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Abstract. Wasserstein Generative Adversarial Net-
works (GANs) work by approximating the Wasser-
stein distance using large Neural Networks (NNs)
with specific architectures, hyperparameter and reg-
ularization techniques. We show that those networks
severely underestimate the Wasserstein distance even
on toy problems. For this reason a new algorithm
based on convex optimization is proposed to cal-
culate the Wasserstein distance optimally in a dis-
cretized space. By comparing the output to the state-
of-the-art, we show that current regularization tech-
niques are too restrictive to allow for rich structure in
the learned critic functions. Using our critic function
as part of a new algorithm called Sequential Convex
Optimization (SCO) we achieve reliable convergence
on our GAN games for 1D and 2D distributions. This
is compared to the current state-of-the-art in training
Wasserstein GANs, which do not converge to an op-
timal solution on any single testcase.

1. Introduction

In its vanilla form GANs consist of a generator
and a discriminator [9], denoted as critic in Wasser-
stein GANs [4], which are trained in turn adversari-
ally. The solution to a GAN game between a gener-
ator and a critic is a saddle point, where the weights
of the generator are minimal and the weights of the
critic are maximal with respect to the combined value
function [19]. While there might exist multiple sad-
dle points the optimal solution to such a problem is
referred to as a Nash Equilibrium [9].

GANs are used to sample from an unknown dis-
tribution [10], for anomaly detection [13] or for semi
supervised learning [9]. However, the mathemati-
cal theory underlying GANs has not been as well re-
searched [5]. It is still unclear, if an optimal solution
to a GAN game must exist [5]. Also no provable

convergence rates or performance guarantees exist
for GAN games [5]. Current state-of-the-art methods
rely on regularization, carefully crafted architectures
and initialization to produce their results [4].

It has been shown that the vanilla GAN [9] mini-
mizes the Jensen-Shannon divergence and converges
as soon as the distribution of the generator sample is
the same as the distribution of the data samples [9].
The problem with this framework is that the gradi-
ent norm of the discriminator approaches zero as the
discriminator improves [3]. On one hand a good dis-
criminator is desirable to show the correct improve-
ment direction, but on the other hand a perfect dis-
criminator has gradient zero everywhere and it is not
possible to learn the generator from it [3]. To combat
this behaviour, non-saturating GANs [16] or Wasser-
stein GANs [4] are used. In this work, the focus is
on the Wasserstein GAN, which minimizes the dual
of the Wasserstein distance instead of the Jensen-
Shannon divergence. Let µ, ν be two probability dis-
tributions in the compact space Ω ⊂ Rd, then the
dual of the Wasserstein distance on those probability
distributions is defined as follows:

W (µ, ν) = max
Lip(f)≤1

Ex∼µ[f(x)]− Ex∼ν [f(x)] (1)

The goal of a GAN game is to approximate the
target distribution µ with a parametric model νθ. To
learn the parametric distribution using the Wasser-
stein distance the following equation has been pro-
posed [4]:

min
θ

max
Lip(f)≤1

Ex∼µ[f(x)]− Ex∼νθ [f(x)], (2)

where f denotes the critic function and is required
to have at most a Lipschitz constant of 1 and there-
fore:



|f(x)− f(y)| ≤ Lip(f)||x− y|| (3)

To sample from a parmetric distribution we use
a known distribution ν ′, e.g. N (0, I), and transform
this distribution with a function gθ : Rd → Rd giving
us the Wasserstein GAN formulation:

min
θ

max
Lip(f)≤1

Ex∼µ[f(x)]− Ez∼ν′ [f(gθ(z))] (4)

For the optimal critic function f , Equation (5)
holds and is used to learn the unknown distribution
µ [4].

∇θW (µ, νθ) = −Ez∼ν′ [∇θf(gθ(z))] (5)

In Wasserstein GANs, the function f is ap-
proximated using a NN with various regularization
schemes [4, 10, 2, 1]. Given this intuition, the fol-
lowing contributions are made as part of this work:

1. We show that the NN approximations are not
optimal even on toy datasets after 106 itera-
tions and therefore the mathematical justifica-
tion does not hold.

2. We propose an algorithm based on convex op-
timization [6], which does provide an optimal
solution in a discretized space.

