
23rd Computer Vision Winter Workshop
Zuzana Kúkelová and Júlia Škovierová (eds.)
Český Krumlov, Czech Republic, February 5–7, 2018

Camera-based vehicle velocity estimation from monocular video

Moritz Kampelmühler1 Michael G. Müller2 Christoph Feichtenhofer1

1Institute of Electrical Measurement and Measurement Signal Processing
2Institute of Theoretical Computer Science

Graz University of Technology
kampelmuehler@student.tugraz.at, mueller@igi.tugraz.at, feichtenhofer@tugraz.at

Abstract. This paper documents the winning entry at
the CVPR2017 vehicle velocity estimation challenge.
Velocity estimation is an emerging task in au-
tonomous driving which has not yet been thoroughly
explored. The goal is to estimate the relative veloc-
ity of a specific vehicle from a sequence of images. In
this paper, we present a light-weight approach for di-
rectly regressing vehicle velocities from their trajec-
tories using a multilayer perceptron. Another contri-
bution is an explorative study of features for monoc-
ular vehicle velocity estimation. We find that light-
weight trajectory based features outperform depth
and motion cues extracted from deep ConvNets, espe-
cially for far-distance predictions where current dis-
parity and optical flow estimators are challenged sig-
nificantly. Our light-weight approach is real-time ca-
pable on a single CPU and outperforms all compet-
ing entries in the velocity estimation challenge. On
the test set, we report an average error of 1.12 m/s
which is comparable to a (ground-truth) system that
combines LiDAR and radar techniques to achieve an
error of around 0.71 m/s.

1. Introduction

Camera sensors provide an inexpensive yet pow-
erful alternative to range sensors based on LiDAR or
radar. While LiDAR systems can provide very accu-
rate measurements, they may also malfunction under
adverse environmental conditions such as fog, snow,
rain or even exhaust gas fumes [30, 14]. Arguably vi-
sion based sensing is more closely related to how hu-
mans engage in driving situations and it should thus
be possible to solve any task in autonomous driving
based on visual input.

This work addresses monocular vehicle velocity
estimation, an emerging task in autonomous driving

Figure 1: A sample image from a training sequence.
Velocity and position ground truth are provided
for the vehicles surrounded by the green bounding
boxes.

which has not yet been thoroughly explored. The
specific task, which forms the base for this work,
was introduced as the Autonomous Driving Veloc-
ity Estimation Challenge1 at CVPR2017. The goal
is to estimate the relative velocity of a specific ve-
hicle from a sequence of monocular RGB images to
aid autonomous driving algorithms such as for ex-
ample collision avoidance [1] or adaptive cruise con-
trol [20]. Figure 1 shows an example image from the
data1.

Vehicle velocity estimation as such is not a new
subject of interest, since it is extensively studied in
the context of traffic surveillance [17, 4], where ,
however, a stationary camera is employed. Under
the restriction of a fixed camera pose the problem
becomes significantly less complex, since with a cal-
ibrated camera system angular measurements can be
obtained and from these measurements velocity es-
timates can readily be established. In contrast in
our case the observer resides on a moving platform
and inferring velocity in a similar fashion would re-

1http://benchmark.tusimple.ai/#/t/2

http://benchmark.tusimple.ai/#/t/2

quire additional information such as camera pose,
ego-motion and foreground-background segmenta-
tion. Very recent research [41] shows that estimating
ego-motion as well as disparity maps from monocu-
lar camera images by means of structure from motion
is indeed possible, but still limited. Semantic seg-
mentation of scenes, which is a fundamental prob-
lem in computer vision, has also more recently been
tackled using deep neural networks [6, 24].

In a more general sense the given task can be
seen as a lightweight version of object scene flow
as for example provided in the KITTI benchmark
[11, 28]. Object scene flow aims at estimating dense
3D motion fields, which in their temporal evolution
carry highly valuable information about the geomet-
ric constellation of a given scene. Recent approaches
[36, 35] yield impressive results, but they rely on the
availability of stereo image data. Furthermore, they
come at the price of very high computational cost,
such that the estimation for a temporal frame pair
might take 5-10 minutes on a single CPU core. In au-
tonomous driving scenarios computational resources
are in general highly limited [13], which makes ob-
ject scene flow currently not practically feasible.

