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Reeb graph based examination of root development
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Abstract This paper presents an approach to analyze
plant root development by means of topological image anal-
ysis. For phenotyping of plants their root development, the
architecture of their root systems and thereby root charac-
teristics such as branches and branch endings are analyzed.
In order to simplify the examination of root characteristics
and enable an efficient comparison of roots, a representa-
tion of imaged root data by Reeb graphs is introduced. Reeb
graphs capture the topology of the represented structure -
in this case the locations of branches and branch endings
of the roots - and form a skeletal representation of the un-
derlying image data in this way. As the roots are pictured
as 2D image data, the projection of a 3D structure to a 2D
space might result in an overlap of branches in the image.
One major advantage when analyzing roots based on Reeb
graphs is posed by the ability to immediately distinguish be-
tween branching points and overlaps in the root structure.
This is not as easily possible by an analysis solely based on
contours.

1 Introduction
Reeb graphs are widely used as shape descriptors for 3D
structures. [2] gives a general overview on the use of Reeb
graphs for shape analysis. [10] uses Reeb graphs for a
pose independent segmentation of 3D data of human body
scans, while [8] provides a skeletal representation of point
clouds based on Reeb graphs. As a representation of 2D
data, Reeb graphs are for example used in [5] to provide a
data skeletonization of the image content. However, Reeb
graphs have not been applied to branched structures like
roots or blood vessels although they pose a well suited
representation. An analysis of branching patterns of roots
based on a 3D reconstruction of the root architecture of rice
plants is provided in [11].
One of the ultimate challenges of biology is posed by the
question how genotypes translate into phenotypes. There,
the major bottleneck lies in the ability to phenotype a large
number of individuals and genotypes with high accuracy.
This is particularly lagging in complex multicellular organ-
isms such as plants, in which specific biological processes
often occur only temporarily and are restricted to specific
organs, tissues or even individual cells. Efficient and unsu-
pervised image segmentation and the extraction of certain
characteristics are a key in approaching this goal. The
root of the small plant Arabidopsis thaliana is excellently
suitable for large-scale non-invasive phenotyping because
it can be grown on transparent media in large numbers and
its projections of the young root essentially capture all the
important biological features at the organ level.
When analyzing roots (for e.g. phenotyping), characteristics
such as the number of branches or the position and number
of branch-endings, are studied. These characteristics can
be efficiently described by (Reeb) graphs. Reeb graphs
describe changes in topology in the represented structure.
Reeb graphs are based on Morse theory and analyze
the (here) image content according to a function (Morse
function).
When growing, roots change their shape, branches are
formed - their topology changes. Moreover the projection
of the 3D root structure to the 2D image data might cause
overlaps of branches in the image. In a Reeb graph a
distinction between a branch and an overlap is immediately
possible as these changes in topology are captured by the
graph.
The Reeb graph is used as a simplified, skeletal representa-
tion of the image data that captures the intrinsic topological
structure of the data and allows for a comparison of
the image content. Especially for the root dataset these
comparisons allow for a description of the growth process:
the roots are imaged on consecutive days through their
growth period. In comparison with a simple standard
skeletonization approach as, for example, the Medial
axis transform, the skeleton derived by a Reeb graph not
only describes characteristics of the image content (here
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branches of the roots) but captures the actual positions of
these characteristics as well.

The paper is structured as follows: Section 2 gives an
introduction to Reeb graphs, Section 3 describes the dataset
used and Section 4 shows the computation of a Reeb graph
on the root dataset. The need for modifications of the Reeb
graphs and the types of modifications are discussed in
Section 5, Section 6 shows evaluation results on the root
dataset while a conclusion and a perspective to future work
are given in Section 7.

