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Abstract The inspection of high voltage power lines is an
important task in order to prevent failure of the transmis-
sion system. In this work, we present a novel approach to
detect insulators in aerial images and to analyze them au-
tomatically for possible faults. Our detection algorithm is
based on discriminative training of local gradient-based de-
scriptors and a subsequent voting scheme for localization.
Further, we introduce an automatic extraction of the indi-
vidual insulator caps and check them for faults by using a
descriptor with elliptical spatial support.
We demonstrate our approach on an evaluation set of 400
real-world insulator images captured from a helicopter and
evaluate our results with respect to a manually created
ground-truth. The performance of our insulator detector
is comparable to other state-of-the-art object detectors and
our insulator fault detection outperforms existing methods.

1 Introduction
High voltage power lines and transmission systems become
more and more important with the raising demand of energy,
especially in context of renewable resources. Pre-emptive
inspection is an essential maintenance procedure in order to
keep the downtime of a power line low, but it is time- and
money-consuming, requiring much manual labor. Therefore
we propose a machine-aided method for insulator inspection
by automatically analyzing the images taken along a power
line in order to determine faulty insulators, which are among
the most common problems in transmission networks [21].
While there are different types of insulators, we focus on the
most common cap and pin insulator with its characteristic
stacked caps. The insulator can be applied to the pylon in
different orientations, different sizes, or combined parallel
or serial. We thus do not assume a certain orientation, com-
bination or size in our method.

In this paper we present a novel recognition method for
insulators in highly cluttered images (see Fig.1), and we in-
troduce an automatic insulator fault detector. An overview
illustrating the key-features of our work is shown in Fig. 2.
The main contributions of this work are

1. an insulator detector, which is invariant to insulator ori-
entation, size and combinations, partial overlap, illumi-
nation, and background clutter based on a circular de-
scriptor and a noise-tolerant voting scheme, and
1Current affiliation: Google Inc.
Figure 1: Our method detects insulators in highly cluttered
aerial images and performs an automatic fault analysis. The
faults are highlighted in red.

2. an automatic insulator fault detector, which automatically
partitions each insulator into its individual caps and sub-
sequently analyzes each cap for faults based on an ellip-
tical descriptor.

We demonstrate the performance of our approach using an
image set taken from a helicopter inspection, and evaluate
the quality using a manually created groundtruth, which is,
to the best of our knowledge, the first systematic evaluation.

2 Related Work
While different methods for detecting insulator faults ex-
ist, e.g. visual inspection or electrotechnical measurement,
our method can be used complementary with other meth-
ods and especially for identifying mechanical damage and
flashover marks. However, there is no inspection method or
measurement device that is able to detect all possible insu-
lator faults [14].

For insulator detection there are several works, as e.g. [4,
9], who use the detection as enabling method for further pro-
cessing, but these methods’ localization is too inaccurate for
our work and restricted to a certain scenario, e.g. untextured
background or a camera facing the sky, and thus not work-
ing well for our highly cluttered background. Opposing to
these inaccurate methods, Kawamura et al. [11] published
an approach based on 3D template matching for accurate 3D
localization of insulators for robot interaction. The method
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Figure 2: An overview of our method. Based on detected keypoints (a) we extract our proposed descriptor (b) and classify
them as insulator cap or background clutter. On the classified keypoints we perform a RANSAC-based voting scheme to locate
insulator detections (c). From these detections we compute the insulator partitioning (d) and extract our elliptical descriptor on
individual caps (e). From these descriptors we determine faulty caps, which are then highlighted in the original image (f). Best
viewed in color.
has high computational costs and is specifically designed for
their task of 3D localization, which is not necessary and not
possible in our case as we neither have range images nor a
suitable model readily available.
A simple method to detect insulators is provided by Zhang et
al. [26] who use color thresholding, but their method is only
capable of detecting tempered glass insulators due to their
characteristic color, and it needs a well adjusted threshold
parameter which limits this method considerably.
Two approaches [24, 13] use edge descriptors for insula-
tor detection. Both calculate the descriptors on a dense
grid, which creates a high number of false positive detec-
tions resulting in a limited applicability in a cluttered en-
vironment. Further, edge descriptors are not discriminative
enough, which is indicated by a high false positive rate.
A completely different method was proposed by Zhao et
al. [27] who use a modified Markov Random Field to model
the repetitive geometric structure of an insulator, which
is more invariant to clutter. They have only shown their
method for combined insulators in groups of two or four.
In our case most of the insulators are attached solely to the
power line and thus their method cannot initialize the geo-
metric models and fails to detect them.