In this work we adopt recent deep learning archi-
tectures [18, 12] for depth and motion estimation to
leverage a mapping of the video input into a bene-
ficial feature space for learning from the few train-
ing samples provided. Our approach employs a two-
stage process for monocular velocity estimation. In
a first step we extract vehicle tracks as well as dense
depth and optical flow information, followed by lo-
cally aggregating these depth and motion cues at the
tracked vehicle locations and concatenating over the
temporal dimension. After this feature extraction
procedure we use the spatiotemporal depth, flow and
location features to train a fully connected regression
network for velocity estimation of the respective ve-
hicles.

Further on we conduct an extensive ablation study
to investigate the impact of the individual features
and combinations thereof on the regression perfor-
mance as well as on the runtime of the estimation.
We show that a light weight implementation can
achieve excellent results, and that leveraging deep
motion and depth cues does not necessarily improve
performance for this task on the given data.

2. Related Work

Tracking. Object tracking is one of the fundamen-
tal problems in computer vision and has been ex-
tensively studied [40] and applied in many different
tasks.

Median Flow [21] is a method building on top of
the Lucas-Kanade [25] method, which is an early
optical flow algorithm operating on local intensity
changes. This method is extended by a Forward-
Backward error, which denotes the deviation be-
tween the trajectories obtained by tracking from
It−1 → It and It → It−1. Using Forward-Backward
error, robust predictions can be identified.

The Multiple Instance Learning tracker [2] first
transforms the image into an appropriate feature
space, and uses a classifier as well as a motion model
to determine the presence of an object in a frame,
which is referred to as tracking by detection.

More recent methods like [15] employ convolu-
tional neural networks to learn motion and appear-
ance of objects. The feature maps of higher convolu-
tional layers provide robust and accurate appearance
representations, but lack spatial resolution. Lower
layers on the other hand provide higher spatial res-
olution and less refined appearance representations.
This hierarchical structure is used in [26] by inferring
responses of correlation filters on each corresponding
layer pair.

Monocular Depth Estimation. Estimating the
depth information of a scene seen from a given an-
gle using only a single camera is not a well-posed
problem. Some of the methods tackling this problem
[31, 39] apply supervised learning regimes requiring
ground truth depth data. Since acquiring such ground
truth data with sufficient accuracy requires immense
effort, several methods are being developed that re-
quire little to no supervision.

In [23] a semi-supervised approach is described
that provides a fusion between using sparse ground
truth data from a LiDAR sensor and stereo view syn-
thesis, i.e. estimating one image in a stereo pair from
the other, to infer dense depth maps. Others [12, 38]
in turn rely solely on stereo as a supervision signal,
which comes with the benefit of easily available or
obtainable data.

Some recent work [41, 10] shows the capability of
inferring single image depth from monocular video
only. This is achieved by leveraging the (small) tem-
poral motion of the camera and its thus changing
pose to learn from multiple views of the scene. Via

Tracker

FlowNet

DepthNet

RGB

Input frames

stack

Backward propagation

Forward propagation

pool

*

MLP

width

depth

height

Figure 2: Overview of our overall architecture (see Section 3 for details). Our proposed light-weight architec-
ture only uses the trajectory features estimated by the tracker.

novel view synthesis the future camera frames can be
used as a self-supervision signal. The mapping thus
learned implicitly carries information about the 3D
scene geometry.

Optical Flow Estimation. Optical flow is widely
used in computer vision, e.g. for video object de-
tection [42], to quantify pixel-wise motion in be-
tween frames of a moving scene. Traditional meth-
ods [16, 37] employ variational motion estimation
approaches, that regard the estimation of pixel level
correspondences between frames as an optimization
problem.

With the growing interest in deep learning also
optical flow estimation is now often successfully
treated as a supervised learning problem [7]. This
is achieved by employing convolutional neural net-
works for feature extraction and aggregation, fol-
lowed by an ’upconvolutional’ network, which con-
catenates the feature maps from the correspond-
ing convolutional layers and jointly applies trans-
posed convolution to increase spatial resolution. Fur-
ther improvements on this approach have since been
made [18] that provide improved performance and
robustness as well as scalability.

