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Abstract. Traffic sign detection is a frequently ad-
dressed research and application problem, and many
solutions to this problem have been proposed. A vast
majority of the proposed approaches perform traf-
fic sign detection on individual images, although a
video recordings are often available. In this paper,
we propose a method that exploits also the temporal
information in image sequences. We propose a three-
stage traffic sign detection approach. Traffic signs
are first detected on individual images. In the sec-
ond stage, visual tracking is used to track these initial
detections to generate multiple detection hypotheses.
These hypotheses are finally integrated and refined
detections are obtained. We evaluate the proposed
approach by detecting 91 traffic sign categories in a
video sequence of more than 18.000 frames. Results
show that the traffic signs are better localized and
detected with a higher accuracy, which is very ben-
eficial for applications such as maintenance of the
traffic sign records.

1. Introduction

The problem of traffic sign detection and recog-
nition has received a considerable amount of atten-
tion in the computer vision community [14, 54].
Several transportation related problems can bene-
fit from latest developments in traffic sign detec-
tion and recognition including automation of traffic
signalization records maintenance services. How-
ever, most solutions nowadays are driven by driver-
assistant systems [44] and autonomous vehicle [33]
applications, and as such often lack properties for ad-
dressing automation of maintenance of traffic signal-
ization records. In particular, addressing traffic sign
detection and recognition for this task introduces two
distinct requirements that are often a secondary ob-
jective in other applications: (a) detection and recog-
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Figure 1. Detections are improved by visual temporal in-
formation.

nition of a large number of traffic sign categories and
(b) high-precision localization. While large-scale de-
tection and recognition of traffic signs has been ad-
dressed in our previous work using a deep learning
approach [45], in this work we focus on addressing
the localization accuracy of traffic sign detection ap-
plicable to the automation of the traffic signalization
records maintenance services.

Most traffic sign detection and recognition solu-
tions that are driven by driver-assistant systems [44]
and autonomous vehicle [33] applications often ne-
glect high-precision localization accuracy. In those
applications it is more important to accurately rec-
ognize the presence of a traffic sign and take appro-
priate action. However, high-precision location is
not crucial for such decision making. On the other
hand, in the automation of road maintenance services
a high-precision location is often needed to correctly
assess the quality, or correctly find the position and
orientation of a traffic sign.

Most traffic sign detection and recognition sys-
tems often rely on a per-frame based information,



but an important cue for accurate localization can
be found in visual temporal information. Some ex-
isting methods utilize this information to improve
detection and recognition, but they focus on driver-
assistant systems and are limited by online process-
ing [39, 38]. For automation of road maintenance
services, offline processing enables further improve-
ments as strong traffic sign detection and recognition
can be coupled with extensive forward and backward
search of trajectories for all detections.

In this work we address the issue of high-precision
localization of traffic signs in videos for road mainte-
nance service applications. We propose a three-stage
system with a per-frame visual detection module in
the first stage, generation of new redundant region
proposals using visual temporal information in the
second stage, and location refinement from multi-
ple detection hypothesis in the last stage (see Fig-
ure 1). As we are not limited by online process-
ing we use a powerful deep learning approach in the
detection module and extensive refinement of detec-
tion with visual tracking in the temporal module. In
the temporal module we apply correlation-based vi-
sual tracking on each detection from the first stage
and create trajectories in both temporal directions.
With multiple overlapping trajectories we provide a
strong cue to improve two aspects of traffic signs de-
tection. First, we improve the recall rate as visual
tracking recovers detections missed by the visual de-
tector, and second we significantly improve localiza-
tion accuracy of all detections by averaging multiple
overlapping trajectories. We demonstrate this with a
large-scale detector on 91 traffic sign categories and
evaluate our approach on a sequence with more than
18,000 frames captured in a city and country-side set-
ting.

The remainder of this paper is structured as fol-
lows: in Section 2 we review several related works,
in Section 3 we provide more detail on our three-
stage approach using visual detection and tracking.
We perform an experimental evaluation in Section 4
and conclude in Section 5.

