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Abstract. We present a method for automatic detec-
tion and tracking of obstacles on water surface that
uses solely the point cloud obtained from the sur-
roundings of the unmanned surface vehicle (USV).
For this purpose, we use a calibrated pair of stereo
cameras, affixed to the mast at the front of the USV.
Reliable obstacle tracking in outdoor environment
is a difficult task, but unlike the monocular ap-
proaches, our framework offloads a large part of
the problem onto the method that provides a point
cloud. In absence of other visual features, our
method introduces depth fingerprint, a histogram-
like feature obtained from the point cloud of an ob-
ject. The method has been evaluated on the yet un-
released MODD2 dataset and shows promising re-
sults, with the depth fingerprinting significantly out-
performing tracking based solely on optimal assign-
ment weighted by geometrical distance between ob-
ject detections (Munkres algorithm). The proposed
method is capable of running in real time on board
of a small-sized USV.

1. Introduction

As the ground and aerial autonomous robots be-
come more common, robots that can autonomously
navigate the water surface (unmanned surface vehi-
cles, USV) have also become an interesting topic
of research. As the environment for such robots is
very dynamic, the GPS is usually not enough to en-
sure safe path planning. Accurate detection, classi-
fication and tracking of nearby obstacles is needed.
Unique circumstances on the water surface (reflec-
tion, waves, mirroring) require an adaptation of stan-
dard procedures and the development of new meth-
ods, as the performance of computer vision in the re-
alistic sea conditions is still insufficient for entirely

autonomous operation [6]. The overall schematics
of our system for detecting and tracking obstacles on
water surface is shown in 1.

1.1. Problem statement

When introducing computer vision to the robotic
vehicle for the purpose of obstacle detection and
avoidance, there are two basic modalities of data that
can be used (and combined):

• Pixel data. Monocular vision relies on a gray-
scale or RGB image sequence from a single
camera. The key assumption in this approach
is that the obstacles somehow visually differ
from the background, and that that they can
be segmented from the background using only
the pixel data, exploiting the visual differences.
A clear example of this approach is the work
on semantic image segmentation by Kristan et
al. [6].

• Depth data. There are many techniques to ob-
tain depth data in outdoor environment, some
more robust than others. LIDAR sensors are the
most robust method of obtaining depth data and
widely used in experimental self-driving vehi-
cles, however, the cost of sensors that are able to
generate reasonably dense data (e.g. hundreds
of horizontal lines at the time) is prohibitive for
everyday use. Time-of-flight cameras are usu-
ally robust, but their range is usually too small.
Finally, depth data can be obtained from the cal-
ibrated pair of relatively low-cost cameras, such
as in [5], if there is enough texture in the scene
to allow robust stereo matches between points
in the left and the right camera.

Both approaches have their advantages and disad-
vantages. Simply said, monocular approaches can-



Figure 1. Processing pipeline. Detection part (plane pop-out) is described in Algorithm 1. Our second contribution,
tracking by depth fingerprinting is described in Section3.3.

not distinguish between an image of an obstacle and
the obstacle. However, this becomes less important
in water-borne scenarios, since the visual features of
ocean surface are far easier to model than (for exam-
ple) urban driving environment. However, there are
still many challenges that are especially pressing in
coastal waters, as shown in [6]. Those are mainly
related to variation on the water surface due to vari-
able lighting, reflections and general visual cluttering
in areas such as marinas. Stereo approaches are, in
theory, extremely reliable – that is, if the depth data
is reasonably error free. Obstacles can be detected,
measured, and avoided. However, in our prelimi-
nary testing, we have established, that the closer we
get to the shore, more problems are revealed by the
stereo approaches as well, and these problems have
not been sufficiently addressed by the related work.

The overall aim of our work is to get high qual-
ity obstacle detection both from the depth stereo data
and the pixel data and then apply late-stage fusion
to provide situational awareness for the USV. How-
ever, in this paper we limit ourselves on obtaining
high quality obstacle detection from the depth data
only, and try to be agnostic regarding the source of
the depth data.