3. We use this critic function and propose an al-
gorithm called SCO for the Wasserstein GAN
problem for small d.

2. Related Work

GANs have been proposed by Goodfellow et.
al. [9]. In their vanilla form, GANs have been shown
to be a minimization problem on the Jensen-Shannon
divergence between two distributions [9]. This has
been extended to arbitrary f-divergences [15]. While
the authors in [7] argued, that it is not necessary to
decrease the divergence in every step, we show that
doing so leads to reliable convergence to the optimal
solution. The only current performance and gener-
alization guarantee for training GANs has been pro-
posed in settings with multiple generators and dis-
criminators [5]. The prediction step used in our algo-
rithm has also been used in regular GAN training to
stabilize the training [19].

One divergence in particular, namely the Wasser-
stein Distance, has been used to combat mode col-
lapse and vanishing gradients as the discriminator ap-
proaches optimality [4]. Based on this work, multi-
ple other works have proposed regularization tech-
niques to improve performance [10, 2, 1]. Another
related work replaced the discriminator with its dual
and solved a maximization problem instead of a max-
min problem [12].

In this work, the Wasserstein distance is calcu-
lated using a primal-dual algorithm [6] using the dual
of the Wasserstein distance proposed by Kantorovich
and Rubinstein [18]. While other algorithms to com-
pute the Wasserstein distance exist [8], in the context
of Wasserstein GANs, only NN have been used.

3. Preliminaries

In this section, some common terms are intro-
duced. The dual of the Wasserstein distance follows
from Equation (1):

W (µ, ν) = max
Lip(f)≤1

∫
Ω
f(x)dµ(x)−

∫
Ω
f(x)dν(x)

= max
Lip(f)≤1

∫
Ω
f(x)(dµ(x)− dν(x)) (6)

In Wasserstein GANs, the function f is approxi-
mated using a NN. However, the NN does not neces-
sarily output a function, which satisfies the Lipschitz
constraint. However, the Lipschitz constraint can be
scaled as follows:

W (µ, ν) =
1

K
max

Lip(f)≤K
Ex∼µ(f(x))− Ex∼ν(f(x))

(7)
The indicator function on a convex set X is de-

fined as:

δX(x) =

{
0 if x ∈ X,
∞ else,

(8)

To obtain the dual of the critic function the convex
conjugate is used. The convex-conjugate of a func-
tion F (x) is defined as:

F ∗(x) = sup
y
〈y, x〉 − F (y). (9)

The primal-dual algorithm requires the calculation
of the proximal map. The proximal map of a function



F is calculated for any τ > 0:

x = (I+τ∂F )−1(y) = arg min
x
{||x− y||

2

2τ
+F (x)}

(10)
In order to compute the critic f , the input space

needs to be discretized. The input domain is given
by Ω ⊂ Rd for d ≥ 0, d ∈ Z, which is discretized
at a scale dx > 0. Then Ωdx denotes the discretized
space which is given by

Ωdx = int(
⋃{

Si : i ∈ Zd, Si ⊂ Ω
}

), (11)

where

Si = [(i1 − 1
2)dx, (i1 + 1

2)dx)×
...× [(id − 1

2)dx, (id + 1
2)dx) (12)

and the corresponding index set Id is defined as:

Id ={
i = (i1, ..., id) : 1 ≤ ij ≤ Nj , ∀j : 1 ≤ j ≤ d

}
,

(13)

In this paper, we set dµ(Si) =
∫
Si
dµ(x). For

known distributions, this expression can be calcu-
lated exactly. For a dataset x ⊂ Rm×d with an under-
lying unknown data distribution µ, we use dµ(Si) =

1
m

∑m
j ISi

(pj), where ISi
(pj) =

{
1 if pj ∈ Si,
0 else.

4. Wasserstein Critic based on Convex Opti-
mization

In this section, the generator is fixed to an arbitrary
distribution and only the critic is solved to optimal-
ity. This solution is obtained using convex optimiza-
tion [6] and compared to a NN trained with either
weight clipping [4] or gradient penalty [10], which
are currently used in GAN games. The architecure of
the NN was chosen to have enough capacity to model
the function produced using convex optimization.