2 Reeb Graphs and Morse Theory
Based on critical points according to a scalar function a
Reeb graph describes the topological structure that is the
connectivity of level sets of e.g. 2D or 3D content [4]. In
order to build a Reeb graph, critical points, of the structure
to be represented, need to be computed.
A point (a, b) of a function f(x, y) is called a critical point
if both derivatives fx(a, b) and fy(a, b) are equal 0 or if one
of these partial derivatives does not exist [9].
Such a critical point either be degenerate or non-degenerate.
These two cases can be distinguished via the Hessian
matrix. The determinant of the Hessian matrix at a critical
point x is then called the discriminant. If this determinant is
zero then x is called a degenerate critical point of f (or non-
Morse critical point of f ). Otherwise it is non-degenerate
(or Morse critical point of f ).

A smooth, real-valued function f : Md → R is called
a Morse function if it satisfies the following conditions for
a d manifold Md with or without boundary:

• all critical points of f are non-degenerate and lie inside
Md,

• all critical points of f restricted to the boundary of Md

are non-degenerate,

• for all pairs of distinct critical points p and q, f(p) 6=
f(q) must hold [3].

Critical points of such a real-valued function are those points
where the gradient becomes zero. The topological informa-
tion of a shape described by a Reeb graph based on a func-
tion is related to the level sets of this function on the shape
[2]. A change in topology appears with a change in the num-
ber of connected components in a level set. At regular points
no topology changes occur. Topological changes occur at
critical points only.
Reeb graphs are compact shape descriptors that preserve the
topological characteristics of the described shape [2]. Ver-
tices of the Reeb graph correspond to critical points of the
function (points where the topology of M changes), edges
describe topological persistence [2]. In other words: All
nodes having the same function value are represented by one
node in the graph, connections between nodes describe con-
nections between segments of the underlying structure.
Reeb graphs are originally defined for the continuous space,
but have been extended to the discrete domain: Here the
Figure 1: Critical points computed based on the height function
and corresponding Reeb graph. The white image region shows the
foreground region described by the Reeb graph, black parts are
background.

Reeb graph is defined on a piecewise linear Morse func-
tion [4]. As the approach presented in this paper provides
an analysis of 2D image content, it is based in the discrete
domain (image pixels). The Reeb graphs that are built on
the root images are therefore discrete Reeb graphs and are
based on the following definitions. In order to define a dis-
crete Reeb graph, connective point sets and level-set curves
are defined first:

• Two point sets are connected if there exists a pair of
points (one point of each point sets) with a distance be-
tween these two points below a fixed threshold.

• If all non-empty subsets of a point set, as well as its com-
plements, are connected, such a point set is called con-
nective.

• A group of points that have the same Morse function
value and that form a connective point set, is called a
level-set curve [10].

The nodes in a discrete Reeb graph represent level-set
curves, the edges connect two adjacent level-set curves,
therefore the underlying point sets are connected [10].

In 2D critical points and corresponding nodes in the
Reeb graph are minima, maxima or saddles [3]. The
saddle nodes can be further distinguished: a saddle node
that appears with a reduction in the number of connected
components is further called merge (saddle) node, a split
(saddle) node describes an increase in the number of con-
nected components. When considering these two different
types of saddle nodes that might appear in a Reeb graph,
four different types of critical points and according nodes in
the graph can be distinguished: maximum node, minimum
node, split (saddle) node, merge (saddle) node. Besides
these nodes corresponding to critical points, regular nodes
can be added at any position and along any edge in the
Reeb graph as they do not describe a change in topology.
Nevertheless regular nodes can, for example, be used to
describe changes in the color of the foreground region (see
[1]).

The approach described in the following sections uses
the height function as Morse function. In 2D the height
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function is the function f that associates for each point
P = (x, y) the value y as the height of this point:
f(x, y) 7→ y.
Figure 1 shows an example for a Reeb graph based on a
height function, containing all five types of nodes and the
actual image the graph was computed on. Each edge in the
Reeb graph describes a connected component. Therefore
the edges of a Reeb graph are formed by connecting the
node representing the birth of a connected component
to the corresponding node representing the death of this
component.