2. Related work

Although water surface vehicles receive far less
attention than ground and aerial robots, several works
have been published that deal with automatic obsta-
cle detection on the water surface. Approaches pro-
posed by different authors share several similarities,

but based on the purpose of the method (following
dynamic obstacles, path planning etc.) also have
quite distinct emphases. This section will present
several approaches.

Authors Larson et al. [8, 9] were one of the first
to use the approaches used with ground robots with
a waterborne platform. Their platform uses a NASA
JPL stereo system to acquire depth information. The
point cloud is projected into an obstacle grid. An ad-
ditional functionality is the monocular approach that
first detects the horizon and then estimates the dis-
tance to the obstacles under the horizon line by using
the distance from the horizon to the obstacle. This is
performed by using information from nautical charts.

Huntsberger et al. [5] present the Hammerhead
system that uses two pairs of stereo cameras to attain
a very large angle of view. The camera images are
used to calculate a point cloud, then a plane repre-
senting the water surface is fitted into the cloud. The
points above the water surface are then projected into
a 2D map which is subsequently temporally and spa-
tially filtered, the obstacles are classified and tracked.
This system is by design the most similar to the one
presented in this paper.

A group of researchers [16] presented their system
for detection and tracking of obstacles on the water
surface. Their unique approach is using saliency de-
tection in Lab color space along with Harris corner
detector and optical flow which produce regions of
interest. The disparity for each region of interest is
then calculated by using the disparity from the previ-
ous time step with normalized cross-correlation.



The same authors improve their approach in their
next papers [15, 14] by using temporal information
when estimating the depth of an obstacle and using
RANSAC to calculate the water surface plane from a
subsampled point cloud. The points above the plane
are projected into two separate maps, the occupancy
grid and the height grid. Both maps are later merged
and hexahedrons (cubes) that determine the obstacles
are calculated. The detected obstacles are projected
into the 2D coordinate system of the left image to
simplify the experimental evaluation.

An even further improvement was proposed
in [13] by using tracking between neighboring
frames. The detected obstacles were tracked in be-
tween neighboring frames to find consistent objects.
The comparison was performed using the size, lo-
cation and HSV histogram of the detections. The
authors also proposed an image feature based par-
ticle filter to handle potential occlusions of tracked
objects. This includes a transition model (for coor-
dinate and scale change prediction) and an observa-
tion model (HSV and SIFT histograms). The particle
filter takes over when the data association fails and
stops if/when the obstacle is redetected.

Sinisterra et al. [11, 12] reversed the standard or-
der of actions by first using HSV color segmenta-
tion to acquire regions of interest and then calculat-
ing their depth using a stereo system. An extended
Kalman filter was then used to track the detected ob-
jects and estimate their velocity.

Kristan et al. [6] performed a semantic image seg-
mentation using Markov random fields. Their visual
model includes weak priors for segmenting the image
into the sky, the coast and the sea. The segmentation
is then iteratively improved. Regions that violate the
visual model are presumed to represent obstacles on
the water surface.

The paper from authors Cho et al. [2] used the
FAST corner detector and the information about the
horizon to detect obstacles. The detected points were
clustered based on the Euclidean distance and the rel-
ative distance to the camera was calculated using the
distance to the horizon. To attain a wider camera
viewing angle they used a panning module.

Halterman et al. have in their paper [4] evaluated
LIDAR as a method of detection obstacles in the
vicinity of the boat. They used a LIDAR Velodyne
HDL-64E that has 64 separate lasers that cover an
angle of 360◦. Because laser sensors typically do
not return on the water surface, they could be used

to detect and classify obstacles up to 100m away.
An issue that arises is the fact that laser pulses in-
terfere with GPS receivers and that LIDAR system
themselves are susceptible to noise induced by radar
pulses. Lately, approaches have emerged that use
convolutional neural networks to detect and classify
obstacles in images [1, 17].

An approach to visual tracking was proposed by
Fefilatyev et al. in [3]. Their method performs seg-
mentation on color images, then tracks the output
regions with a Multiple-Hypothesis Tracking frame-
work. The linear Kalman filter is used to manage
each hypothesis and predict the motion of the tracked
object.

