheManhattan indexis defined by:

Manhattan index =
TP + TN

TP + FP + TN + FN
(22)

and, theJaccard indexis defined by:

Manhattan index =
TP

TP + FP + FN
(23)

The other criteria are:Hamming measure, which calcu-
lates the number of disparities between two images, and is
defined by:

MH (I1 ⇒ I2) = n−
∑

R2∈I2

maxR1∈I1 |R2 ∩R1| (24)

whereR1 andR2 are segmentation areas in the images
I1 andI2, respectively. And,n is the number of pixels of
one image.

Themean absolute distance(MAD), which analyzes the
contour points, and thus, the shape of the segmentation, is
defined by:

MAD (R1, R2) =
1
M

M∑

m=1

‖xm − ym‖ (25)

wherexm andym are contour points ofR1 andR2, re-
spectively.

And, the structural similarity (SSIM) for the extracted
structural information, is defined by:

SSIM (R1, R2) =
(2m1m2 + k1) (2cov1,2 + k2)

(m2
1 + m2

2 + k1) (σ2
1 + σ2

2 + k2)
(26)

wherem1 andm2 are the average values ofR1 andR2.
σ2

1 andσ2
2 are the variance,cov1,2 is the covariance.k1 and

k2 are two coefficients proportional to the dynamic range of
the pixel values.

Fig. 2 shows that we can obtain a perfect defuzzifica-
tion, similar to that proposed in [3], when the input image is
fuzzified.

Fig. 3 shows the results of the proposed approach, ap-
plied on a specific image, using differentα − cut values,
along with its fuzzy partition.

Fig. 4 shows results of applying the proposed approach
on more complex images with different number of textures
(B0UnR, wheren represents the number of textures), along
with theα− cut vlaues being used.

Fig. 5 shows a cell image without a ground truth.

Figure 2: (a) digital disk synthetic image; (b) result of the ap-
proach in [2]; (c) result of the proposed approach

Figure 3: Results of applying the FCM-FloatingSearch process:
(a) three-textured image; (b) ground truth of (a); (c) defuzzification
with α− cut = 0.5 of (a); (d) defuzzification withα− cut : = 1
of (a); and (e) fuzzy partition of (a).



Figure 4: (a) B0U2R 1 image; (b) ground truth of (a) ; (c) de-
fuzzificationα− cut : 0.5 of (a) ; (d)B0U2R 5 image; (e) ground
truth of (d); (f) defuzzificationα− cut : 0.5 of (d); (g)B0U3R 26
image; (h) ground truth of (g); (i) defuzzificationα − cut : 0.1 of
(g); (j) B0U4R 59 image; (k) ground truth of (j); (l) defuzzification
α − cut : 0.1 of (j); (m) B0U10R 4 image ; (n) ground truth of
(m); (o) defuzzificationα − cut : 0.1 of (m)

Figure 5: (a) cell image; (b) rough sketch of coreα − cut : = 1
(green border) and support (blue border); fuzzy partition of (a);
defuzzification withα − cut = 0.5 of (a).

B0U2R 1B0U2R5B0U3R26B0U4R59B0U10R4
Precision 100% 99.09% 100% 65.64% 47.05%

Recall 100% 99.91% 99.96% 98.69% 98.64%
Dice 100% 99.50% 99.98% 78.84% 63.71%

Jaccard 100% 99.01% 99.96% 65.08% 46.75%
Manhattan 100% 99.18% 99.98% 78.51% 71.54%
Hamming 1 536 11 14083 18651

Coeff. Vinet 0.002% 0.82% 0.02 21.49% 28.46%
MAD 0 8.10 0.62 17.69 23.79
SSIM 0.9997 0.9118 0.9951 0.6315 0.5185

Table 1: Segmentation results (evaluation) of FCM-
FloatingSearch

Tab. 1 summarizes segmentation results (evaluation) of
the proposed approach. Dice index emphasizes the qual-
ity of the segmentation. The Mean Absolute Distance high-
lights the shape of the segmentation, and the SSIM high-
lights the quantity of extracted information. Jaccard and
Manhattan indices highlight the problems of sub- or over-
segmentation. The number of Hamming is the number
of disparity between the segmentation and ground truth.
Thus, as can be noticed from the table,FCM-FloatingSearch
provides good segmentation results for the first three im-
ages despite noise or other factors. For the remaining two
images, although over-segmentation is introduced,FCM-
FloatingSearchextracts almost all of the information cor-
responding to the ground truth. Over-segmentation could be
solved by extracting the relevant ROI (Region of Interest) as
a preprocessing step toFCM-FloatingSearch. That is, se-
lecting the best crisp set manually.

6 Conclusion

In this paper, we have presented a novel defuzzification
approach, based on Fuzzy C-Means, with an adapted
Minkowski distance. For an image without ground truth,
the algorithm removes additional unnecessary data, pro-
viding a more clearer segmentation. It can be noticed that
the choice of a properα − cut value is essential to the
defuzzification output, provided that it is not necessary that
the highestα − cut value implies a better defuzzification.
Thanks to the ground truth, FCM-FloatingSearch was able
to be evaluated for the ability of detecting that ground
truth. For images with ground truth, and of different
textures, FCM-FloatingSearch was able to provide good
segmentation despite noise and other factors. And, where
over-segmentation occurred, the proposed approach was
able to extract almost all the information corresponding to
the ground truth. This can be enhanced by selecting the
best crisp set manually. The adapted Minkowski distance
proposed in the paper, which took into account the fuzzy
membership degrees and the neighbourhood information,
showed better results compared to other distance measures.
A prospect for this work is to combine the algorithm
proposed with different fuzzifier values in FCM. Also, since
the defuzzification in this paper was based on one cluster, a
future work would be to adapt the algorithm for a number
of clusters higher than 2 (foreground/background) as a first



step, and then, explore the possibility to integrate the pro-
posed defuzzification approach for other clustering methods
such as RFCM, Competitive Agglomerative Clustering, ...
etc.
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