3. Vehicle velocity estimation

We present an explorative study over features for
vehicle velocity estimation from monocular camera
videos and discuss effectiveness as well as signifi-
cance of the methods employed. The task is to esti-
mate the relative velocity as well as position of given
vehicles seen in short dashcam video snippets. Our
overall approach, shown in Figure 2, consists of a
two stage process: First, features subsidiary to the

task are extracted to subserve the second stage, which
is a light-weight Multilayer Perceptron (MLP) archi-
tecture working on these features to regress velocity
and positions of vehicle instances.

3.1. Feature Extraction

For the estimation of vehicle velocity, the raw
RGB video data is first transformed into a beneficial
feature space. We use three feature types of com-
plementary nature: Vehicle tracks (i.e. trajectories of
the 2D object outline over time), depth (i.e. disparity
estimates from monocular imagery) and motion (i.e.
optical flow estimates between consecutive frames).
The remainder of this section describes the specific
algorithmic instances used for extracting these cues.
Tracks. For a given vehicle defined by a bound-
ing box in a single frame, tracking over the temporal
extent of the input serves for all further processing
steps. A variety of well functioning tracking algo-
rithms are readily available in literature. Since we
aim for a lightweight tracker that should precisely
localize the object outline, we employ fast track-
ers that operate directly at the pixel level, the Me-
dian Flow [21] and MIL [2] trackers, both imple-
mented in the OpenCV library [3]. The Median Flow
tracker comes with the benefit of being able to adapt
bounding boxes over the trajectories, and provides a
tight bounding box that can be a very useful feature
when estimating the relative velocity of the objects.
However, this tracker is unstable for occlusions since
it employs forward-backward tracking. Whenever
Median Flow detects a tracking failure the missing
bounding boxes are substituted with MIL tracks.
Depth. For dense depth map prediction we em-
ploy a recently described deep architecture [12], that

Figure 3: Optical flow (left, Middlebury flow encod-
ing), bounding box and depth map (right, darker val-
ues represent larger distances) of a close range sam-
ple vehicle overlayed over the RGB image.

learns monocular depth map prediction via novel
view synthesis in a stereo environment. This is
achieved by synthesizing e.g. the left camera image
from the right, where the left camera image is used
as supervision signal. The warping operation that is
thus learned implicitly carries information on the dis-
parities in the source image. We use a model pre-
trained on KITTI [11] and Cityscapes [5] stereo im-
ages for predicting the dense disparity maps (note
that this model is trained without disparity ground-
truth). Owing to architectural constraints and limited
computational capacity the RGB input images are re-
sized to 512x256p.
Motion. Finally, we extract motion information by
extracting dense optical flow maps using a state-of-
the-art neural network architecture, FlowNet2 [18].
FlowNet2 treats optical flow estimation as a super-
vised learning problem, where a convolutional neu-
ral network is trained on a volume of two stacked
input frames with ground truth optical flow as a su-
pervision signal. In our case we use a FlowNet2 ar-
chitecture pre-trained on the synthetic Flying Chairs
[8] dataset to calculate 39 dense u, v flow maps from
512x256p input images. A sample of the extracted
feature maps is shown in Figure 3. In both fea-
ture maps the vehicle can be segmented from the
background, but the capabilities are limited to close
ranges.
Transformation into feature space. The depth
and motion cues are computed globally and further
processed to serve as lightweight input features for
a regression model. This is achieved by locally ag-
gregating the dense predictions within the bounding
boxes established by the tracking stage. The local
aggregation is achieved by calculating the mean over
the estimates within each tracked bounding box, af-
ter shrinking the box by 10% in width and height,
which reduces the variance since flow and depth cues
tend to be inaccurate at the object boundaries. Sub-

0 500 1000 1500

bounding box size / px2

0

50

100

d
is

ta
n

ce
/

m

far med near

Figure 4: Split of distance categories for neural net-
work. For the labeled training set, the true distance
is known. The empirically chosen boundaries are
shown in green.

sequently, the aggregated feature vectors are tempo-
rally smoothed using a Gaussian kernel of width 5,
which is chosen in correspondence to the frame skip
of 5 in the learning stage. For optical flow, this pro-
cedure is carried out individually for each the hor-
izontal and vertical component u, v. The temporal
smoothing provides robustness to short-term devia-
tions of the camera orientation (e.g. caused by bumps
when driving on a highway).

