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Abstract. In this paper we examine the effect of dif-
ferent CNN configurations on segmentation and de-
tection performance. We identified criteria for net-
work architectures designed for the use in specific
problem domains such as textured-surface defect seg-
mentation and detection. Evaluation is performed
on a dataset consisting of diverse textured surfaces
with variously-shaped weakly-labeled defects where
we achieve state-of-the-art results in terms of defect
segmentation as well as classification.

1. Introduction

Deep learning based approaches have proven su-
perior to non-deep learning based methods in a va-
riety of different tasks, ranging from detection [10]
to segmentation [8]. A more-or-less common prac-
tice is to adapt an existing architecture, such as
VGG [14], AlexNet [7] or others, for a specific task
in a way that utilizes the pre-trained weights of the
lower layers on large datasets and adapts the weights
of upper layers for new problem domain. In gen-
eral this approach is cumbersome when dealing with
specific problem domains such as defect detection on
surfaces. This is due to the fact that large architec-
tures implicitly exhibit the need for large training sets
which are usually not available in industrial environ-
ments, where the acquisition of defective examples
presents a costly and impractical task.

We argue that since the underlaying defect struc-
tures and patterns in specific problem domains are
limited, contrary to objects in datasets such as Ima-
geNet, large architectures are not necessarily needed
in order to successfully learn underlying defect pat-
terns. As such, certain criteria for the network ar-
chitecture can be identified. A network designed for

an inspection system should: (i) Be compact, i.e., be
able to learn potential defect detection from a hand-
ful of defective examples. (ii) Be robust, i.e., within
a similar problem domain a network should require
merely slight, if any, hyperparameter adjustments.
(iii) Be explainable, i.e., be able to provide visual
localization and classification explanation to a hu-
man domain expert, as this increases the overall trust
in the system and reduces the need to blindly rely
on hidden system processes. In this paper we ex-
plore whether a general rule-of-thumb design schema
can be estimated for designing convolutional-neural-
networks for the usage in specific problem domains
such as defect detection on surfaces.

The remainder of the paper is structured as fol-
lows. In Section 2 we provide a brief overview of
related work, followed by the description of the pro-
posed architecture for defect detection in Section 3.
The experimental setup is described in Section 4
while results are presented in Section 5. We conclude
with the discussion in Section 6.

2. Related work

Classical approaches in defect detection on ob-
ject surfaces follow more or less the same paradigm,
i.e., a classifier — such as SVM, LDA, PCA, Hough
transform, decision trees or KNN — trained on fea-
ture descriptors obtained from preprocessed images.
Here, the preprocessing stage is crucial as it en-
sures that the problem is well-conditioned for the
process of hand-engineering suitable features. Com-
monly used non-deep-learning defect detection ap-
proaches include: (i) Filtering approaches based on
Wavelet transform [3], independent component anal-
ysis [13] and Gabor filter [18]; (ii) Structural ap-
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proaches based on morphological operators [9] and
edge detection [12]; (iii) Model based approaches
such as the Hidden Markov model [11] and autore-
gressive models [1]; (iv) Statistical approaches based
on histograms [1], co-occurrence matrices [4] and
autocorrelation [6]. Deep learning highly contrast
these approaches by performing automated feature
learning instead of hand-designing suitable and at
times sub-optimal features.

Deep learning, i.e., convolutional neural networks
have proven superior in tasks where hand-designing
features proves a difficult task. Early work on uti-
lizing a CNN for surface defect detection can be
found in [10]. The motivation arises from the afore-
mentioned difficulty, where even domain specialists
struggle to devise accurate rules based on geometri-
cal and shape features for certain defects. The clas-
sification error is reduced by half over the classical
approach with a classifier trained on feature descrip-
tors, which included a Multi Layer Perceptron (MLP)
and SVM with RBF classifiers trained on features ob-
tained via HOG, PHOG, rotation invariant measure
of local variance, and Local Binary Patterns (LBP,
LBP-Fourier). Taking new deep learning research
insights into account, [16] present an overview of
different design heuristics of CNN for industrial in-
spection. The paper examines the impact of different
hyper-parameter settings with respect to the accuracy
for defect detection. Evaluation is performed on an
artificial dataset, as shown in Figure 4, comprised of
diverse surfaces on which the goal is to detect de-
fects. Although the dataset consists of artificially
generated images, these imitate diverse textured sur-
faces with variously shaped defects.

Other work on utilizing deep learning for defect
detection can be found, such as learning from pho-
tometric stereo images of rail surface defects, where
images depict differently colored light-sources illu-
minating the rail surfaces from different and constant
directions, made visible in a photometric dark-field
setup [15]. Or the usage of deep learning for non-
trivial extraction of suitable features for the detec-
tion of rail surface defects from raw automated video
recordings [2]. The aforementioned papers showcase
the feasibility of utilizing deep learning for the prob-
lem of detecting defects on different surfaces.