3 Root dataset
For the root dataset images of the plant Arabidopsis thaliana
were taken. This plant is a model organism, which is widely
used in plant sciences, due to the small size of its genome,
the small size of the plant itself and its rapid life-cycle
[6]. The plants are grown on a nutrient containing agar gel
surface in plastic petri dishes that are vertically oriented. All
plants in one plate belong to one dataset. One dataset/plate
consists of 2 rows of 12 plants. The plates are placed in
a growth chamber that allows for controlled conditions as
constant temperature or humidity.
The images are taken using an image scanner. A special
fixture allows for two datasets to be placed in an exact
known position inside the scanner. The images are acquired
with a scan at 1200 dpi resolution with 8bit color depth,
therefore one image is of approximately 6000x6000 pixels
in size. The images are stored as bmp files of about 150MB.
Along time several successive images are acquired this way,
as each plate is scanned at several successive days of the
growth process. A 3D stack of 2D images over time is thus
created for each root.
In a preprocessing step the 24 plants per plate are cropped
to single images: one image per plant with an image size in
the range of 500x1300 to 800x1300 pixels resolution and a
file size of 1,5-2,5Mbyte. Example images of this dataset
are shown in Figure 2.

The whole set of plant images used here consists of 9

(a) (b) (c) (d)

Figure 2: Example images of the root dataset: root004 - (a) day 8;
(b) day 12; (c) day 16; (d) day 20.
(a) (b) (c) (d)

Figure 3: Four different types of critical points computed accord-
ing to the height function: (a) maximum / birth; (b) saddle (split);
(c) minimum / death; (d) saddle (merge).

sets of time series. Each set holds 6 images of one plant
taken over time (day 1, day 4, day 8, day 12, day 16 and day
20 of the growth period). Of these 54 images, 34 images
are analyzed, the other images are too early in the growth
process and therefore to small in structure to be represented
by a non-trivial Reeb graph.
All images analyzed are segmented in a preprocessing step
and consist of 2 foreground regions (leaves and roots, only
the roots are analyzed for this approach) and up to 2 holes
in the foreground structure. For reasons of the needed
preceded segmentation, the dataset is restricted in its size,
as the segmentation approach was done semi-automatically
and required a lot of time (up to 1.5h for one image).

4 Computation of Reeb graphs
As the roots are imaged in their natural direction of growth
(leaves in the top part of the image, roots growing down-
wards in a vertical direction) and branches occur mostly
in this direction of growth, the height function is a suit-
able measuring function. Critical points indicate a change
in topology, therefore they might only appear on the bor-
der of a region but not within the region. The borders of
flat-regions in the image are analyzed to locate these critical
points.
Figure 3 shows the four different types of critical points that
are computed for the image content using a height function.

To compute the critical points a segmentation of the
image needs to be done during a preprocessing step. As
the height function is used to compute the critical points,
the foreground region borders are analyzed with regard to
horizontal borders as these might describe a change in the
number of components. The so found critical points are
located at the center of such a horizontal border.

There are two main problems encountered using this ap-
proach:

4.1 Critical points at same height
Due to the resolution of the image, the discretization of the
root and further distortions during the segmentation process,
it is possible that several critical points at different horizon-
tal positions in the image are at the same vertical position
(same height) in the image (see Figure 4(a) for an example).
In this case the third criteria of Morse theory (see Section
2) is not met. A Reeb graph cannot be built, as a decision
on how to connect the nodes in order to build the graph can-
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(a) (b)

Figure 4: Problems encountered on the root dataset: (a) several
critical points on same height; (b) frayed borders due to segmenta-
tion artefacts.

not be taken. Figure 5 shows an example: The solid lines
illustrate the only two fixed connections in this example, the
dashed lines indicate all possible connections. In this Reeb
graph four edges are needed: one from each black (maxi-
mum) node to a red (saddle) node and one edge from a red
(saddle) node to the green (minimum) node. A decision con-
cerning these connections needs to be taken for the black
center node as well as for the two red nodes. A solution
to build a Reeb graph, despite several critical points at the
same height, is discussed in Section 5.1