3.2. Neural Network Model

These pre-computed features allow us to use rela-
tively shallow fully-connected neural networks. This
is especially advantageous for the task at hand, in
which the number of given training examples is rel-
atively small and learning can take advantage of
highly abstract features. We employ a comparatively
simple, rather small and thus efficient 4-layer MLP
architecture to regress from feature space to vehicle
velocities.

Data Split. The relationship of the pre-computed
features to the learning output is highly nonlinear.
Consider for instance the size of bounding boxes
around other vehicles: they rapidly decrease when
the vehicle is close to the camera, while remaining
more or less constant if the vehicle is far away re-
gardless of the velocity. To facilitate learning in these
distinct regimes, we split the data set into three dis-
joint parts, based on the distance from the observer
(near/mid/far), and train separate models for each.
Figure 4 shows the bounding box size as a function of
the distance from the observer for the training set, as
well as our chosen splits. As indicator for the relative
distance of the target vehicle we use the bounding
box area of the last frame that the vehicle is shown.

Features (a) (b) (c) (d) (e) (f) (g)
Tracking X X X X
Motion X X X X
Depth X X X X
EV 1.86 4.68 4.59 3.74 1.90 1.83 1.86
EV,near 0.93 1.42 0.87 0.66 0.91 0.70 0.77
EV,medium 0.76 4.84 4.88 4.29 0.87 0.86 0.90
EV,far 3.43 6.87 7.72 6.20 3.24 3.23 3.06

Table 1: Best results achieved in ablation study for each individual range.

Although there is some variance near the borders be-
tween different sets, this split simplifies the learning
task compared to a single model that has to work
across all distances.

Architecture. On each of these three sets, we per-
formed cross-validation to obtain a good network
architecture. The resulting network topologies are
(number of hidden layers × number of units per
layer) 3 × 40 (near), 4 × 60 (medium), and 4 × 70
(far). Extensive validation experiments revealed that
best results could be obtained with concatenated rec-
tified linear units (CReLU) [32] as hidden unit activa-
tions; thus, all layer output sizes are twice the input
size. The output layer activation is linear. We use
an L2 loss to train the network by using the ground-
truth velocity values, obtained from a combination of
LiDAR and radar sensors.

Training. Each individual network is trained on the
MSE between network output and targets for 2000
epochs using minibatches of 50 samples. For regu-
larization, weight decay of 10−5 and Dropout [34] of
0.2 were used. We train using the ADAM optimizer
[22].

To make use of all available training data, we use a
partitioning scheme similar to k-fold cross-validation
and train multiple networks per distance set. Each of
them is split up into five partitions. Four of these are
used as training set, the fifth is used for validation.
After training for 2000 epochs on each possible com-
bination, the model with the lowest validation error
is saved. This results in 3 × 5 models for the entire
dataset. Note that the number of examples per neural
network is quite small, so overfitting may occur eas-
ily as the validation score can no longer be regarded
as an accurate estimate of the error on the test set in
most cases.

The training data not only contains targets for the
target vehicle velocity, but also for the relative ve-
hicle position. In other machine learning domains,
it is well-known that auxilliary targets can increase

the learning performance (see e.g. for reinforcement
learning [29, 19, 9]). We also make use of all tar-
gets during training and simultaneously regress for
vehicle velocities and distance. Early stopping is per-
formed using only the performance on the actual tar-
gets. This leads to slight increases in performance.

Model Averaging. Above, we described how 3×5
partitions are trained. When evaluating the test set,
we split the data according to the computed bounding
box areas using the same procedure as for the training
set. Then, the average over all five models for the
respective distance is computed. This gives the final
estimation for the relative vehicle velocity.