In contrast to most of the approaches described
above, we rely solely on 3D point cloud data, and
make no assumption about its source. As a con-
sequence, our approach can be used directly on the
state-of-the-art 3D sensors that do not provide visual
information (e.g. Velodyne LIDAR sensors that are
commonly used in prototype self-driving vehicles)
and much cheaper passive or active 3D stereo sys-
tems.

3. Our approach

Obstacles that could pose problems for our USV
robot are objects on the surface of the water such
as buoys, boats and swimmers. An accurate esti-
mate of the distance to the obstacle is required for
safe navigation. For the analysis of the surround-
ings of the boat we used a stereo camera system that
generates a point cloud, but we do not assume any-
where in our approach that the the source of the point
cloud is a stereo system. Alongside the point cloud
we also used information from the onboard inertial
sensor (IMU), but no visual information (RGB data
from cameras) were used directly in any way except
for generation of the point cloud. Schematics of our
approach are shown in Figure 1.

3.1. Hardware and image acquisition

The robot platform (boat) has two cameras of the
type Vrmagic VRmS-14, that are affixed to the main
mast, approximately 70cm above the water surface.
The distance between the cameras is 20cm and their
resolution 1280x960 pixels. The cameras use 3.5mm
lenses. A fast bus connects the cameras with the con-
trol unit that ensures the pixel synchronization of the
cameras. USB 2.0 is used to transfer the image data
to the CPU (Intel i7-4770), which allows the capture



of 10 images per second. These parameters allow us
to acquire a high-quality point cloud up to 20m away.
The cameras are calibrated using the calibration tool
included in OpenCV library and a target pattern with
asymmetrical circles. A target of size 1m is required
to calibrate the stereo system geometry. Our plat-
form is additionally equipped with a high precision
GPS receiver that is able to accurately estimate the
boat position down to 10cm. An IMU unit is also
used to provide the roll, pitch and yaw information
of the boat.

3.2. Obstacle detection

We independently devised and implemented the
straightforward ”plane pop out” method for obstacle
detection, which bears some similarity to [5]. We
model the water surface as a plane, and the outliers
represent possible obstacles. The approach is pre-
sented in pseudo-code, shown in Algorithm 1.

Algorithm 1 Obstacle detection using a point cloud
1: procedure OBSTACLES(ImagePair, IMU )
2: Cloud← Stereo(ImagePair) . OpenCV
3: SeaSurface← PlaneF it(Cloud) .

RANSAC
4: if SeaSurface 6= OK then
5: SeaSurface← IMUFit(IMU)
6: end if
7: AboveSurface←Cloud(Z > ε)
8: PointDensity ←
PDEstimation(AboveSurface)

9: 3Dblobs← Threshold(PointDensity)
10: Objects← FloodF ill(3Dblobs)
11: Obstacles←MeanMinMax(Objects)
12: return Obstacles
13: end procedure
14: function PDESTIMATION(Cloud)
15: 3DDensity ← 3DConvolution(Cloud,

box)
16: return 3DDensity
17: end function

Parts of the algorithm are implemented in the fol-
lowing manner: Depth calculation (stereo) is done
by the OpenCV library by using the block match-
ing method which produces a point cloud. The block
matching method is not the most sophisticated stereo
method, but it can be tuned to outperform other meth-
ods in the case of use on a USV and thus gives bet-
ter results for highly differing visual conditions en-
countered on the water surface. Other authors have

also preferred block matching to other stereo meth-
ods [14, 10]. A critical part of our algorithm is esti-
mating parameters of the water surface. In our case,
because we are working in 3D space, we represent
the water and the air as two separate volumes, di-
vided by a plane.

