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Abstract. Mobile robots that operate in real-world
environments need to be able to safely navigate their
surroundings. This problem is especially significant
for robots operating in dynamic or new environments
as the map of the environment might be unreliable
or unavailable. We present an approach for learn-
ing map-less goal-driven navigation using an actor-
critic deep reinforcement learning (RL) approach.
The behavioral policy of the robot is represented as
a deep neural network. The agent is trained in a sim-
ulated and highly randomized obstacle course. We
evaluate the learned policy on a real robot.

1. Introduction

Intelligent machines are expected to perform com-
plex tasks in unstructured environments. Regardless
of the specific assignment at hand such machines
would need to be watchful for the safety and poten-
tial damages of the environment, itself, as well as any
humans or agents in the vicinity. If the machine is
mobile, the minimum operational requirement is the
ability of planning its movement and avoiding obsta-
cles.

If the environment is static then the usual approach
is to build a map of the environment and use a path-
planning algorithm in conjunction with a localiza-
tion algorithm to safely navigate the working space.
However, for some robotic scenarios (e.g. a robot
operating in crowded environments, exposition areas
where the exponents are changed) building a map of
the environment can be unfeasible as we might want
the robot to be operational momentarily, or the envi-
ronment might change at a pace that makes maintain-
ing an accurate map impractical.

For a robot operating in such environments a more
reactive behavioral policy, one which does not rely
on a map, can be more suitable. Motivated by the

Figure 1: A behavioral policy was learned in simu-
lation by training with deep reinforcement learning.
The learned policy, modeled by a deep neural net-
work, takes as input a range-scan and the relative
position of the goal. It outputs a turning angle or a
straight movement command. The policy is then im-
plemented on a real robot.

recent advances in reinforcement learning (RL), as
well as the methodological applicability of RL to
an agent which sequentially perceives an environ-
ment and produces an action, we develop a map-
less goal-driven navigation policy. Our policy takes
as input an observation of the world, represented
by a range-scan of the environment, the angle and
distance to the goal position, and outputs a move-
ment command for the robot. We model the prob-
lem of navigating the environment as a Markov De-
cision Process [11] (MDP) and optimize a behav-
ioral policy within the framework of reinforcement



learning, specifically the state-of-the-art Advantage
Actor-Critic [10] (A2C) method.

Running experiments and training is expensive
when working with real robots. Physical components
suffer from wear and tear, resetting the system takes
time and effort, batteries need charging. For the case
of training mobile robots for obstacle avoidance and
path-planning there is the added problem of gath-
ering negative samples, as collisions can be critical
and are always costly. Furthermore, RL algorithms
typically demand large amounts of data to converge.
Generating a large amount of data is possible using
a fleet of robots (which is especially impracticable
when dealing with mobile robots), learning in simu-
lation using a very realistic simulator, or having a less
realistic simulation, but vigorously randomizing pa-
rameters of the simulation during learning to achieve
regularizing effects. We take the last approach.

We implement the learned policy on a custom built
Turtlebot1 robot equipped with a laser range-scanner
and evaluate our map-less approach on an obstacle
course. Our results are compared with the perfor-
mance of the standard Turtlebot navigation pack-
age which uses an Adaptive Monte Carlo Localiza-
tion [3] (AMCL) algorithm together with a Dynamic
Window Approach [4] (DWA) local planner and a
global planner based on the Dijkstra algorithm. We
evaluate both approaches and show that our approach
is more robust as the map for the navigation stack de-
grades.

In 2 we will present the related work, then we will
present our model learning framework in 3, and in
Section 4 we will present our results, the evaluation
of the algorithm on a real robot and a discussion of
the results. In Section 5 we present our conclusions.

2. Related work

Model-free methods for optimizing MDPs make
it possible to find an optimal policy without explic-
itly modeling the dynamics of the underlying MDP.
Q-learning [19] and methods based on Policy Gradi-
ents [15] are among the most significant such meth-
ods.

Recently, incredible results were presented by
Mnih et al. [9] by their deep neural network imple-
mentation of the Q-learning algorithm, where they
achieved a human level performance on a number
of Atari games. Wang et al. [18] applied the same
(DQN) optimization algorithm but designed a novel

1http://www.turtlebot.com/

network architecture, separating the state-values, and
the action-advantages named Dueling DQN. This ar-
chitecture beat the state of the art on the Atari bench-
mark. Then van Hasselt et al. [17] presented a
method named Double DQN which uses a second,
target Q-network, and so circumventing the maxi-
mization bias in Q-learning and achieving better re-
sults in a number of domains.