4. Experiments

4.1. Dataset

The provided dataset includes 1074 driving se-
quences in freeway traffic, recorded by a single HD
(1280x720p) camera, each 40 frames long captured
at 20fps, as well as camera calibration matrices. For
each sequence specific vehicles are annotated with a
bounding box as well as position and velocity in both
x and y coordinates in the last frame only, resulting
in a total of 1442 annotated vehicles. For evaluation
the individual vehicles are classified into three clus-
ters according to their ground truth relative distance d
in the last frame. d < 20 m is considered near range
(12% of samples), 20 m ≥ d > 45 m medium range
(65% of samples) and d ≥ 45 m far range (23%
of samples). For each of those ranges different dif-
ficulties arise in the estimation. While in near range
examples the perspective on vehicles can shift drasti-
cally in between instances and over time for individ-
ual instances, for far range samples the estimation is
limited by the pixel resolution of the data.

From the provided data a method should be devel-
oped, which is able to infer velocity as well as po-
sition of vehicles specified by a given bounding box
in the last frame. For evaluation a test set consisting
of 269 clips, or 375 vehicle tracks is provided, which

is structurally identical to the training data, with the
only difference being the absence of ground truth po-
sition and velocity data.

4.2. Ablation study

To investigate the impact of the features used in
our initial approach on velocity estimation accuracy,
we have conducted an ablation study to test combi-
nations of all features and activation functions.

Validation split. In order to be able to evaluate the
performance of our approach we had to first split the
available training data into a training and validation
set. Earlier we used 80/20 random splits, but for
more robust evaluation we decided to take into ac-
count the distribution of near, medium and far range
samples (12/65/23%) and also the similarity of the
test sequences. Since the training samples are se-
quences from a fixed set of drives, we decided to split
training and validation splits such that the validation
samples stem from unseen drives.

To achieve this we compute the 4096 dimensional
VGGNet fc2 feature vector [33], reduce it to 2D space
using t-sne [27] and then cluster the resulting features
into 7 clusters using k-means. We have then cho-
sen a cluster consisting of 10% of the total training
samples with a (14/63/21%) near, medium, far range
distribution as validation set. The remaining data is
used for training after defining a fixed 5-fold split for
cross validation.

Training. For each of the 5 train/test splits, 10
models with fixed 3 × 40 topologies are trained ac-
cording to the same paradigm as described above.
Here, training was stopped early if the velocity mean
squared error (1) did not improve in the course of 500
iterations. The ablation was performed both training
models on the whole data as well as training individ-
ual models on near, medium and far data splits.

Results. The results of the ablation study described
above are shown in Table 1. It can be seen that depth
and motion cues can indeed help improve results of
vehicle velocity estimation, but their impact is lim-
ited by range. Both depth and optical flow estimates
show significantly degrading performances for dis-
tances larger than 20m (above near range). Within
near range on the other hand, where rapid changes
in perspective can occur, they are superior in perfor-
mance to using only tracking.

For medium range, where vehicles are predomi-
nantly viewed from their rear only, tracking cues only
yield superior performance. For far range the pixel

level appearance of vehicles changes so slightly at
different velocities, that a robust estimation of their
velocity can not be achieved by the method used.

Motion Depth Tracking MLP
Hardware GPU GPU CPU GPU

Timing 344 ms 69 ms 7 ms 3 ms

Table 2: Runtime of the individual stages of our
method for a single frame on Intel®CoreTM i7-
5930K, 32GB, NVIDIA Titan X. For depth and mo-
tion estimation inference times only are indicated.

Using tracking cues only is also the most effi-
cient, as shown in Table 2. Inference of our model is
generally very fast and thus the feature extraction is
the biggest performance bottleneck of our approach.
While using motion, depth and tracking cues pro-
vides a theoretical estimation rate of 2 frames per
second, with tracking cues 100 frames can be esti-
mated in one second.

4.3. Challenge results

On the leaderboard of the CVPR2017 Au-
tonomous Driving velocity estimation challenge, the
individual entries are ranked by overall average ve-
locity mean squared error. For each given set of sam-
ples C, in this case the ranges near, medium and far,
the error is evaluated according to (1) and then aver-
aged (2).