3. Architecture and configurations

Considering the aforementioned criteria, we pro-
pose a compact convolutional network architecture
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Figure 1. Convolutional filter dimensions with respect to
the zoomed example containing a defect from Surface 4
show in Figure 4. The first image depicts the original input
size of 512 × 512, while each subsequent image displays
the size after subsampling. The red square represents a
filter of size 11× 11, the blue square a filter of size 7× 7
and the yellow square a filter of size 3× 3 pixels.

comprised of a segmentation and classification stage
as shown in Figure 2. The task of the classifica-
tion stage is to assign a given example a score which
can be interpreted as the network’s confidence that
a given example contains a defect. The task of the
segmentation stage is to provide visual defect local-
ization and thereby visual classification explanation
to a human domain expert. The segmentation part of
the network consists of three blocks. Each block con-
sists of three convolution layers, whereby the number
of features is increased by a factor of two in each sub-
sequent block as depicted in Figure 3. Depending on
the filter configuration of these blocks the segmen-
tation and detection performance is influenced. We
examine six different configurations:

(i) v1173 where the filter size in each subsequent
block is decreased. When choosing a filter size, we
can make some valid assumptions about the prob-
lem at hand and utilize these in the architecture de-
sign, i.e., the filters should enclose part of the de-
fect that should be detected, as shown in Figure 1.
Here we choose filters in such a way that the ratio
between two subsequent filter sizes is kept constant
during subsampling stages. This ensures that the fil-
ter continues to enclose part of the defect through-
out the network. The actual representation within
the network will differ from the depictions, however,
this is merely to illustrate the reasoning. In gen-
eral the coarse factor-of-two feature count step-size
combined with a stride-of-two convolution at the be-
ginning of a block, and a step-wise filter size reduc-
tion keeps the parameter count from increasing man-
ifold, achieving compactness; (ii) v3711 which is an
inverse of configuration (i), meaning that the filter
size is increased in each configuration block; (iii)



c1173 which follows the same principle as (i), how-
ever, the filters are configurated in a pyramid manner
within each block, meaning that within each block
filter sizes are varied from large to small; (iv) c3711
which represents an inverse of configuration (iii); (v)
v333 which follows the VGG [14] design principle
with a fixed filter size; (vi) v111 which is similar to
configuration (v) whereby no local context is taken
into account.

The classification part of the network relies on
the segmentation part. Classification scoring of a
given example is achieved via a maximum and av-
erage global pooling combination from the segmen-
tation layer (SegLayer) and compression layer (Com-
pLayer) as illustrated in Figure 2. The segmentation
layers is inspired by fully convolutional networks [8]
and merely provides the segmentation output from
one layer above. The compression layer hand on
the other hand serves to compress the activation vol-
ume from one layer above. This reduces the num-
ber of parameters from which the classification score
is estimated and robustifies the classification score.
The usage of maximum and average global pooling
proves robust in cases where for example a larger
non-defective area would be segmented as a defec-
tive region. The maximum pooling alone would fail
to see any difference between this and an example
where merely a small defective area would be seg-
mented. This is the underlying reason why we addi-
tionally perform average pooling, as this would ex-
hibit a difference in the aforementioned example.

4. Experimental details

All experiments, that is, for all network configu-
rations and all surfaces, are ran with a fixed set of
learning parameters and network hyperparameters.
The network architecture used is depicted in Fig-
ure 2 while the different network configurations are
depicted in Figure 3. Given an input image of size
512×512 pixels, our network outputs a segmentation
map of size 128 × 128 pixels. For all layers within
the network the ReLU activation function is used af-
ter which batch normalization is applied. The only
exceptions are the SegLayer and S-neuron where we
use the linear and sigmoid activation function respec-
tively. All network weights are initialized with a nor-
mal distribution centered around zero, as proposed
in [5].

Network training is performed in two stages. In
the first stage, i.e., Segmentation stage we train

the defect segmentation step of the network for 25
epochs. In the second stage, i.e., Classification stage
we train the classification step of the network for
10 epochs. The two stage training is essential. In
the first stage all classification layers are frozen and
merely the segmentation layers are learned. Con-
versely, in the second stage all the segmentation lay-
ers are frozen and merely the classification layers are
trained. This ensures that the classification will be
trained on meaningful segmentation representations.
The two training stages are outlined in Figure 2.

In both cases the network is learning a regression
value from either [−1, 1], which is assigned to each
pixel in the segmentation step, or [0, 1] which is as-
signed to a single example in the classification step.
During the segmentation stage training we minimize
the mean squared-error loss function, i.e.,

S =
1

np

n∑
i=1

p∑
j=1

||x〈j〉i − x̂
〈j〉
i ||

2 (1)

where n denotes the number of examples, p denotes
the number of pixels, xi the annotated pixel value
and x̂i the predicted pixel value. In the classification
stage the binary cross-entropy loss function, i.e,

C = − 1

n

n∑
i=1

[
yi log(ŷi)+ (1− yi) log(1− ŷi)

]
(2)

is minimized, where n denotes the number of exam-
ples, yi the ground truth example annotation and ŷi
the example regression prediction. Both functions
are minimized using the Adadelta optimizer [17]
with the parameters left at default values as suggested
in the paper. All experiments were ran on a Gigabyte
GeForce GTX 1080 Ti graphics card.