While policy gradients have been around for quite
some time, Mnih at al. developed the Asynchronous
Advantageous Actor Critic (A3C) method [10] for a
neural network implementation of a policy function
that outperforms the standard DQN, and on some
games the Double DQN and in numerous experi-
ments demonstrated the superiority of policy gradi-
ent methods for some classes of problems. The train-
ing of these deep models is made practically viable
by employing methods of experience replay [8] like
Prioritized Experience Replay developed by Schaul
et al. [13]. Employing experience replay signifi-
cantly speeds up the convergence of the network by
breaking down the high correlation between succes-
sive samples.

Applications of RL methods to obstacle avoidance
have been done in various ways and settings. Some
have used tabular methods and discretized the state
space to make those method viable, while others have
used neural networks as function approximators to
represent the Q-function, the state-value function or
the policy.

Discretized state space is usually done by ap-
proximating the working environment with a grid.
While limiting the applicability, this has the advan-
tage of computational simplicity. Adbel et al. [1]
implement a tabular form of Q-learning for obsta-
cle avoidance and assume a fully observable envi-
ronment. A fully observable environment is often
not available to a robot, and the tabular Q-learning
can only be applied up to a certain environment-
complexity, as the method suffers from the curse of
dimensionality. Konar et al. developed Improved
Q-learning (IQL) [7] as an extension of Extended
Q-learning [2] and applied it to path-planing in an
environment represented by a grid. The IQL algo-
rithm presupposes a knowledge of the distance to the
next-state (observation) which is not always avail-
able. Wen et al. [20] used a tabular implementa-
tion of the Q-learning algorithm merged with EKF-
SLAM [14] for an obstacle avoidance system on a
NAO robot. They use clustering methods to pre-
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process the laser-scan data, which restricts the pos-
sible configurations of the obstacles.

Neural network function approximation fu-
eled by the recent advancements in computation
and deep networks has made possible the circum-
vention of some of the negative effects of dras-
tic discretization—using powerful networks to ap-
proximate the state-value function, Q-function or di-
rectly the policy. Gupta at el. [6] implemented an
end to end system on learning simultaneous map-
ping and planning for robotic navigation by apply-
ing a value iteration method. This method in general
converges slower than either Q-learning or policy-
gradient methods. A variant of Q-learning (fitted
Q iteration) was applied to an in-simulation learning
system [12], which through high randomization can
to a certain degree of success, be directly applied to
the target domain.

The work most closely related to ours is Lei at
al. [16]. They also train a navigation policy for
the Turtlebot using a Deep RL algorithm. However,
they use the deterministic policy gradients approach,
while we use an actor-critic approach. Secondly, they
simulate the robot in a single environment randomiz-
ing only the goal location, while we randomize the
whole environment on each run. As a result the tra-
jectories we generate are not as smooth, but they are
easier to transfer to a real-robot as the policy is not
tightly coupled with the dynamics parameters of the
robot. Our simulation does not rely on a 3D physics
engine and consequently we are able to train a policy
much faster.

3. Method

We model the problem of obstacle avoidance as a
Markov Decision Problem (MDP), which is a com-
mon approach for transferring problems to the rein-
forcement learning domain.

3.1. Formal description

An MDP is defined by a set of states S, a set of ac-
tions A, transition probabilities t(s, a) : S×A 7→ S,
a reward at each time-step Rk and a discount fac-
tor for the future rewards γ ∈ [0, 1]. The agent is
randomly initialized in the environment, after which
it observes the state s0 and performs an action a0
according to a policy π(s) : S 7→ A. This takes
the agent to the state s1 and it receives a reward of
R1. This process continues iteratively until a termi-
nal state is reached, which in our implementation is

either a state where the robot has reached the goal-
state, or it has reached a state where it is in collision
with an obstacle. Our goal becomes finding an opti-
mal policy π∗ such that we would maximize the cu-
mulative discounted future reward