EV,C =
1

|C|
∑
c∈C
||Vc − V̂c||2 (1)

EV =
EV,near + EV,med + EV,far

3
. (2)

In correspondence to the given evaluation metric,
the results achieved on the test set are depicted in Ta-
ble 3. The entry Ours full is the winning approach
described above, using individual models trained on
all three ranges separately, while incorporating track-
ing, flow and depth features. Ours tracking are the
best performing models using only tracking cues ob-
tained in the ablation study, which are again separate
models for each range, but trained on the whole data.
Notably, the ground-truth accuracy is at around 0.71
m/s which is obtained from a combination of LiDAR
and radar sensors (this number was communicated by
the challenge organizers). Therefore, our average es-
timation 1.12 m/s error (corresponding to 1.25 m2/s2

MSE) is relatively close to a LiDAR and radar solu-

Figure 5: Qualitative results on the test data, near medium and far range (f.l.t.r.). In each example one sequence
from the test set (i.e. 2 seconds of video at 20fps, see Section 4.1) is shown, annotated with the estimated
velocity in m/s for (x, y) coordinates. Note: View with Acrobat or PDF-Xchange reader for animation.

tion, but uses only videos recorded from a monocular
dash cam.

EV EV,near EV,med EV,far

Ours tracking* 1.25 0.12 0.54 3.11
Ours full 1.30 0.18 0.66 3.07
Rank2 team 1.50 0.25 0.75 3.50
Rank3 team 2.90 0.55 2.21 5.94
Rank4 team 3.54 1.46 2.74 6.42

Table 3: Challenge leaderbord top 5. Ours full is the
winning approach. Ours tracking denotes the best
performing tracking only model. *submitted post dead-

line

5. Conclusion

This paper documents the winning entry at the
CVPR2017 vehicle velocity estimation challenge.
We have proposed a light-weight approach for di-
rectly regressing vehicle velocities from their tracks
in monocular video sequences. By comparing com-
plementary features for vehicle velocity estimation,
we find that light-weight trajectory based features
outperform depth and motion cues extracted from
deep ConvNets. Our approach is real-time capable
on a single CPU and outperforms all competing en-
tries in the velocity estimation challenge. Future
work shall address an end-to-end system for joint
tracking and estimation.

Acknowledgments. We are grateful for discus-
sions with Axel Pinz. The GPUs used for this re-
search were donated by NVIDIA.

References

[1] R. Aufrère, J. Gowdy, C. Mertz, C. Thorpe, C.-
C. Wang, and T. Yata. Perception for collision
avoidance and autonomous driving. Mechatronics,
13(10):1149–1161, 2003. 1

[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual
tracking with online multiple instance learning. In
Proc. CVPR, pages 983–990. IEEE, 2009. 2, 3

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Jour-
nal of Software Tools, 2000. 3

[4] B. Coifman, D. Beymer, P. McLauchlan, and J. Ma-
lik. A real-time computer vision system for vehi-
cle tracking and traffic surveillance. Transportation
Research Part C: Emerging Technologies, 6(4):271–
288, 1998. 1

[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic ur-
ban scene understanding. In Proc. CVPR, pages
3213–3223, 2016. 4

[6] J. Dai, K. He, and J. Sun. Instance-aware semantic
segmentation via multi-task network cascades. In
Proc. CVPR, pages 3150–3158, 2016. 2

[7] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser,
C. Hazirbas, V. Golkov, P. van der Smagt, D. Cre-
mers, and T. Brox. Flownet: Learning optical flow
with convolutional networks. In Proc. CVPR, pages
2758–2766, 2015. 3

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser,
C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with
convolutional networks. In Proc. ICCV, 2015. 4

[9] A. Dosovitskiy and V. Koltun. Learning to act by
predicting the future. In Proc. ICLR, 2016. 5

[10] R. Garg, G. Carneiro, and I. Reid. Unsupervised cnn
for single view depth estimation: Geometry to the
rescue. In Proc. ECCV, pages 740–756. Springer,
2016. 2

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Proc. CVPR, 2012. 2, 4

[12] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsu-
pervised monocular depth estimation with left-right
consistency. In Proc. CVPR, 2017. 2, 3

[13] A. Grzywaczewski. Training ai for self-driving ve-
hicles: the challenge of scale, 2017. 2

[14] S. Hasirlioglu, A. Riener, W. Ruber, and P. Winters-
berger. Effects of exhaust gases on laser scanner data

quality at low ambient temperatures. In Intelligent
Vehicles Symposium (IV), 2017 IEEE, pages 1708–
1713. IEEE, 2017. 1