For the task of insulator fault detection, [16] and [8] pro-
posed methods especially for dirt detection based on high
resolution images which cannot be applied in our case, be-
cause our images are taken from a greater distance and thus
the spatial resolution is too low.
For the detection of missing caps from aerial images Zhang
et al. [25] proposed a method predicated on an accurate bi-
nary segmentation of the insulator provided by color thresh-
olding, which is limited by the choice of the threshold. Fur-
ther, they split the insulator into ten parts, but this static par-
titioning does not incorporate differently sized insulators or
partially visible insulators.

Up to now, no work that provides a proper evaluation
which could be used as baseline for our evaluation has been
published, but only practical demonstrations. Next to the
wide applicability of our method, this is another reason to
provide a well documented baseline for further work.
3 Insulator Recognition

We first detect the insulators in the image and based on the
detections we perform the fault detection. From a recog-
nition point of view, insulators are weakly textured objects
and in our case surrounded by clutter, which makes it hard
to detect them. In contrast, insulators have a rigid form
with repetitive geometric structure and a distinctive circu-
lar shape of each cap, which are properties that can be ex-
ploited. Therefore we use a part-based model with a tailored
circular descriptor, where each insulator cap is one part of
the model. The model geometry is a line segment (the major
axis), where all caps belonging to the insulator must lie close
to it and near other detected caps of the insulator. Therefore
we detect Difference of Gaussians (DoG) [15] keypoints in
the image and extract a square image patch around the key-
point according to the size of the keypoint, which fits very
well to the actual cap size. From the patch we calculate our
Circular GLOH-like (CGL) descriptor. It is similar to the
GLOH descriptor [17], which is in turn a circular implemen-
tation of the prevalent SIFT descriptor [15]. Our descriptor
is based on image gradients, which are derived by the Scharr
operator [22]. This operator exhibits better rotational invari-
ance than other gradient operators, which is beneficiary in
our case as the caps are circular. The gradients are assigned
to 17 spatial regions as visualized in Fig. 2b. Note that the
central radial bin does not have any angular bins. Each gra-
dient casts a vote according to its gradient magnitude in the
16-bin orientation histogram of its spatial region, resulting
in 272 dimensions. For rotation and illumination invariance
the methods of [15] are implemented. For scale invariance
we enlarge the spatial support according to the size of the
keypoint.
We employ Principal Component Analysis (PCA) to reduce
the dimensionality of our descriptor for speedup but with-
out loss of classification performance [23]. We calculate
the orthogonal eigenspace from 11.3k cap descriptors and
project the descriptors on the reduced space spanned by the
192 components with the largest eigenvalues.
We train a k-Nearest Neighbors (kNN) classifier with the
descriptors of detected DoG keypoints from the training set.
Keypoints within the ground-truth mask are positive sam-
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ples and randomly selected keypoints from the background
negative samples. For recognition we query the classifier
with the descriptors of the detected keypoints in order to
distinguish between insulator caps and clutter.

From the classified keypoints we determine the bounding
boxes for the insulators. We group the keypoints by their
scale and apply an adapted RANSAC [7] approach on all
keypoints of each scale to robustly fit the insulator model
to the detected keypoints. We have to modify the original
algorithm to handle multiple insulator instances in an im-
age [19]. Therefore we determine two random initial points
p1,p2 from all available keypoints of one scale which sat-
isfy the proximity constraint ‖p1−p2‖ < 4 ·sz(p1), where
sz(p) is the keypoint size. If no point combination satis-
fies the proximity constraint, the algorithm terminates as no
model can be initialized. From these two points we create
an initial model, i.e. the line segment connecting them. We
add keypoints as inliers to the model, whose distance from
point to line is smaller than half the keypoint size. All in-
liers have to be in relative proximity to already added inliers.
This ensures that we do not add false positive detections lo-
cated on the line. Each valid model must contain at least
five inliers. We use the best model, thus having most in-
liers, as detection. The bounding box is created from the
inliers by calculating the minimum bounding rectangle. The
inliers are removed from the available keypoints, thus each
keypoint is only used for one model. We repeat the process
as long as a single iteration generates a valid model, else all
insulators have been detected and the algorithm terminates.
Using the described procedure we first optimize the recall of
the detection. In the next step we use the estimation of the
fundamental period of the insulator partitioning to verify the
detections by evaluating the repetitive structure within the
insulator, which is not present in false positive detections.