2. Related work

2.1. Traffic sign detection and recognition

An enormous amount of literature exists on the
topics of traffic sign detection (TSD) and recogni-
tion (TSR), and several review papers are available
[34, 13, 47]. Various methods have been applied
for TSD and TSR. Traditionally hand-crafted fea-

tures have been used, like histogram of oriented gra-
dients (HOG) [48, 32, 20, 19], scale invariant feature
transform (SIFT) [14], local binary patterns (LBP)
[11], GIST [35], or integral channel features [32],
whereas a wide range of machine learning methods
have been employed, ranging from support vector
machine (SVM) [12, 11, 51], logistic regression [35],
and random forests [11, 51], to artificial neural net-
works in the form of an extreme learning machine
(ELM) [20].

Recently, like the entire computer vision field,
TSD and TSR have also been subject to CNN re-
naissance. A modern CNN approach that automat-
ically extracts multi-scale features for TSD has been
applied in [50]. In TSR, CNNs have been used to au-
tomatically learn feature representations and to per-
form the classification [40, 46]. In order to further
improve the recognition accuracy, a combination of
CNN and a Multilayer Perceptron was applied in
[3], while an ensemble classifier consisting of sev-
eral CNNs is proposed in [4, 22]. A method that
uses CNN to learn features and then applies ELM
as a classifier has been applied in [52], while [15]
employed a deep network consisting of spatial trans-
former layers and a modified version of inception
module. It has been shown in [43] that the per-
formance of CNN on TSR outperforms the human
performance on GTSRB benchmark dataset. Both
stages of the recognition pipeline were addressed us-
ing CNNs in [54]. They applied a fully convolutional
network to obtain a heat map of the image, on which
a region proposal algorithm was employed for TSD.
Finally, a different CNN was then employed to clas-
sify the obtained regions.

2.2. Discriminative correlation filter tracking

Visual tracking has been a very active research
field. Recent visual tracking benchmarks [25, 26, 49]
show that significant progress has been made in the
last few years. On these benchmarks, most of the
top-performing trackers are discriminative correla-
tion filters (DCFs). They have been primarily used
for object detection [18] and later introduced in vi-
sual tracking by Bolme et al. [2].

The MOSSE tracker [2] was based on grayscale
templates, but recently correlation filters have been
extended to multi-dimensional features like Col-
ornames [9] and HOG [16, 7, 27] which signifi-
cantly improved tracking performance. Henriques et
al. [17] introduced a kernelized version of correla-



tion filters, Danelljan et al. [7] and Zhang et al. [53]
investigated scale change estimation with correlation
filters. To improve target localization, correlation fil-
ters were combined with color segmentation proba-
bility map [1].

Several improvements have been recently made
on filter learning. Kiani Galogahi et al. [23] ad-
dressed the problem that occurs due to learning cir-
cular correlation from small training regions. The
learning cost function was reformulated in [8] to pe-
nalize non-zero filter values outside the target bound-
ing box. A constrained filter learning method was
proposed in [29] which combines filter learning with
color segmentation and allows enlarging the filter
capture range.

Part-based correlation filter methods were pro-
posed to improve target localization during partial
occlusion and deformation. A tracking method for
modelling the target structure with multiple parts us-
ing multiple correlation filters was presented in [28].
Lukežič et al. [30] proposed to treat the parts’ cor-
relation filter responses and their constellation con-
straints jointly as an equivalent spring system.

Recent advances in deep convolutional neural net-
works have been reflected in correlation filter visual
tracking. Large performance boosts were reported
using deep convolutional features [6, 10, 36, 31] in
discriminative correlation filters, but at a cost of sig-
nificant speed reduction.

2.3. Temporal information in traffic sign detection

A handful of papers also included temporal infor-
mation for traffic sign detection. Rong et al. [38]
performed detection of direction traffic sign and ex-
tracted text. They use temporal fusion of text re-
gion proposals to reduce redundant computation in
consecutive frames. Šegvić et al. [39] proposed
two-stage approach to improve detection by applying
temporal and spatial constraints to the occurrences of
traffic signs in video. However, they use hand crafted
haar features and apply them only to a small num-
ber of categories. Both methods also work in online
mode and therefore do not exploit temporal informa-
tion in both directions.