[15] D. Held, S. Thrun, and S. Savarese. Learning to
track at 100 fps with deep regression networks. In
Proc. ECCV, pages 749–765. Springer, 2016. 2

[16] B. K. Horn and B. G. Schunck. Determining optical
flow. Artificial intelligence, 17(1-3):185–203, 1981.
3

[17] J.-W. Hsieh, S.-H. Yu, Y.-S. Chen, and W.-F. Hu.
Automatic traffic surveillance system for vehicle
tracking and classification. IEEE Transactions on
Intelligent Transportation Systems, 7(2):175–187,
2006. 1

[18] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovit-
skiy, and T. Brox. Flownet 2.0: Evolution of optical
flow estimation with deep networks. In Proc. CVPR,
Jul 2017. 2, 3, 4

[19] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul,
J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Re-
inforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016. 5

[20] R. K. Jurgen. Adaptive cruise control. Technical
report, SAE Technical Paper, 2006. 1

[21] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-
backward error: Automatic detection of tracking
failures. In Proc. ICPR, pages 2756–2759. IEEE,
2010. 2, 3

[22] D. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In Proc. ICLR, 2014. 5

[23] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-
supervised deep learning for monocular depth map
prediction. In Proc. CVPR, 2017. 2

[24] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convo-
lutional instance-aware semantic segmentation. In
Proc. CVPR, 2016. 2

[25] B. D. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision
(darpa). In Proceedings of the 1981 DARPA Image
Understanding Workshop, pages 121–130, 1981. 2

[26] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hi-
erarchical convolutional features for visual tracking.
In Proc. CVPR, pages 3074–3082, 2015. 2

[27] L. v. d. Maaten and G. Hinton. Visualizing data us-
ing t-sne. JMLR, 9(Nov):2579–2605, 2008. 6

[28] M. Menze and A. Geiger. Object scene flow for au-
tonomous vehicles. In Proc. CVPR, June 2015. 2

[29] P. Mirowski, R. Pascanu, F. Viola, H. Soyer,
A. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, et al. Learning to nav-
igate in complex environments. arXiv preprint
arXiv:1611.03673, 2016. 5

[30] R. Rasshofer, M. Spies, and H. Spies. Influences of
weather phenomena on automotive laser radar sys-
tems. Advances in Radio Science, 9(B. 2):49–60,
2011. 1

[31] A. Saxena, S. H. Chung, and A. Y. Ng. Learning
depth from single monocular images. In NIPS, pages
1161–1168, 2006. 2

[32] W. Shang, K. Sohn, D. Almeida, and H. Lee. Un-
derstanding and improving convolutional neural net-
works via concatenated rectified linear units. CoRR,
abs/1603.05201, 2016. 5

[33] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014. 6

[34] N. Srivastava, G. E. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Dropout: a sim-
ple way to prevent neural networks from overfitting.
JMLR, 15(1):1929–1958, 2014. 5

[35] C. Vogel, S. Roth, and K. Schindler. View-consistent
3d scene flow estimation over multiple frames. In
Proc. ECCV, pages 263–278. Springer, 2014. 2

[36] C. Vogel, K. Schindler, and S. Roth. Piecewise rigid
scene flow. In Proc. CVPR, pages 1377–1384, 2013.
2

[37] A. Wedel, D. Cremers, T. Pock, and H. Bischof.
Structure-and motion-adaptive regularization for
high accuracy optic flow. In Proc. CVPR, pages
1663–1668. IEEE, 2009. 3

[38] J. Xie, R. Girshick, and A. Farhadi. Deep3d: Fully
automatic 2d-to-3d video conversion with deep con-
volutional neural networks. In Proc. ECCV, pages
842–857. Springer, 2016. 2

[39] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe.
Multi-scale continuous crfs as sequential deep net-
works for monocular depth estimation. In Proc.
CVPR, 2017. 2

[40] A. Yilmaz, O. Javed, and M. Shah. Object tracking:
A survey. Acm computing surveys (CSUR), 38(4):13,
2006. 2

[41] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe.
Unsupervised learning of depth and ego-motion
from video. In Proc. CVPR, 2017. 2

[42] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. Flow-
guided feature aggregation for video object detec-
tion. In Proc. ICCV, 2017. 3

	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