4.1. Critic in 1D

In 1D the discrete Wasserstein-distance formula
rewritten into a linear program is given by:

max
f

∑
i1∈I1

fi1(dµ(Si1)− dν(Si)) (14)

s.t.
|fi1+1 − fi1 |

dx
≤ 1

By minimizing the negative and setting
c = [dµ(S1) − dν(S1), ...]T , (Df)i1 =
fi1+1−fi1

dx
, with (Df)N1 = 0 and ||Df ||∞ =

max1≤i1≤N1(|(Df)i1 |) for the constraints and
solving this problem on the constrained set, the
following linear program is obtained:

min
f
−cT f + δ||·||∞≤1(Df) (15)

Using the convex conjugate of this function results
in the following saddle point formulation:

min
f

max
y
〈y,Df〉 − cT f − ||y||1 (16)

This problem in saddle point formulation is solved
by the primal-dual algorithm [6] with primal vari-
ables f and dual variables y given in Algorithm 1.
The proximal map of G(f) = −cT f is given by
(I + τ∂G)−1(f) = f + τc and the proximal map of
F ∗(y) = ||y||1 is given by the soft shrinkage operator
(I+σ∂F ∗)−1(yi) = max(0, |yi|−σ) ·sgn(yi). The
learning rates are chosen in such a way, that equa-
tion στL2 ≤ 1 holds, where L = ||D||2. It is easily
shown, that ||D||2 = 2

dx
. So by setting τ > 0 and

σ = 1
L2τ

, the condition is satisfied and the algorithm
converges in O(1/N), which is optimal for this for-
mulation of the problem [6].

Algorithm 1: Primal-Dual Algorithm [6].
We set τ > 0 and σ = 1

L2τ
.

for k ≥ 0 do
fk+1 = (I + τδG)−1(fk − τDT yk)
f̄k+1 = 2fk+1 − fk
yk+1 = (I + σδF ∗)−1(yk + σDf̄k+1)

end

A comparison of our method to NN approximiza-
tions in multiple gaussian situations is given in Fig-
ure 1. For this comparison a NN with 2 hidden lay-
ers of 16 neurons and ReLU activation was used.
The hyperparameters for the Wasserstein GANs were
adapted from the original papers. For weight clip-
ping RMSProp [17] with a learning rate of 10−4

and for the gradient penalty Adam [11] with learn-
ing rate of 10−4, β1 = 0 and β2 = 0.9 was used.
The NNs were trained for 1.000.000 iterations with
a batch size of 128. However, the clipping parameter



(a) W (µ, ν) = 0 (b) W (µ, ν) = 0 (c) W (µ, ν) = 0

(d) W (µ, ν) = 7.69 (e) W (µ, ν) = 6.29 (f) W (µ, ν) = 7.63

(g) W (µ, ν) = 37.09 (h) W (µ, ν) = 36.80 (i) W (µ, ν) = 37.08

Figure 1: Critic functions in green calculated for two 1D Gaussian distributions using Algorithm 1 (first
column), a NN regularized with weight clipping [4] (second column) and a NN regularized with gradient
penalty [10] (third column). The critic values are scaled to provide a more pleasent viewing experience using
fi = fi

10||f ||∞ . The critic uses the ground truth probability density function to compute the critic instead of
samples.

c = [−0.1, 0.1], because [−0.01, 0.01] was too re-
strictive for such shallow NN. To visualize the NN
approximations, the NNs were evaluated at every
point in Ωdx and interpolated linearly. Even in such
a simple case the approximate solutions produced by
the NNs reduce non-linear shapes to linear shapes as
shown in row 3 of Figure 1. These non-linear shapes
actually show, that one distribution has a larger stan-
dard deviation than the other distribution and enable
learning the σ parameter. Additionally, the approxi-
mation critics failed to produce a function outputting
0 for the case, where the same distribution is used
twice. Using this critic in a Wasserstein GAN game
leads to divergence from the optimal solution. This
behavior explains, why Wasserstein GANs do not
converge in practice. Still, the Wasserstein distance
as shown in Figure 1 is similar to our solution in the
one dimensional case.

4.2. Critic in 2D

The program for the 2D case is given by the 2nd
order cone problem given in the following equation:

max
f

∑
i∈I2

fi(dµ(Si)− dν(Si)) (17)

s.t.