4 Insulator Fault Detection
The detected insulators are then analyzed for faults. Each
insulator is described by its major axis and divided into its
individual caps along this axis, as shown in Fig. 2d. Fur-
ther, we calculate an elliptical descriptor from each cap to
generate a score, which serves as a level of faultiness. By
using a cap-wise partitioning of the insulator we can local-
ize faults more accurately and invariant to differently sized
and truncated insulators.

4.1 Insulator Partitioning
The first step of the insulator partitioning is the estimation
of the overall orientation Θ. This orientation estimation and
correction is important in order to provide a fixed layout
for the following cap extraction. Therefore we use a binary
segmentation mask obtained from the actual detection using
GrabCut [20]. On the mask we apply an image moment-
based method which exploits the elongated shape of the in-
sulator. The momentM of order (i+j) is calculated as [10]

Mij =
∑
x

∑
y

xiyjI(x, y) (1)

where x and y are the image coordinates and I(x, y) the
pixel intensity. Using M we calculate the insulator orienta-
tion as
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The orientation is derived from the covariance matrix of the
normalized second order image moments of the image mask.

In the second step of the partitioning we separate the in-
sulator into its individual caps. Therefore we detect separa-
tion candidates by extracting Canny edges [3] and intersect
them with the major axis of the insulator. Because these can-
didates are noisy, we employ signal processing methods to
estimate and extract the separations. The separation candi-
dates are formed as an impulse in a 1D signal i[u] along the
major axis u using

i[u] =

{
1, if major axis intersects with edge
0, otherwise.

(3)

The signal consists of impulses which are not properly
aligned and thus create high frequency responses. There-
fore we apply a Gaussian filter which provides a low pass
filter and serves as noise estimate. For the Gaussian kernel
we use σ = 1

3b
1
N

∑N−1
i=1 di,i+1c where di,i+1 is the dis-

tance between two consecutive impulses. This kernel has
been chosen to adaptively minimize the leverage on neigh-
boring impulses due to filtering, which is necessary because
of the high variance of cap sizes.
The fundamental period f of the filtered signal x[u] is used
to estimate the repetitive structure within the insulator. From
x[u] we calculate the Nfft-point Fast Fourier Transform
(FFT) as X = F {x} where Nfft = 2dld(length(x[u]))e.
In order to improve the period estimate we use a weight-
ing function w[k] to suppress unwanted frequency parts,
which can be caused by wrong separation candidates. w[k]
is again a Gaussian distribution with σ = kc√

2
centered

at kc = bNfft

w/2 c where w is the width of the insulator
masks bounding box which serves as an estimate. Further,
f = bNfft

kmax
c and kmax is determined by

kmax = arg max
k

(|X| ·w[k] | k > 3) (4)

where k > 3 is used to suppress the dominant constant com-
ponent of the signal. We estimate f on the major axis and
on two lines parallel to this axis and use the median of the
detected frequencies, which improves the robustness.
The alignment of the partitioning within the insulator is cal-
culated using cross-correlation of the filtered input signal
x[u] and an idealized partitioning created from the funda-
mental period. The determined offset is used for matching
the calculated to the nearest detected separations. If a sepa-
ration is missing, e.g. not detected, a separation is thus auto-
matically added at the most likely position.
In Fig. 3a the input signal i[u] is compared to the resulting
partitioning. Note the noisy input signal with multiple re-
sponses for each separation and with noise within the caps,
which are removed in the result. In Fig. 3b the shown spec-
trum exhibits a strong peak at kmax = 67 for aNfft = 1024
point FFT, which correctly results in f = 15px.
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Figure 3: Insulator partitioning (measured f = 15px). (a)
shows the reconstruction of the partitioning and (b) shows
the estimation of the fundamental period.
4.2 EGL Descriptor
Based on the partitioning we extract an elliptical descrip-
tor from each cap, which fits an insulator cap very well and
thus minimizes the influence of neighboring caps or back-
ground clutter. In contrast to the CGL descriptor our El-
liptical GLOH-like (EGL) descriptor contains gradient his-
tograms for elliptical spatial regions (planar elliptical coor-
dinates [18]). The spatial layout of the descriptor is shown
in Fig. 2e, which again is divided into 17 regions with a 16-
bin histogram of gradient orientations for each region. The
axes of the ellipse are given by the size of the insulator cap.
The EGL descriptor is not rotational invariant, which is not
needed, because the insulator tilt can be corrected by using
the insulator orientation. The illumination invariance and
scale invariance are the same as with the CGL descriptor.