3. Method

In this section we describe our three-stage ap-
proach for traffic sign detection and recognition as
depicted in Figure 2. In the first stage we perform
a per-frame detection and recognition with the re-

gion proposal generator and deep learning recogni-
tion similar to [45]. In the second stage we extract
visual temporal information based on initial detec-
tions from the first stage and obtain new redundant
region proposals. We re-verify them with deep learn-
ing recognition module from the first stage and in the
last stage we integrate multiple verified detection hy-
potheses into final detections. We describe all three
stages in more detail in the following subsections.

3.1. Initial region proposals and recognition

We obtain initial detections using the Faster R-
CNN network [37] that generates region proposals
and performs recognition in a unified convolutional
network. Region proposals are generated with a so-
called Region Proposal Network (RPN), that takes
an input image and produces a set of rectangular ob-
ject proposals, each with an objectness score. Recog-
nition of regions is then performed with a Fast R-
CNN network, that classifies the proposed regions
into the set of predefined categories. Fast R-CNN
network also performs bounding box regression and
non-maxima suppression to further refine the quality
of the proposed regions and retain only the best de-
tections. The entire system is highly efficient since
RPN and Fast R-CNN share their convolutional fea-
tures. Recognition of multiple region proposals has
minimal overhead with extra computation for each
region proposal only on the last fully-connected lay-
ers. This way Faster R-CNN enables rapid detection
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and recognition in the test phase.
We apply Faster R-CNN to individual image

frames and for each input image the Faster R-CNN
outputs a set of object bounding boxes, where each
box is associated with a category label and a softmax
score in the interval [0, 1]. All detections with the
score above a certain threshold are then outputted to
the next stage.

3.2. Visual tracking

In the second stage a modified version of the DPT
tracker [30] is used to exploit temporal information
in our traffic sign detection framework. In the rest
of the text we just use tracker to denote the modified
version of [30]. The DPT tracker is a two-stage cor-
relation filter based tracker consisting of the coarse
and mid-level layers. The coarse layer combines cor-
relation filter response with the color segmentation
and the mid-level layer consists of four parts repre-
sented by the correlation filters. Part-based tracking
methods are typically used to address non-rigid ob-
ject deformation. Since traffic signs are rigid objects
we only use the coarse layer of the DPT tracker [30].
The tracker uses HOG features [5] to represent the
target and a color segmentation method [24] is used
to improve the localization of the correlation filter.
For more details on the tracker we refer the reader to
[30].

With DPT we track all initial detections from
the first stage that are large enough to initialize the
tracker. The region is tracked forward and back-
ward through the image sequence to create a hypoth-
esis sequence for the location of the traffic sign in
neighboring frames. We stop the tracker when cer-
tain criteria are met. In backward tracking we stop
the tracker when the object size becomes too small
or the tracking quality score becomes too low, while
in forward tracking we stop the tracker when the ob-
ject reaches the edge of the image, i.e. the traffic sign
exits the camera’s field of view. This produces a
set of new redundant region proposals that are then
re-verified by the recognition module. In Faster R-
CNN, region re-verification can be implemented effi-
ciently since only last fully-connected layers need to
be re-computed. Multiple detection hypotheses are
finally outputted to the next stage, each consisting of
a tracked sequence and its re-verification score. The
start and the end of the output sequence are addition-
ally trimmed based on the quality of the recognition
scores from re-verification.

3.3. Multiple sequence hypotheses integration

By tracking separate detections in the second stage
we acquired a number of hypothetical sequences for
each physical traffic sign that appears in the image
sequence. To achieve a consensus about the traf-
fic sign position in each image, the hypotheses are
merged.

Merging was performed by finding overlapping
sequences with the same class. Because more than
one instance of a traffic sign with the same class can
appear simultaneously (sometimes even very close
together) a sufficient overlap between regions also
had to occur in order to join two sequences. For each
of the overlapping frames, the overlap between the
mean region of the main sequence and the region of
the candidate sequence was calculated. If the overlap
was large enough we added the candidate sequence to
the main one. Repeating this process until no more
sequences could be added produced a final sequence
containing multiple region proposals for each frame.
Regions in each frame were then averaged to obtain
the final region of a detection.