4.2 Additional critical points

Because of the segmentation prior to the computation of the
critical points, segmentation artefacts appear in the images.
The most common problem are frayed borders of image re-
gions (see Figure 4(b) for an example). Especially for im-
ages of day 16 the segmentation creates noise and distorted
region borders. When analyzing the images of day 16 one
notices a high humidity between the plates in the form of
water drops, which creates a highly texturized background
that complicates the segmentation.
These frayed borders in the segmented images result in addi-
tional critical points that describe no actual split or merge of
the root structure. These artefacts alter the Reeb graph and
complicate a comparison or matching of graphs. One possi-
bility on how to deal with these additional critical points is
described in Section 5.2.

Figure 5: Critical points at same height: the solid lines show con-
nections that are fixed, dashed lines indicate all possible connec-
tions - a decision needs to be taken for these.
5 Modifications on the graphs

To overcome the problems discussed in Section 4.1 and Sec-
tion 4.2 the following techniques were used:

5.1 Controlled shift of critical point coordinates

Due to the discrete pixel-space, the coordinates x and y of
a pixel p = (x, y) are integers. Critical points at the same
height (same y-coordinate) occur for 35% of all images in
the root dataset and are shifted. The height of such critical
points is changed by an added factor f , 0 ≤ f < 1. A
critical point p = (x, y) is shifted to p′ = (x, y + f), f is
computed using the following formula: f = 1

w ·(x−1), with
w giving the width of the image. The y-coordinate is thereby
changed from an integer to a floating-point number. Critical
points at the same height are moved downwards in a left-
to-right order, thus for two critical points p1 = (x1, y) and
p2 = (x2, y) with x1 < x2, it is valid that, after shifting the
points to p′1 = (x1, y1) and p′2 = (x2, y2), y1 < y2 holds.
The actual order of heights is preserved by this correction
procedure as only critical points that were primarily at the
same height are changed. All critical points are at different
heights, although when rounding down the y-coordinate of
the critical points to an integer, they stay in the actual pixel
line. A Reeb graph can therefore be built.
It is important to shift the heights in a fixed approach. A
random decision choosing one of two critical points at the
same height when building the Reeb graph cannot be used,
as the results may vary with repeated tests. Reeb graphs
built on such random decisions are not unique and therefore
useless for e.g. comparison of two images.
Figure 6 shows a Reeb graph built on the marked critical
points / nodes. Compared to Figure 5 where there are several
critical points at the same height, Figure 6 shows critical
points on different heights. The connections in this graph are
unique. By shifting the critical points in Figure 5 according
to the approach described in this section, the critical points
are shifted to a configuration similar to the one shown in
Figure 6.

5.2 Graph pruning

Due to the segmentation done as a preprocessing step, seg-
mentation artefacts falsify the number of critical points and
therefore the number of nodes and edges in the Reeb graph.

Figure 6: Critical points at different heights, the connections in
this Reeb graph are unique.
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number of nodes in graph
type of node birth split merge death sum
no graph pruning 111 129 84 156 480
graph pruning 38 54 13 79 184

Table 1: Total number of each type of nodes in the Reeb graphs of
the root dataset with and without graph pruning.

In order to use the extracted graphs as a skeletal representa-
tion, branches that arise with artefacts need to be removed
from the Reeb graph.
For each pair of adjacent nodes in the graph the Euclidean
distance between these two nodes is computed. If this dis-
tance is less than 1,5% of the image height such connections
are discarded and nodes are relinked if needed. This thresh-
old proved to be the best choice in the experiments.
Regular nodes may be introduced by this approach. As these
regular nodes do not contain any needed information, they
are removed after relinking. This graph pruning results in a
reduction of the overall number of nodes in the Reeb graphs
of the root dataset by 62%. Table 1 shows the numbers of
nodes for all Reeb graphs in the root dataset with and with-
out graph pruning and Figure 7 shows an example of the
Reeb graph and the modified Reeb graph for root 05, day
16. All the nodes in the lower part of the root for the Reeb
graph without graph pruning indicate spurious branches de-
tected due to noise in the segmented image. These spurious
branches are correctly discarded by the graph pruning ap-
proach.