4.3 Fault Detection
Based on the extracted descriptors from each insulator cap
we determine outliers, which are the faulty caps. We have to
use an unsupervised outlier detector due to the lack of faulty
caps for training and due to high intraclass variations of the
insulators (background, viewpoint). Further, we do not treat
the faults as binary classification problem, but we assign a
score to each cap of an insulator. A higher score character-
izes a higher dissimilarity to the other caps of the insulator
and thus a more likely faulty cap. Therefore we use the Lo-
cal Outlier Factor (LOF) approach proposed by Breunig et
al. [2], which provides a score for the dissimilarity by using
the distance of a descriptor to the k nearest neighbors as an
estimate for the local descriptor density. We assume that an
outlier has a lower local density in high dimensional space.
The relation of this distance to the distance of its neighbors
is used to identify outliers. As distance measure d(A,B) we
use the normalized L1 distance between two descriptors A
and B in D-dimensional space,

d(A,B) =

D∑
i=1

|Ai −Bi|
maxi −mini

(5)

where maxi and mini are the minimal and maximal values
of dimension i over all descriptors. We use k = 3 neighbors,
initialize the distances with all descriptors of an insulator,
and add each test descriptor separately to the set in order to
preset the distances to a task-specific range [12].
The scores exhibit different ranges for each insulator. For
a global representation we normalize the scores for each in-
sulator to a range of [0 . . . 1]. Further, we enhance the dis-
tinctiveness by thresholding the score sequence and set all
values that do not excess the confidence level of 1√

2
of the

standard deviation above mean to 0. This provides a more
discriminative visualization as shown in Fig. 2f.

5 Evaluation
In this section we present and discuss the results of the eval-
uation. To the best of our knowledge, there is currently no
publicly available dataset for insulator detection. Therefore
we use our own evaluation set, which contains 400 images
(size 2352×1568px) with 375 labeled insulators, whereat 20
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out of over 11.3k caps are labeled faulty (4 flashover dam-
ages and 16 cracked caps). For evaluation and training we
use a segmented ground-truth, which is generated by man-
ually segmenting the insulators using a GrabCut [20] based
labeling tool. Truncated insulators with less than five visible
caps are not labeled. We evaluate on a computer with a Core
2 Duo with 2.6GHz and 4GB of RAM.

5.1 Insulator Recognition
We first evaluate the keypoint classification and subse-
quently the recognition based on the classified keypoints.
For the evaluation of the recognition there has not been pub-
lished a work that provides proper evaluation metrics which
could be used as baseline, but only practical demonstrations.

5.1.1 Keypoint Classification The evaluation of
the keypoint classification is based on the true positive
rate (TPR), the fraction of correctly identified caps to all
caps, and the true negative rate (TNR), the fraction of
correctly identified clutter to all clutter samples. For the
keypoint classification a high TPR and TNR are required
in order to distinguish between cap and clutter keypoints.
From our evaluation set we automatically extract 11.3k
caps located on DoG keypoints within the ground-truth
mask and 11k clutter samples randomly selected from the
background as ground-truth.
Tab. 1 shows the classification results for different descrip-
tor types. The classification rates are obtained by using
a kNN classifier with 2-fold cross-validation. Our CGL
descriptor scores the highest TPR and TNR rate, thus it is
the most suitable descriptor for this task. The high TNR
of 99.7% is essential for efficient clutter suppression, but a
slightly smaller TPR of 92.7% can be tolerated as not all
caps of an insulator must be detected in order to detect the
insulator itself due to our part-based model.