Several different scoring types can be assigned to
final detected regions which is used asses classifier
performance. In the evaluation we consider several
scoring approaches composed of different combina-
tions of scores:

Initial detection score: We match a verified detec-
tion hypothesis with the initial detection from
the first stage based on their overlap. We only
match detections of the same class and use a
high IoU overlap of 0.6 to ensure we find the
correct detection. If no initial detections are
present in that frame, we use linear interpola-
tion between scores of matched initial detection
on neighboring frames, or we use the score from
a matched initial detection from closest frame if
we cannot interpolate (e.g. for first and last re-
gions in the sequence). Note that when using
this score the re-verification score is still used to
trim the beginning and the end of the sequence.

Re-verification score: We use the score from the
re-verification of the region using Fast R-CNN
recognition module.

Tracking score Original DPT tracker score s̃t
ranges between [0,∞], which we normalize to



range between [0, 1]:

st = 1− 1

s̃t
.

We then use the maximum score st from all
merged sequences.

4. Experimental results

We evaluated our approach on the detection and
recognition of 91 traffic sign categories. Evaluation
is performed on a per-frame basis and we observed
two important metrics: (a) mean average precision
(mAP) over all 91 categories and (b) distribution of
overlaps with the ground truth regions. Mean aver-
age precision shows us how the detection improved
including the detection of previously missing traffic
signs. The distribution of overlaps reveals the im-
proved accuracy of localization.

4.1. Evaluation dataset

Evaluation was performed on a dataset with over
18,000 image frames, around 40,000 annotated in-
stances and 115 traffic sign categories. The sequence
contains images of 1920 × 1800 pixels in size taken
on a path around the city of Ljubljana and its sur-
rounding area. Images were captured with a vehicle-
mounted camera at 1 frame per second and only
images where any traffic signs are present were in-
cluded in the dataset. Although the dataset contains
115 categories, we only used the 91 categories that
intersect with the available training categories for the
detector.

4.2. Implementation details

In this section we provide further implementation
details of the Faster R-CNN, the DPT visual tracker
and our tracker integration process used in our exper-
iments.

The Faster R-CNN

The Faster R-CNN module was trained on an in-
dependent dataset. We used the DFG dataset from
[45] and extended it to over 7000 images with more
then 200 traffic sign categories overall. We only
used categories with at least four real-world train-
ing samples and additionally used data augmentation
with segmented real-world training samples similar
as in [45]. With augmentation we ensured at least
100 training samples for each traffic sign category.

We used the Matlab implementation [37] of Faster
R-CNN that is based on Caffe framework [21]. We
additionally modified this implementation with on-
line hard-negative mining during the training as de-
scribed in [41]. For the deep learning model we
used a pre-trained VGG-16 network [42], which has
13 convolutional layers and 3 fully-connected layers.
We used the same parameters as in [45] with the ex-
ception of using full HD images during the training
instead of image downscaling.

When thresholding detections for output we de-
fined threshold individually for each category. Indi-
vidual thresholds are computed as a threshold at the
ideal F-measure on the Faster R-CNN training set.
The same individual class thresholds are also used in
tracking integration. However, for outputting detec-
tion in the first stage we use a maximum threshold
of 0.4 to assure a larger set of initial detections if the
threshold based on ideal F-measure would be higher.

The DPT visual tracker

Given the feature size limitation of VGG16 on mini-
mum size for tracking a detection threshold size was
set to 20 pixels (based on the smaller of the dimen-
sions). The tracker’s parameters were then set dif-
ferently given the direction of tracking. As the traf-
fic signs generally get smaller when tracking back-
wards and bigger while tracking forwards, the max-
imum and minimum scales were adjusted. We used
five scales and a scale step size of 1.02 for both direc-
tions, while for backward tracking we limited mini-
mal scale to a factor of 0.05 and for forward tracking
we limited maximal scale to a factor of 7.

Visual tracking integration

Two parameters are used to control the merging of
tracked sequences. The tracked sequence was ter-
minated if the verified score fell below 20% of the
class’ individual threshold. Furthermore, when de-
termining whether two sequences represent the same
physical sign, a large overlap was required to connect
the two sequences. We used IoU overlap threshold of
0.6.