In this case, the water volume always lies below
the air. The PlaneFit method calculates the position
of the water surface by fitting a plane into the point
cloud using the RANSAC method. This requires 3
points to be selected in each iteration, with which we
can define a 3D plane. We extend the RANSAC by
incorporating the specific problem knowledge. If the
roll and pitch angles of the plane defined by the ran-
domly selected points differ too much from the plane
defined by the IMU data, the candidate plane is dis-
carded. Thus, only fairly reasonable planes are eval-
uated in the RANSAC method. We assume that the
largest fraction of the point cloud lies on the water
surface. That assumption holds well when the boat is
far enough from the shore or the pier. In the case of
a large number of outliers, RANSAC cannot produce
a solution in a reasonable timespan, and the plane
define by the IMU data is used instead. The plane
equation is used to discard all the points that lie be-
low the surface or on it (Z ≤ ε). A useful estimate
for ε is 20 cm where the value is bounded by the size
of the waves that we still tolerate and by the small-
est obstacle size that we still wish to detect. The rest
of the points in the cloud is transformed into a dis-
crete 3D matrix of point density by filtering it with a
3D filter (PDEstimation). The filter size depends on
the minimum size of the obstacle we want to detect.
By using thresholding (Threshold) and minimal re-
quired point density the discretized space we acquire
voxels that have the value 1 where we have detected
an obstacle and 0 otherwise. The required point den-
sity varies with the distance to the camera, since the
density of the point cloud diminished with the dis-
tance. Using the (FloodFill) algorithm the points are
merged into objects (obstacles) and their parameters
are estimated (MeanMinMax) - i.e. the obstacle cen-
ter and its span in all dimensions. It is obvious that
the estimate is unreliable in the direction parallel to
the camera optical axis. But for the purpose of avoid-
ing obstacles the distance between the boat and the
closest obstacle is crucial.



3.3. Tracking

The point cloud recovered from the stereo system
is not completely dense and contains noise. Regions
that are connected in the real world might be reported
as group of smaller obstacles. On many occasions,
false stereo matches occur due to repeated vertical
structures (such as multiple boat masts in the ma-
rina). Finally, the surface of the water may cause
false positives as well. These are the pressing prob-
lem, since they disrupt the tracking of the real obsta-
cles. One such example is shown in Figure 2. To fil-
ter out these inconsistencies, a temporal component
must be included, to track only objects that are ap-
pearing consistently in multiple sequential frames.

The data association algorithm runs in four stages:

1. New detections are assigned to previously
tracked objects.

2. Remaining new detections are assigned to po-
tential objects and their counter is incremented.

3. New potential objects are created from remain-
ing detections.

4. Lost counter is incremented for unassigned
tracked objects, unmatched potential objects are
removed.

When an obstacle is first detected, it is added to
the list of potential obstacles. If it is continuously re-
detected in next N frames, it is added to the tracked
obstacles list. If not, it is removed from the potential
list. To prevent tracked objects from being prema-
turely discarded, a counter is kept and incremented if
a tracked object is not detected in the current frame.
If this counter reaches a certain threshold, the object
is assumed to be lost and removed from the list.

To match the detections between sequential
frames, we need to connect ones representing the
same object as well as recognize non-matched ob-
jects and newly seen ones. This was performed by
using the Hungarian method (also known as Munkres
assignment algorithm [7]). The method requires a
matrix of distances between two sets of objects on
which we are performing the assignment. An optimal
assignment of objects from one list to objects from
the second list is then calculated (i.e. the assignment
with the lowest cost). If the sizes of both sets do not
match, some objects can be left unassigned.

In general, we strive to minimize function of the
form

S(a, b) = α distg(ac, bc) + (1− α)H(ah, bh) (1)

where a and b are detected obstacles and ac, bc and
ah, bh are their positions (centers), while ah and bh
are their depth fingerprints, respectively. distg de-
notes the geometric distance, e.g. Euclidean, which
was used in our case, and H denotes the histogram-
type distance, for example Hellinger distance, which
was used in our case to compare depth fingerprints:

H(p, q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 (2)

Eq. (1) is a general form, which includes both ge-
ometrical (spatial) constraints (e.g. object in the next
frame should be close to its previously detected posi-
tion) and quasi-visual similarity constraint (distance
between depth fingerprints). By setting α to 1, purely
spatial constraints are taken into the account, and the
result is classic Hungarian-type assignment.