∑kfinal

k=1 γk−1Rk.
In our approach a state is represented by a vec-

tor sk =
[
l1 . . . l30 α d

]T where l1 to l30 are
laser-scan measurement of the environment around
the robot, α is the angle to the goal and d is the dis-
tance to the goal. The action ak is one of 7 avail-
able turning angles. The value function V (sk) =
E[Rk + γkRk+1 + . . . |sk] tell us how much reward
we can expect to get when we are in a certain state,
and the quality function or Q-function Q(sk, ak) =
E[Rk + γkRk+1 + . . . |sk, ak] tells us how much re-
ward we can expect to get after taking a certain action
in a certain state. Consequently, we can define an
advantage function A(sk, ak) = Q(sk, ak) − V (sk)
which tells us how much more reward we can expect
for taking a certain action in a certain state (then the
reward we would get by taking the average action).

3.2. Advantage Actor-Critic Approach

A2C is a model-free method which uses the ad-
vantage function in optimizing the policy. The ad-
vantage function is calculated with the critic which
is trained to approximate the value function.

The actor network is the behavioral policy which
is represented by a neural network which outputs the
probability that each action is the best action in the
current state:

π(ak|sk; θa) = Pr(a = ak|s = sk, θ = θa) (1)

where the vector θa are the weights of the neural net-
work. Our goal becomes learning the weights θa on
the basis of a performance measure so that our pol-
icy will approach the optimal policy – maximizing
the cumulative discounted reward. The critic net-
work approximates the expected future reward, given
a state:

V (sk; θc) = E[Rk + γRk+1 + γ2Rk+2 . . . |sk, θc]
(2)

where θc are the weights of the critic network. It
should be noted that the actor and critics network
share the same weights on the lower layers.

The loss for the critic network is the mean-squared
error:

Losscritic = (V (sk; θc)−
imax∑
i=0

γiRi)
2 (3)



The loss for the actor network, according to the
Policy-Gradient theorem [15] is:

Lossactor = logπ(ak|sk; θa)A(sk, ak; θc) (4)

While optimizing the actor and critic losses it is com-
mon that the agent will quickly start to converge to
a sub optimal policy. To encourage exploration an
entropy term is added to the loss function which pre-
vents premature convergence of the learning method.

Lossent. = π(ak|sk; θa)logπ(ak|sk; θa) (5)

Therefore, the complete loss function we used is:

Loss = Lossactor + vcLosscritic− veLossent. (6)

Where vc and ve are hyperparameters for the loss of
the critic and the entropy respectively.

3.3. Implementation of the policy network

The actor-critic network is modeled with a deep
neural network represented in Figure 2. The actor
and the critic share the lower layers of the network.
The network has a categorical output for the actor,
and a linear output for the critic.

The architecture of the network is different to the
one used in [10]. We replaced the convolutional lay-
ers with fully connected layers. The actor and critic
streams of our network also split sooner, only the first
three layers and shared, with each separate stream
having three additional layers instead of the one.

Figure 2: The design of the policy network with the
state-value approximation. The network is split into
two streams, one for the actor with a categorical out-
put and one with a linear output for the critic. Fc
stands for fully-connected layer.

The input to the network is a vector representing
the state of the world. The state vector is generated

by concatenating 30 range-scan measurements with
the angle and distance to the goal. In simulation each
range-scan measurement is generated by taking the
minimum of 4 neighboring laser-scans. The com-
plete laser-scan captures measurements in the range
of ±120◦ with respect to the forward direction of the
robot. The actor outputs one of eight possible ac-
tions. The first seven actions are interpreted as a
turning angle while the last output is interpreted as
movement in a straight line.

The first three layers of the network are fully con-
nected layers with 512 neurons each and a Rectified
Linear Unit (ReLU) activation function. The network
is then split into two streams, one for the actor and
one for the critic. The actor stream has a further layer
with 512 neurons, then a layer with 256 neurons and
then the output layer with eight outputs. The critic
stream contains one layer with 512 neurons, than a
layer with 256 neurons and an output layer with a
single linear output.

We used the RMSPropOptimizer as it was found
to have the lowest variance among the tested optimiz-
ers during training. We used a learning rate of 0.007,
decay of 0.99 and ε was set to 0.00005. The learn-
ing rate was decreased during the training as this also
proved to stabilize the learning.

The neural network and the A2C are implemented
in Tensorflow2.