(a) (b)

Figure 7: Reeb graph for root 05 day 16. (a) without graph prun-
ing; (b) with graph pruning.
6 Results and evaluation on the root dataset

Figure 8 shows the resulting Reeb graph for root 07 of
the dataset with both modifications implemented, drawn
as an overlay. There is a cycle in the Reeb graph for day
16 and day 20 (Figure 8(c) and 8(d)). In the image of day
12 (Figure 8(b)) there are three branches: The first and
the second branch overlap at some time during the growth
process between day 12 and day 16. Because of this overlap
in the 3D space, these two branches appear merged in the
2D projection of the image, therefore a cycle is formed in
the Reeb graph.

Figure 9 shows the Reeb graphs for root 12 of the
dataset (both modifications are used). Some small branches
are not represented in the Reeb graphs of day 12, 16 and 20
as they resembled branches due to noise and were discarded
during the graph pruning process (see Section 6.1). Again a
cycle appears in the Reeb graph for day 20 as two branches
overlap.

For the 34 single images of the root dataset the following
criteria have been evaluated:

(a) (b)

(c) (d)

Figure 8: Resulting Reeb graph for root 07 (a) day 8; (b) day 12;
(c) day 16; (d) day 20.
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(a) (b)

(c) (d)

Figure 9: Resulting Reeb graph for root 12 (a) day 8; (b) day 12;
(c) day 16; (d) day 20.
wrong decisions on graph pruning
images false negatives false positives

graph pruning 8 10 0
extension 1 18 4 36
extension 2 13 10 9

Table 2: Branches wrongly discarded (false negative) and wrongly
accepted (false positive) in the graph pruning approach with two
different corrections based on pixel-color.

6.1 Are all branches correctly detected and
represented by the Reeb graph?

All major branches were correctly detected. Table 2 shows
the number of images for which branches were wrongly dis-
carded (false negatives) or wrongly accepted (false positive).
For 23,5% of the images smaller branches were discarded
due to the graph pruning as they resembled the frayed bor-
der artefacts caused by the segmentation. To keep these
small branches that describe actual root structures, their an-
gle could be taken into account, as true branches seem to
inscribe a larger angle than branches due to noise. However,
this assumption is based on the dataset presented and may
not be true for other datasets. Therefore another approach
was tested: for a small branch with a critical point of type
split, the color values at three pixels: at the critical point (a),
one row below the critical point (b) and two rows below the
critical point (c) were compared:

1. the color of (a) and (c) were taken from the segmented
image, while the color value of (b) was taken from the
unsegmented image

2. all three color values were taken from the unsegmented
image

Branches are kept if the color value of (b) is closer to (a)
than to (c). Table 2 shows the results for these two tests.
While the first option discards less true branches (false neg-
atives) it keeps spurious branches for more than 50% of all
images. The second option keeps less spurious branches,
but does not reduce the number of false negatives compared
to the graph pruning approach without these color compar-
isons. Taking into account not only the color values of these
three pixels but of several neighbors, as it is done with Local
Binary Patterns, might present an option for future work.

6.2 Are additional branches (due to e.g. noise)
detected?

As shown in Table 2 all additional branches (due to segmen-
tation artefacts) are correctly discarded by the implemented
graph pruning approach.