3.4. Depth fingerprint

The depth fingerprint is essentially a histogram-
like feature, which was devised to encapsulate as
much information about the object as possible, while
being reliant only on the 3D point cloud, without us-
ing RGB image data. The histogram for each 3D
obstacle was calculated from the depth value (Z) of
3D points that comprise the obstacle, as seen from
the direction of the USV. To acquire only the relative
depth, the mean depth value was subtracted before
calculating the histogram. This calculation is very
fast, and can be implemented even on low-end com-
putational devices, provided that the 3D point cloud
is readily available. The histogram format also al-
lows us to compare detections of different sizes. As
the features are only used to compare detected ob-
jects in consecutive frames, long-term stability is not
a requirement.

The same holds for scale invariance, since the size
is not expected to vary by much between neighbor-
ing frames – even more, the objects with large scale
variation in such short time interval should not be
matched – as it is very likely the case of two simi-
larly shaped objects being observed.

Finally, the bin width was determined heuristically
by evaluating all dataset sequences at different his-
togram sizes.



Figure 2. Illustration of imperfections in the point cloud that cause false positives. Left: one image from the stereo pair.
Right: 3D representation of the point cloud with one true detection (inflatable boat) and one false detection (on the right
side of the image). Reflection on the water surface resulted in a false match and a group of 3D points appeared above the
surface, prominently enough to be detected as a potential obstacle.

Figure 3. Illustration of depth fingerprinting. First row:
one of the original images from the stereo pair. Left col-
umn: buoy at the entrance to the Port of Koper, right col-
umn: inflatable boat with the boat operator visible. Sec-
ond row: closeup of the cropped point cloud of the de-
tected obstacles. Reddish hues represent distant points,
while the yellow ones represent the closer ones. Third
row: depth fingerprints - the relative object depth his-
tograms.

4. Evaluation

The evaluation was performed in the coordinate
system of the images, which allows comparison with

methods that do not use a calibrated system of cam-
eras. The vertices of the cuboids that represent ob-
stacles are projected back into the image and repre-
sented by a bounding box. Overlapping and too small
boxes were filtered out. Annotations of obstacles fur-
ther away than the range of our system were ignored
in the evaluation, as they cannot be detected using
any algorithm (the point cloud data is unavailable
past certain distance from the USV). For the evalu-
ation we followed a protocol similar to the one de-
scribed in [6]. We report the following metrics that
illustrate the performance of our approach: the av-
erage number of false positives per sequence frame
(aFP), the F-score, and the number of false negatives
per sequence.

4.1. Parameters

The parameters for obstacle detection were set to
detect obstacles no closer than 1m and no smaller
than 20 cm. When calculating the assignment cost,
we ignored pairs of detections more than 1m apart,
as well as those whose histograms scored more than
0.2 similarity (Hellinger distance defines lower val-
ues as more similar). The weight α used to combine
both distances was empirically determined to work
best when set to a value of 0.5, thus equally com-
bining both factors. The buffer size for promoting
potential objects to tracked objects and the number
of frames we wait before declaring a tracked object
lost also needed to be defined. For the purpose of
our experiments, both values were set to 5 (i.e. a de-
tection has to be detected five times before we start
tracking it and a tracked object can be unassigned for



a maximum of five frames before it is removed). A
minimum overlap between the ground truth and our
reported detection also had to be defined. We used a
standard value of 0.5. The overlap was calculated as
the intersection over union.

4.2. Dataset

For the evaluation of our system, a collection of 28
sequences was recorded on our platform (MODD2
- Marine Obstacle Detection Dataset 2). The se-
quences include the images from both cameras of
the stereo system. Obstacles on the water surface
and points that define the horizon have been manu-
ally annotated for all images. A larger part of the
proposed algorithm was developed before the estab-
lishment of the dataset so it represents an unrelated
test set. We also expect the dataset to be released for
public use in the near future. For the evaluation of
our tracking method we split the dataset into two sub-
sets, based on the presence of detectable objects (i.e.
annotations of objects within the range of our stereo
system - 20m). Table 1 contains the mean result over
all sequences in a subset as well as the standard devi-
ation. For the sequences with no detectable obstacles
we only report the average of false positives as there
cannot be any true or false positives. For the subset
containing obstacles we report the average of false
positives as well as the number of false negatives and
the F-score.