√
(fi1+1,i2 − fi1,i2)2 + (fi1,i2+1 − fi1,i2)2

dx
≤ 1

This program is convex and is again solved by a
primal-dual algorithm in O(1/N) time. In order to
use the primal-dual algorithm, Equation 17 is refor-
mulated using matrix D with

(Df)i1,i2,1 =
fi1+1,i2 − fi1,i2

dx
, (18)

(Df)i1,i2,2 =
fi1,i2+1 − fi1,i2

dx
, (19)



(a) (b) W (µ, ν) = 52.79 (c) W (µ, ν) = 29.22 (d) W (µ, ν) = 47.59

(e) (f) W (µ, ν) = 49.67 (g) W (µ, ν) = 33.01 (h) W (µ, ν) = 40.83

(i) (j) W (µ, ν) = 49.06 (k) W (µ, ν) = 27.99 (l) W (µ, ν) = 39.89

Figure 2: Comparison of our method to the state-of-the-art. In (a,e,i) the original setting is shown, while
the critic based on convex optimization for those settings is shown in (b,f,j). The critic trained using weight
clipping is shown in (c,g,k), while the figures in (d,h,l) show the critic trained with gradient penalty. The
estimated Wasserstein distance is shown in the caption.

where (Df)N1,i2 = 0 and (Df)i1,N2 = 0. For the
learning rate of Algorithm 1, it is important to note,
that ||D||2 ≤

√
8

dx
[6]. Using the constrained set and

minimizing the negative instead of maximizing the
positive yields:

min
f
−cT f + δ||·||2,∞≤δx(Df) (20)

The convex conjugate of this problem is given in
the following equation:

min
f

max
y
〈y,Df〉 − cT f − ||y||2,1 (21)

This is solved using the primal-dual algorithm
with the proximal map for G(x) = −cT f given
again with (I + τ∂G)−1(f) = f + τc and the prox-
imal map for F ∗(y) = ||y||2,1 given as:

(I + σ∂F ∗)−1(yi) = yi(1−
1

max(1, |yi|2σ )
) (22)

The output of the primal-dual algorithm is com-
pared to NNs trained using weight clipping [4] or

gradient penalty [10] as shown in Figure 2. The net-
work architectures for these NNs are two fully con-
nected hidden layers with 128 neurons each, ReLU
activation, and a linear final activation. The same
algorithm with the same hyperparamters is used to
train those networks as in [4, 10].

The estimated Wasserstein distance for the critic
functions is obtained with Algorithm 1 and is shown
in Figure 2 along with the settings. In the 2D case,
the critic takes on non-linear shapes, which is hard
for the NN to fit, given the regularization constraints.
In essence, the problem is underfit by the NN, even
after 106 iterations. Therefore, current regulariza-
tions appear to be too prohibitive to allow for rich
structure, even on toy problems. However, without
a correct critic function the mathematical justifica-
tion for optimizing the Wasserstein GAN does not
hold. For the Gaussian Mixture Model in Figure 2(i),
the second distribution is a NN with 2 hidden layers
with 128 neurons and ReLU activations each. Note,
that the Gaussian Mixture Model is a sample based
dataset. Again the NNs underestimate the Wasser-



stein distance significantly.

5. GAN Games

In this section we devise an algorithm based on
Algorithm 1 to reliably solve GAN games. Recall
that a GAN game searches for a solution to Equation
(2). This equation is reformulated as follows:

min
θ

{
max

Lip(f)≤1

∫
Ω
f(x)(dµ(x)− dνθ(x))

}
(23)

We use Algorithm 1 to accurately solve for f in
the discrete space Ωdx . Then f(x) is constructed by
interpolating between those points using the linear
interpolation kernel given as follows:

φ(x) =


x+ 1 if x ∈ [−1, 0[

1− x if x ∈ [0, 1[

0 else

(24)

Then Equation (5) is used to calculate the gradient
of the Wasserstein distance between µ and νθ. Then a
gradient descent step is performed on the Wasserstein
distance. Due to the descent step the optimal critic
between µ and νθ changes and therefore we resolve
Algorithm 1 with the new cost vector c. The SCO
algorithm is stated in Algorithm 2.

Algorithm 2: SCO Algorithm. We use the
default values of α = 5 · 10−3 and m = 128.