4.3. Experiments

We first perform experiments with different scor-
ing types, then we compare our approach against the
baseline Faster R-CNN considering different region
sizes and improvements in localization precision.



Table 1. Results using our temporal information with dif-
ferent scoring types. We report mAP at 0.5 IoU overlap
over all 91 categories, and consider only regions greater
than 40 pixels in size.

Scoring function mAP

Detection 90.25
Re-verification 89.79
Detection × tracking 90.62
Re-verification × tracking 89.84

Evaluating scoring function

We evaluate four different scoring functions based on
different combinations of score types as described in
Section 3.3:

• Initial detection score
• Initial detection multiplied with tracking score
• Re-verification score
• Re-verification multiplied with tracking score

Results are reported in Table 1 using mean aver-
age precision (mAP) over all 91 categories. Com-
paring different scoring functions we see minimal
difference, with the best performing function com-
bined from the initial detection multiplied by nor-
malized tracking score with mAP of 90.62%. Com-
paring scoring from the matched initial detection
against the re-verification score we notice a slight
improvement when using initial detection scores.
This seems counter-intuitive as re-verification should
provide more accurate recognition. However, re-
verification may not work properly in all cases. For
instance, Faster R-CNN recognition module does not
work best for smaller regions (as shown by experi-
ments in the next subsection), and interpolation from
neighboring scores provides more accurate scores in
those cases. This difference is minor, with improve-
ment measuring only 0.5% over all categories. Mul-
tiplying with tracking score also improves results but
only for less then 0.5%. Nevertheless, we use the
best performing scoring function in all remaining ex-
periments.

Comparing with baseline Faster R-CNN

Next, we compare our approach using temporal
information against the baseline Faster R-CNN with-
out using any temporal information. Results in mAP
over all 91 categories are reported in Table 2. We can
observe up to 5% improvements in mAP when us-
ing our approach. Improvements stem partially from

Table 2. Results at different minimal region sizes using
scoring with initial detections and tracking using 0.50 IoU
overlap. We report mAP over all 91 categories.

Temporal information Min region size
(mAP) 30 px 40 px 50 px

With (ours) 85.05 90.62 91.67
Without 79.76 86.79 89.52

Improvement +5.29 +3.83 +2.15

Table 3. Results with different overlap thresholds and re-
gion sizes. We report mAP over all 91 categories.

Minimal Temporal IoU Overlap threshold
region size information 0.50 0.60 0.70 0.80

30 px
With (ours) 85.05 83.96 78.88 55.30

Without 79.76 75.44 62.20 29.44

40 px
With (ours) 90.62 89.95 83.25 59.48

Without 86.79 83.31 70.52 34.16

50 px
With (ours) 91.67 91.06 85.36 62.83

Without 89.52 87.76 77.23 38.79

detection of missing traffic signs as can be observed
in Figure 5. First stage Faster R-CNN often misses
some detections which we can now successfully re-
cover using temporal information.

Region size

We limit detection and groundtruth sizes that we use
in evaluation since Faster R-CNN uses VGG16 net-
work with 32-times reduction of resolution at high-
est layers. This reduces the amount of informa-
tion for smaller regions. We ignore detections and
groundtruths below certain threshold size in the eval-
uation, and evaluate with three different size thresh-
olds at 30, 40 and 50 pixels in size (the smallest side
must be larger then the threshold).

Results as reported in Table 2 show that per-
formance for our approach and baseline drop with
smaller region sizes, however, our approach still
achieves by 5% better mAP than the baseline which
does not consider temporal information. When con-
sidering regions larger then 30 pixels in size our
approach achieves mAP of 85.1% while baseline
achieves mAP of 79.8%. Considering larger regions
with 40 or 50 pixels in size the mAP improves to
90.6% and 91.7% respectively for our approach, and
to 86.8% and 89.5% respectively for baseline. Re-
sults indicate that baseline Faster R-CNN performs
poorly at smaller regions, but our approach with tem-
poral information helps to improve that. At bigger
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Figure 3. Results at different overlaps and minimal region sizes comparing against Faster R-CNN baseline without tem-
poral information.
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Figure 4. Distribution of true positive detection overlaps with groundtruth regions when considering minimal region size
of 30 pixels. Distributions for our approach with temporal information on the left and for baseline Faster R-CNN without
using temporal information on the right. Our method has detections concentrated at higher overlaps.

regions our approach also improves mAP over base-
line by around 2-3%.