For a series of images of one plant during the growth
process the following factors have been analyzed:
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number of nodes / edges / cycles
day 8 day 12 day 16 day 20

root 04 2 / 1 / 0 4 / 3 / 0 6 / 5 / 0 8 / 8 / 1
root 05 2 / 1 / 0 4 / 3 / 0 4 / 3 / 0 8 / 8 / 1
root 07 2 / 1 / 0 6 / 5 / 0 6 / 6 / 1 8 / 8 / 1
root 09 2 / 1 / 0 6 / 5 / 0 6 / 5 / 0 6 / 5 / 0
root 12 2 / 1 / 0 4 / 3 / 0 6 / 5 / 0 12 / 12 / 1
root 17 - 2 / 1 / 0 6 / 5 / 0 6 / 5 / 0
root 19 2 / 1 / 0 4 / 3 / 0 8 / 8 / 1 14 / 15 / 2
root 20 2 / 1 / 0 4 / 3 / 0 4 / 3 / 0 12 / 12 / 1
root 24 - 2 / 1 / 0 4 / 3 / 0 10 / 9 / 0

Table 3: Total number of nodes, edges and cycles in the modified
graph (graph pruning without corrections) of each root image in
the defined dataset.

6.3 Is an automatic grouping of images of one plant
from different days possible?

As the roots grow downwards in a vertical direction, there
are only minor changes in the position of the starting point
of the actual root (transition between leaves an roots) - not
accounting for actual movement of the plant (e.g. sliding
down the plate). Therefore the starting point was used for
this comparison. The average minimal Euclidean distance
between all starting points is 14,4 pixels. Using this dis-
tance measurement to group one image of a root with earlier
or later images of the same root, the grouping is correct for
71% of all images. However, images of day 16 falsify these
numbers, as the plate of day 16 appears slightly enlarged in
the image compared to the images of other days. As the im-
ages were automatically cut into single plant images in a pre-
processing step, this scaling is not corrected. Excluding the
images of day 16, the average minimal Euclidean distance
decreases to 11,6 pixels and one image is grouped correctly
with earlier or later images of the same root in 88%.

6.4 General assumption: ”Parts of a plant that appear
in an early image of a plant do not disappear for a
later image of the same plant.“

This assumption proved to be correct for the images in the
root dataset. The topology of a root only changes with the
creation of new components (e.g. branches) over time. Ta-
ble 3 shows the number of all nodes, edges and cycles in
each (modified) graph of the root images.
However, there is one exception to this assumption, which
is based on the projection of a 3D structure to a 2D space.
A branch in an early image of a plant might stay in the im-
age of a later day, it may branch again but its ending may
also disappear in the 2D image as it is merged with another
branch due to an overlap of these two branches in the 3D
space.

7 Conclusion and future work
Reeb graphs proved to be suitable descriptors for root
structures as they capture the main characteristics of roots,
namely branches and branch endings that are used in the
phenotyping of plants, well. A Reeb graph provides a
skeletal representation of a root that allows for fast analysis
of root characteristics and efficient comparison of images
and the contained root structure. Overlaps in 3D that appear
as a merge of two branches in a 2D image are hard to
distinguish from a branching point when analyzing only
contours of image regions. Exploiting the topology of the
root, actual branching points and overlaps in 3D can be
immediately distinguished, as an overlap forms a cycle in
the corresponding Reeb graph.
A future application in plant phenotyping is possible.
However, for future work the segmentation approach
needs to be changed to a less time-consuming (or even
automatic) approach in order to allow for a larger dataset to
be analyzed.
Moreover, in future work, different functions will be used
as Morse functions. Functions that should be taken into
consideration are for example a medial axis as in [7] or
distance functions: for example the distance to a fixed point
in a structure, the sum of geodesic distance (both are used
in [10]) or the distance to an existing graph (as for example
a medial axis).
Open questions for future work (on the root dataset) are:
How does the chosen Morse function influence the correct
detection of branches in the root structure? Is the detection
of all branches, respectively the detection of additional
branches due to noise, dependent on the Morse function
used? Which Morse functions are able to correctly represent
roots with a complex pattern of growth (e.g.: change in the
main direction of growth)?
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