Descriptor CGL SIFT [15] SURF [1]
TPR 92.7% 92.5% 75.8%
TNR 99.7% 92.4% 90.5%
Average runtime 1.4ms 1.9ms 0.25ms

Table 1: Average keypoint classification rates. Our descrip-
tor (CGL) performs best.

The detection of keypoints works best with a DoG [15] de-
tector. A dense grid (e.g. 7 scales from 20 to 100px) is not
applicable because of the high runtime and the high number
of false positive detections. Other detectors as e.g. an ap-
proximated Hessian detector [1] cannot locate the insulator
caps accurately, or detectors that detect corner-like struc-
tures rather locate the keypoints on the boundaries than in
the center of the caps.

5.1.2 Recognition We evaluate the insulator detector on
our evaluation set, where each connected component in the
ground-truth mask is determined as insulator and the min-
imal bounding rectangle is used as ground-truth bounding
box. Note that these are rotated rectangles, therefore they fit
the insulators very well.
In order to evaluate the localization of our method we use
the well-known Pascal score [5], which is calculated from
the overlap of our generated bounding boxBc to the ground-
truth Bgt by

p(Bc, Bgt) =
area(Bc ∩Bgt)
area(Bc ∪Bgt)

. (6)

An object is considered detected if p(Bc, Bgt) > 0.5.
As objective we want to maximize the number of correct
detections and minimize the number of false detections. The
two used evaluation metrics are precision, the fraction of
correct detections to the total number of detections made by
our detector, and recall, the fraction of correctly detected
objects to the number of annotated objects. Our detector
provides a score for each detection, which is used to vary the
trade off between these two metrics. The score is calculated
by

score(p, L) =

(
1−

∑N
i=1 dp,L(pi, L)∑N
i=1 sz(pi)/2

)
·N (7)

where p is the inlier set, L the estimated model, N is the
number of inliers and dp,L the Euclidean distance from in-
lier to model. The score is higher if a model contains more
inliers or better fitting inliers.
We use the Precision-Recall Curve (PRC) as performance
measurement, which is shown in Fig. 4 for our detector. The
curve is constructed in accordance to [5] by using the inter-
polated precision. We perform 2-fold cross-validation and
plot the averaged precision and recall values. The recall
reaches a maximum of 98% and drops rapidly for higher
recall scores. Most false positives are caused by insufficient
overlap of the detected to the ground-truth bounding box.
Only about 7% of the false positives are actually located on
the background or on the pylons, thus showing efficient clut-
ter suppression.
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Figure 4: PRC for insulator detection. The average precision
is over 56%.

Badly detected boxes are identified by a low overlap
value as shown in Fig. 5. For our evaluation the required
Pascal criterion is very strict due to the fact that we use ro-
tated bounding boxes, which is not originally intended [5].
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Subjectively speaking, an overlap score of 0.5 already fits
the insulator very well, whereas a lower threshold might be
concerned, e.g. p(Bc, Bgt) > 0.4 already improves the re-
call to 100%. Using an overlap threshold of 0.5 the insula-
tors in Fig. 5 (a)-(c) would be considered correct detections,
and Fig. 5 (d)-(f) false detections although the first two fit
well. Only the detection in Fig. 5f completely fails, because
the line model is initialized badly and further the detected in-
sulator caps in the upper part are not included into the model
due to a large distance from the model.

(a) 0.9 (b) 0.68 (c) 0.58 (d) 0.48 (e) 0.45 (f) 0.2

Figure 5: Detection results (red) with overlap score
p(Bc, Bgt) stated. Best viewed in color.

5.2 Insulator Fault Detection
For the fault detection, a proper insulator partitioning is es-
sential. Therefore we first evaluate the insulator partitioning
and then the fault detection itself. Fig. 1 shows the fault
detection results for a mechanical damage and Fig. 2f for a
flashover damage.