4.3.1 Localization precision analysis

Next, we focus on analyzing accuracy and precision
of localization. We analyze localization by observing
performance at different IoU overlaps of true posi-
tive detections. Results with different minimal region
sizes over different overlaps are reported in Figure 3
and Table 3. Looking at mAP for different overlaps
we observe a drop of performance with higher over-
laps. Baseline performance drops to below 40-30%
at overlap of 0.80, however, when using temporal in-
formation we retain mAP performance between 55%
and 60%. At lower overlaps our approach also re-
tains better performance compared to the baseline.
This improvement is well observed when looking at
the difference between red and blue lines in Figure 3.
More specific numbers are also reported in Table 3.

Observed difference in performance is indicative
of improved localization precision in our approach.

Table 4. Mean detection overlaps with groundtruth at dif-
ferent minimal region sizes. We used scoring with initial
detections and tracking, and considered only correct de-
tections with 0.50 IoU overlap.

Temporal information Min region size
(mean overlap) 30 px 40 px 50 px

With (ours) 83.31 84.08 84.73
Without 78.42 79.91 81.26

Improvement +4.89 +4.16 +3.47

This conclusion is further supported when looking at
the distribution of overlaps reported in Figure 4. We
plot distributions of true positive detection overlaps
with the groundtruth. Both distributions show con-
centration around IoU overlap of 0.80, however, with
baseline method the distribution is wider and con-
tains more samples at overlaps lower than 0.70. In
our approach the temporal information helps to im-
prove localization as less detections have poor over-
laps of IoU below 0.60 and most are concentrated at
IoU overlaps closer to 0.85. Looking at the mean of
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Figure 6. Cumulative distribution of overlaps.

each distributions in Table 4 reveals similar improve-
ment with mean overlaps improved by around 4%,
however, that mean value is skewed by the long tail
of overlaps towards 0.50 and improvement is slightly
underrated. Plotted distributions in Figure 4 show the
distribution peak closer to 0.90 for our approach and
around 0.80 for baseline. This difference is better
observed in Figure 6 where we plot cumulative dis-
tribution of overlaps for both approaches in the same
graph. Those graphs reveal our approach reduces
the number of detections below overlap of 0.80 from
over 50% of detections in baseline to around 30% of
detections in our approach.

5. Conclusion

In this work we proposed a novel approach to im-
prove detection of traffic signs using visual tempo-
ral information. We proposed a three stage approach
with Faster R-CNN as detection and recognition al-
gorithm in the first stage, generation of new redun-
dant region proposals from visual temporal infor-
mation using DPT tracker in the second stage and
integration of multiple detections hypothesis from
tracked sequences into final detections in the last
stage. We evaluated our approach on 91 traffic sign
categories using database sequence with over 18,000
full HD image frames and 40,000 traffic sign in-
stances. We showed two important improvements

when using visual temporal information. Compared
to baseline Faster R-CNN we improved detection
rate of traffic signs. We achieved this for frames with
poor or missing detections where temporal informa-
tion can extract cues from neighboring frames and
recover the presence of a traffic sign. Moreover, we
demonstrated improved localization accuracy using
visual temporal information as we reduced the num-
ber of detections with poor IoU overlap. We achieved
this by tracking initial detections in both temporal di-
rections and merging them to refine the traffic sign
location.

In our future work we plan on extending the ap-
proach to even larger-scale detections with all 200
traffic sign categories. Tracking may prove even
more important for some difficult traffic sign cate-
gories that were not present in our sequence, such as
small road marking signs or certain large directional
signs with varying content. Moreover, the detection
of smaller regions still remains problematic. We plan
on addressing this issue by improving the first stage
with features that have a smaller reduction of resolu-
tion in higher layers.
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