3.4. Training in simulation

Generating samples from a single simulated robot
produces highly correlated samples. The use of such
data is detrimental for the learning for RL meth-
ods based on policy gradients. Therefore, eight un-
correlated simulators were run in parallel to gener-
ate experience. Our simulator is built on top of the
physics simulator Chipmunk3. Four visualizations of
the simulator are represented in Figure 3.

All eight workers are run for 100 time-steps after
which the produced samples were gathered in a com-
mon buffer from which the actor-critic network was
updated. At the start of each episode the obstacles’
and goal’s positions are randomized. After a num-
ber of steps the agent encounters a terminal state or
it performs 100 cycles of observing and acting af-
ter which the episode ends. A terminal state means
that the agent has collided with an obstacle or it has

2https://www.tensorflow.org/.
3The Chipmunk physics engine https://

chipmunk-physics.net/

https://www.tensorflow.org/
https://chipmunk-physics.net/
https://chipmunk-physics.net/


reached a goal. Then the actor-critic network is up-
dated with the samples collected in the buffer, and a
new episode begins.

During training each action is selected by sam-
pling from the outputs according to the predicted
probability. During test time an action is selected as
the action with the maximum output.

The reward function was designed such that the
robot receives a reward of 100 for reaching the goal
which is done through checking for a distance thresh-
old, -50 for colliding with an obstacle and each time-
step it additionally receives a reward proportional to
change of distance to the goal with values in the
range of ±1.5. Even without this intermediate re-
ward the robot learns a useful policy, however, we
found that this reward speeds up the training about
twice.

Figure 3: Four visualizations of the simulator used
for training. The orange objects represent obstacles
and the blue circle represents the goal position. The
robot is represented with purple color.

4. Evaluation

Here we present the results for learning the policy
in simulation, then the set-up that was used for the
real-world experiments and at the end the evaluation
of the real-world experiments.

4.1. Learning

The policy was trained for total of 10M time-steps,
1.125M time-steps per simulation. In other words

each of the 8 simulators running in parallel played
out 11250 episodes of 100 time-steps. We ran the
simulation and trained the network three times. The
progression of learning, represented as the running
average of the reward in 100 episodes vs the time-
steps is visualized in Figure 4.

Each of the eight simulations was run on a sepa-
rate core of the Intel i7-6700 CPU processor, while
the network was trained on a GeForce GTX 1070
graphics card. The total training time was about 2
hours.

As can be seen in Figure 4 the agent started to av-
erage a positive reward after about 0.5M time-steps.
It reached a small plateau at about 1M steps (possibly
due to learning a sub-optimal greedy strategy), after
which the average reward quickly rises till about 3M
time-steps, after which the learning slows down.

Figure 4: Progression of learning. Reward vs time-
steps.

4.2. Experimental setup

The trained policy was implemented on a custom
Turtlebot represented in Figure 5. The Turtlebot was
equipped with a scanning laser range finder Hokuyo
URG-04LX4 and two ultrasonic localization beacons
from the Marvelmind Indoor Navigation System5 for
localization.

The range-scanner on the robot generates 1024
range-scans in a radius of ±120◦. These range-scans
were grouped into 30 bins of consecutive range-scans
and for each bin we took the minimum reading as

4Hokuyo laser range-scanner https://www.
hokuyo-aut.jp/search/single.php?serial=165

5Marvelmind indoor navigation system
https://marvelmind.com/shop/
starter-set-hw-v4-9-plastic-housing/

https://www.hokuyo-aut.jp/search/single.php?serial=165
https://www.hokuyo-aut.jp/search/single.php?serial=165
https://marvelmind.com/shop/starter-set-hw-v4-9-plastic-housing/
https://marvelmind.com/shop/starter-set-hw-v4-9-plastic-housing/


the value for that bin. The position of the robot in
the world was calculated by taking the average x and
y measurement from the two symmetrically placed
beacons on top of the robot. Knowing its orienta-
tion the distance and angle to the goal position is
calculated and together with the 30 range-scans an
observation of the world is generated. The state was
then fed through the network and the output is trans-
formed into a simple movement command for the
robot which is sent as a simple movement command
through the exposed ROS6 interface. The evaluation
of the network as well as all the other processing was
done on the on-board laptop.

The obstacle course which was used for evaluating
the policy on the Turtlebot can be seen in Figure 6.