Compute c0 = [dµ(S1)−
dνθ0(S1), ..., dµ(SN )− dνθ0(SN )]

Compute f0 using Algorithmus 1 with c0;
for l ≥ 0 do

zj ∼ ν ′, zj ∈ Rm;
θl+1 = θl + α 1

m

∑m
j ∇θfi(gθl(zj);

Compute cl+1 = [dµ(S1)−
dνθl+1(S1), ..., dµ(SN )− dνθl+1(SN )]

Compute f l+1 using Algorithm 1 with
cl+1;

end

5.1. 1D Experiments

In this experiment, GAN games are used to find
the µ, σ parameters of another 1D distribution. This
is accomplished using Algorithm 2. The critic func-
tion for the 1D case is given by Equation (25), while
the generator function is given by gσ,µ(z) = σz + µ,

where ν ′ = N (0, 1). Therefore all the necessary
components for Algorithm 2 are given.

f(x) =

N1∑
i1=1

fi1φ(x− i1) (25)

The absolute error between the real µ, σ and the
learned ones for various settings is given in Figure
3. Given this setting, the algorithm converges to the
correct µ and σ as shown in Figure 3 in 1000 iter-
ations. We stop the algorithm as soon as zero error
is obtained. Compared to this training, the Wasser-
stein GAN games did not converge to the optimal
solution on any single test case even for 1D distribu-
tions. For this problem, the weight clipping worked
better, than the gradient penalty, which we found is
due to a faster reaction to overshooting on the tar-
get distribution. Still, even after a million iterations
the error fluctuates around the optimum. While it is
definitely possible to find better hyperparameters for
those test cases, we show here that the training of
the state-of-the-art is dependent on its hyperparame-
ter and the default parameters do not work well even
for the simplest cases. This result also directly fol-
lows from the critic shapes and show that we can not
converge, due to the non-convergent behavior of the
NN critic shown in Figure 1(b,c).

5.2. 2D Experiments

In 2D two µ and σ are used for the generator and
therefore the generator function looks as following:
gθ(z) = (θσ1z1 +θµ1 , θσ2z2 +θµ2), where z ∼ ν ′. In
2D we define ν ′ = N2(0, I). The linear interpolation
kernel is the same as in 1D and is given in Equation
(24). However, the interpolation function in 2D is
different and is given as follows:

f(x) =

N1∑
i1=1

N2∑
i2=1

fi1,i2φ(x1 − i1)φ(x2 − i2) (26)

This concludes all the necessary components of
Algorithm 2. A comparison to the state-of-the-art is
shown in Figure 4. Again our algorithm converges
rapidly to the optimal solution as shown in Figure
4. Compared to our result the current state-of-the-art
fluctuates around the optimal solutions and never ac-
tually converges. This time the NN regularized with
gradient penalty produced a better output than using
weight clipping, as is claimed in their paper [10]. The



(a) µ1 = µ2, σ1 6= σ2 (b) µ1 6= µ2, σ1 6= σ2

Figure 3: Absolute Error plot of GAN games started from the Settings shown in Figure 1(d,g). We compare our
method to a NN regularized with weight clipping [4] and a NN regularized with gradient penalty [10]. Note
that our algorithm achieves 0 Error.

default parameters seem to be tuned to higher dimen-
sional problems and our results suggest that the cur-
rent state-of-the-art is reliant on its hyperparameters.

Another experiment using a mixture of 8 Gaussian
distributions in 2D is shown in Figure 5. Therein
the generator function gθ(z) is a NN with 2 hid-
den layers with 128 neurons, ReLU activation and
ν ′ = N2(0, I). Many GAN algorithms fail to find
all the modes and underfit those modes without ex-
tensive hyperparameter and architecture search [14].
For this example α = 10−4 and 50.000 samples were
used to compute c. While our method, also did not
produce 0 distance to the ground truth we did get
a superior result to the current state-of-the-art based
on the Wasserstein distance of the output and the vi-
sual result as shown in Figure 5. Our method used
6 · 104 iterations to train until convergence, while the
other algorithms used 106 iterations to produce their
results.

6. Conclusion

In this work, the inherent problems with Wasser-
stein GAN optimization are highlighted and new so-
lutions based on convex optimization for low dimen-
sional problems are given. While this approach cur-
rently does not scale to high dimensions, it is a step in
understanding the inner structure of GAN optimiza-
tion and how to design critic functions to produce op-
timal results. The main problem with current approx-
imations is that the critic approximation is far from
optimal even on toy problems and therefore it is un-
clear what we are actually optimizing for. In contrast,
by actually using an optimal critic computed using
our method we can empirically show rapid conver-
gence. Another advantage of our method is that the

Wasserstein distance is calculated optimally and is
therefore a useful metric to measure progress. Even
on toy examples, the critics learned using the state-
of-the-art are far from optimal and better algorithms
are needed to tackle this problem.
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