5.2.1 Insulator Partitioning For the evaluation of the
partitioning we compare the calculated orientation to the ori-
entation of the minimum bounding rectangle of the ground-
truth segmentation mask. We have implemented the Hough-
based method of [25] as baseline. As evaluation criterion
we use the angular error e(Θ,Θgt) = |Θ−Θgt| (mod π

2 ),
where Θgt is the orientation of the ground-truth and Θ the
orientation provided by the method. Only the absolute ori-
entation matters due to the symmetric shape of the insula-
tor. The mean µ(e) and the standard deviation σ(e) of the
angular error are used to compare the methods. A smaller
mean indicates a more accurate orientation estimation and
a smaller standard deviation shows, that the errors are less
scattered.
The evaluation results in Tab. 2 show, that our moment-
based method is more accurate and requires less computa-
tion time than the Hough-based approach. The orientation
of the bounding box of the actual detection requires no addi-
tional computation, but it is less accurate than our proposed
method and prone to outliers. A more precise orientation
provides a higher accuracy of the partitioning.

For the evaluation of the partitioning we measured the
fundamental period from the images and use it as ground-
truth. The fundamental period is correctly computed for
84% of all insulators, w.r.t. a tolerable deviation of ±5px or
10%. For the cap extraction the creation of a ground-truth
Method µ(e) σ(e) Average runtime
Moment-based 0.33◦ 0.48◦ 12ms
Hough-based [25] 1.57◦ 2.03◦ 430ms
Bounding box 1.02◦ 1.24◦ 0ms

Table 2: Insulator orientation evaluation.

is not feasible, thus resulting in manual checks. A proper
partitioning requires a cap width of at least 10px, otherwise
the separation features between the individual caps vanish.
The partitioning works for different perspectives as shown
in Fig. 6a and 6b, but fails if there are no separation features
as depicted in Fig. 6c. For that sample also humans fail to
separate the caps.

(a)

(b)

(c)

Figure 6: Partitioning results. Note the different sizes (red
line is 5px wide). Best viewed in color.

5.2.2 Fault Detection We compare our fault detection
method to the approach of [25] based on Gray-Level Co-
occurrence Matrices (GLCM). In order to make their scores
comparable we use our partitioning to calculate their fea-
tures, instead of constantly ten parts.
A detailed view of a score sequence is given in Fig. 7, which
shows the scores for a flashover damage (see Fig. 2e) at cap
1. The scores are normalized, but not thresholded as de-
scribed in Section 4.3 for a better illustration. The ground-
truth has a value of 1 for a faulty cap and 0 for non-faulty
caps. Both methods score high values for the faulty caps,
but the values scored for non-faulty caps are quite different.
By using our EGL-based approach, we efficiently suppress
background clutter and are invariant to faults in the segmen-
tation mask, in contrast to the GLCM-based method, which
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cannot distinguish between a faulty cap and a defect in the
segmentation mask.
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Figure 7: Score sequence for a flashover damage at cap 1.
Our LOF-based approach can clearly distinguish between
faulty and non-faulty caps.

For the evaluation of our fault detection we use the Re-
ceiver Operating Characteristic (ROC), which is indepen-
dent of class skew [6] and thus advantageous in the case of
fault detection because the faulty samples make up only a
fraction of all samples. Although we use a continuous score
for the fault detection, the evaluation can be seen as a binary
classification problem: faulty caps are the desired positive
class, non-faulty caps are the negative class. As performance
measurements we use the TPR, the fraction of successfully
detected faulty caps to all faulty caps, and the false posi-
tive rate (FPR), the fraction of mistakenly identified faulty
caps to all non-faulty caps. A comparison of different ROC
for insulator fault detection is shown in Fig. 8. The ROC is
created by using the fault score as threshold. Our EGL de-
scriptor with LOF performs best and achieves a TPR of 95%
at a FPR of 12%.

6 Conclusion
In this work we have presented a novel approach for insula-
tor recognition and a subsequent automatic fault detection
from aerial images. We introduced a method for insula-
tor recognition using a part-based model with local image
features and a RANSAC-based clustering approach, which
enables the detection of insulators in a highly cluttered en-
vironment regardless of their orientation, size or combina-
tions.
Further, we proposed a method for insulator fault detection
based on a descriptor with elliptical spatial support. We used
LOF to assign a score of faultiness to each insulator cap ex-
tracted by our automatic partitioning algorithm. This pro-
vides an accurate cap-wise fault assessment of the insulator
under different photometric and geometric conditions.
Both methods have been evaluated thoroughly and we have
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Figure 8: ROC for fault detection, with area under the curve
stated in the caption. Our proposed method (LOF with EGL
descriptor) significantly outperforms GLCM [25].

established a baseline, which can be used for comparison in
future works.
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