For the Turtlebot navigation stack a map of the
course was constructed using OpenSlam’s Gmap-
ping7 which is a Rao-Blackwellized [5] particle filter
for learning grid maps from a range-scanner. This
map was given to the navigation stack for all the
experiments, although it was set to update this map
while navigating the obstacle course.

In the first stage we evaluate the algorithms on the
original obstacle course. In the second stage two of
the obstacles were displaced and in the third stage the
course was severely altered. In each stage the robot
was sequentially given six navigation goals and each
algorithm navigated the robot through the goals three
times. We plot the trajectory that the robot executed
as well as the cumulative distance traveled. The re-
sulting trajectories and the cumulative distances are
represented in Figure 7. From each of the three runs
one trajectory is bolded for each navigation algo-
rithm. The cumulative distances are represented as
the mean of the three trajectories.

4.3. Experimental results

The first obstacle course with the traversed trajec-
tories is represented in Figure 7(a). Both our learned
policy and the navigation stack had no problems nav-
igating to all six goals. We can see that our algorithm
produces a more “choppy” trajectory which is also a
slightly shorter trajectory, but both trajectories are of
comparable length as can be seen in 7(d).

In the second obstacle course, visualized in Fig-
ure 7(b) two of the obstacles were moved. The nav-
igation stack, having enough ground-truth from the

6The Robot Operating System http://www.ros.org/
7OpenSlam’s Gmapping https://www.openslam.

org/gmapping.html

Figure 5: The custom built Turtlebot. Equipped with
a laser range-scanner and two localization beacons.

Figure 6: The obstacle course used for evaluating the
navigation algorithms.

original map, quickly updated the map and had no
problem navigating the changed obstacle course. Our
algorithm also did not have problems navigating this
obstacle course. The traveled distances are are of
comparable length as is be seen in Figure 7(e).

In the last obstacle course the obstacles were
severely displaced, as well as some of the walls. The
Turtlebot navigation stack was run five times in this
course. Out of these it got lost two times, and man-
aged to find all goals three times. After getting lost
the navigation stack performed recovery behaviors
but ultimately did not manage to localize itself. In

http://www.ros.org/
https://www.openslam.org/gmapping.html
https://www.openslam.org/gmapping.html


(a) Stage1: original polygon. (b) Stage2: two displacements. (c) Stage3: severely altered.

(d) Distance traveled for Stage 1. (e) Distance traveled for Stage 2. (f) Distance traveled for Stage 3.

Figure 7: Evaluation of the executed trajectories. Stage 1 is represented in (a). The second stage, where two
of the obstacles were displaced is represented in (b). The third stage, where the obstacle course was severely
altered is represented in (c). In (a),(b) and (c) the blue line represents a trajectory executed by our navigation
policy and the red one the trajectories by the navigation stack. (d), (e) and (f) present the cumulative distance
traveled for (a),(b) and (c) respectively.

the cases when it managed to find all goals the total
distances traveled were again of comparable length.
In the two cases when it got lost, the traveled dis-
tance was greatly increased by the recovery behav-
iors. As it can be seen in Figure 7(c) and (f) the
performance of our method does not degrade as the
obstacle course is changed.

5. Conclusion

We presented a framework for learning a map-less
goal-driven navigation policy which at each time-
step tries to get closer to the goal, while avoiding
collisions with obstacles. To achieve this we used
the state-of-the-art A2C reinforcement learning algo-
rithm.

The training of this policy is possible because we
train it completely in simulation and in this paper we
showed that such a policy can be directly transferred
to a real robot without any domain adaptation. We
also showed that our method is robust and consistent
in performance. Because our method does not rely on

a map of the environment it is applicable in scenarios
when many other methods are not.

However, having a map of the environment is of
great utility, especially in complex environments, and
we do not claim to replace such methods, but present
an alternative approach which is feasible in scenarios
when other methods are not.

Initial experiments suggest that we can further re-
duce the reliance on environmental measurements by
excluding the distance to the target from the state-
vector. This can further extend the applicability to
scenarios when only the bearing to the target loca-
tion is known.

We also believe that we can improve our method
by addressing the partial observability of the problem
at hand. We plan to utilize the history of the obser-
vations the robot has performed, and will do this by
incorporating LSTM units in the policy network.
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