Figure 4. Example of properly working obstacle tracking
(top), and the failure in the presence of large objects (e.g.
piers, large ships, etc. The presented approach is unable
to properly detect the obstacles that are larger than a field
of view. Instead, they become fragmented.

4.3. Results

The plane estimation using the point cloud is de-
pendent on a large enough number of points lying on

the water surface. This method is thus not particu-
larly suitable for cluttered areas such as harbors or
coastal regions. Table 1 shows the results for both
subsets of out dataset. We can notice a large reduc-
tion in the average number of false positives when us-
ing Munkres assignment with only geometrical con-
straints (cost based only on Euclidean distance). An
even greater improvement can be seen when using
the cost augmented with our depth fingerprints. The
average F-score over all sequences confirms the im-
provement. It has to be noted that the average num-
ber of false negatives (i.e. a ground truth obstacle
that was not detected/tracked) increases when using
our method. This is due to the delay created by the
tracker while waiting for the confirmation of a poten-
tial region. Increase when introducing depth finger-
print is relatively small.

5. Conclusion

We presented a method for detecting obstacles on
the water surface and an approach that allows track-
ing of obstacles that are consistently detected. We
have also prepared a dataset of 28 fully annotated
sequences that can be used for testing similar sys-
tems. The sequences are diverse regarding weather
and lighting conditions and include seaborne objects
such as inflatable boats, buoys, sailboats, etc. We
showed that our tracking approach significantly im-
proves the performance of the detection system by
reducing the amount of false positives while not af-
fecting the number of false negatives in the meaning-
ful way. In further work a problem of detecting large
objects (e.g. coast and piers) will be addressed, as
currently these obstacles violate our assumption of
the water surface as the most dominant part of the
point cloud. This problem is shown in Figure 4 and
illustrates the limits of the presented approach. Ad-
ditional visual information could also be used for an
even more robust obstacle tracking, however, it is our
intent to delay fusion with visual data to as late stage
as possible.
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Table 1. Results of the testing on the MODD2 dataset.
with obstacles without obstacles

a-FP F-score FN a-FP
detections 0.6549 ± 0.7195 0.4695 ± 0.2686 44.2353 ± 65.2816 0.3146 ± 0.4835

Munkres algorithm (α = 1) 0.3190 ± 0.4077 0.5490 ± 0.2818 48.7059 ± 70.2814 0.1488 ± 0.3301
Munkres+depth fingerprint 0.1049 ± 0.1493 0.6159 ± 0.2734 50.8824 ± 67.5582 0.0295 ± 0.0792

References
[1] F. Bousetouane and B. Morris. Fast cnn surveillance

pipeline for fine-grained vessel classification and de-
tection in maritime scenarios. In Advanced Video
and Signal Based Surveillance (AVSS 2016), pages
242–248. IEEE, 2016. 3

[2] Y. Cho, J. Park, M. Kang, and J. Kim. Autonomous
detection and tracking of a surface ship using on-
board monocular vision. 2015 12th International
Conference on Ubiquitous Robots and Ambient In-
telligence (URAI), pages 26–31, 2015. 3

[3] S. Fefilatyev, D. Goldgof, M. Shreve, and C. Lem-
bke. Detection and tracking of ships in open sea
with rapidly moving buoy-mounted camera system.
Ocean Engineering, 54:1–12, 2012. 3

[4] R. Halterman and M. Bruch. Velodyne hdl-64e li-
dar for unmanned surface vehicle obstacle detec-
tion. In SPIE Defense, Security, and Sensing, pages
76920D–76920D. International Society for Optics
and Photonics, 2010. 3

[5] T. Huntsberger, H. Aghazarian, A. Howard, and
D. C. Trotz. Stereo vision–based navigation for au-
tonomous surface vessels. Journal of Field Robotics,
28(1):3–18, 2011. 1, 2, 4

[6] M. Kristan, V. S. Kenk, S. Kovačič, and J. Perš.
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