4.1. The DAGM dataset

The dataset for Industrial Optical Inspection 1

consists of artificially generated textured surfaces.
As can be seen in Figure 4 the dataset consists of ten
diverse surface classes with diverse defects emulat-
ing smudges, cracks, dents and impurities, each gen-
erated by a different texture and defect model. We
refer to a given example as positive if it contains a
defect and negative if it contains no defect.

Table 1 depicts the distribution of training and
testing examples over the dataset. The entire dataset
consists of 8050 train examples of which 1046 con-
tain defects, and 8050 test examples of which 1054

1https://hci.iwr.uni-heidelberg.de/node/3616



Figure 2. The proposed CNN-architecture which outputs
a segmentation map and a probability value for a given
example. The abbreviations ConvLayer, SegLayer and
CompLayer stand for convolutional, segmentation and
compression layer respectively. Abbreviations GMAXP
and GAVGP stand for global maximum pooling and
global average pooling, and S-neuron stands for scoring
neuron. Different configuration blocks used are depicted
in Figure 3.

contain defects. If a given surface of size 512x512
pixels contains a defect, it contains exactly one weak-
ly labeled defect on the background texture. Weak
labels are provided in form of ellipses which roughly
indicate a defective are on a given example but also
include defect-free areas to some extent, as shown
in Figure 4. Although the entire defect is contained
within the encircling ellipse, a significant portion
of the regular surface is encircled as well. Con-
sequently, many image pixels are falsely labelled,
which can affects the learning process. This prob-
lem is however to be expected in many real world
situations since very precise annotations of surface
defects are very difficult and costly to obtain.

Surface
Train examples Test examples

Positive Negative Positive Negative

1 79 496 71 504
2 66 509 84 491
3 66 509 85 490
4 82 493 68 507
5 70 505 81 494
6 83 492 67 508
7 150 1000 150 1000
8 150 1000 150 1000
9 150 1000 150 1000
10 150 1000 150 1000

Table 1. Distribution of train and test examples over the
DAGM dataset.

To our knowledge, this is the only publicly avail-
able annotated surface-defect dataset. The underly-
ing reason of why such datasets are hard to come by
are non disclosure agreements which serve to prevent
the disclosure of company secrets such as image ac-
quisition or other crucial processes which ensure a
competitive advantage.

5. Results

We evaluate the performance of our network in
terms of the true positive rate (TPR), i.e., positives
that are correctly identified as positives and true neg-
ative rate (TNR), i.e., negatives that are correctly
identified as negatives. We also evaluate the per-
formance of our network in terms of the absolute
number of misclassified test examples. Table 3 de-
picts the performance of our network with differ-
ent configurations. As can be seen, the network
when trained with configuration v1173 fails to de-
tect merely one positive test example from Surface
4, while maintaining a high negative, i.e., defect-free
example detection accuracy. Conversely, configura-
tion v111, which due to filters of size one-pixel cap-
tures no local context during the learning process, is
as such unable to distinguish defects from the back-
ground. Table 2 shows the performance of our net-
work with configuration v1173 compared to a state
of the art deep learning based approach proposed
in [16]. Our network architecture outperforms the
latter in terms of the the detection of defective exam-
ples, while maintaining a high defect-free example
detection.

Although the high-level performance aspect of the
network configurations seem promising, a qualitative
analysis of the segmentation outputs provides further
insights. Figure 6 depicts the segmentation outputs



Figure 3. Different configuration blocks used with the network architecture depicted in Figure 2.

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5

Surface 6 Surface 7 Surface 8 Surface 9 Surface 10
Figure 4. A snapshot of the diverse textured-surfaces in the dataset. Each surface class exhibits additional intra-class
variation of the background texture. Red ellipses present coarse surface defect labeling, i.e., weakly labeled ground truth
annotations as these include areas which do not correspond to defects.

of the network for a few given examples. From these
it is clear that configuration v111 is unable to sepa-
rate defects from the background, due to the fact that
no local context was considered in the learning stage.
Configuration v333 takes local context into account,
however does so in a small scale and as a result false
artifact segmentations remain on the background tex-
ture. Configurations v1173 and c1173 both account
for local context in a pyramid fashion, where as con-
figurations v3711 and c3711 account for local con-
text in an inverse-pyramid fashion, either globally
within the network architecture or locally within each
configuration block.

Table 4 gives the ratio of noisy background seg-
mentations for each configuration. The ratio is com-
puted by binarizing the background segmentations at
the value off 0.15, and computing the relative num-

ber of falsely segmented background pixels w.r.t. the
number of all background pixels for a given exam-
ple. The ratio is computed separately for and aver-
aged over positive, i.e., POS and negative, i.e., NEG
examples for each surface. As can be seen configura-
tions v1173 and v333 exhibit least noisy background
segmentations — this can also be seen in Figure 6 for
an example from Surface 1.

Figure 5 provides a performance summary of eval-
uations in Table 3 and Table 4. As can be seen,
the configuration v1173 exhibits the highest detec-
tion performance and the lowest ratio of falsely
segmented background pixels in negative images,
meaning that the filter configuration is quite robust
to textured-backgrounds, and activations are most
likely to occur merely on defect regions.
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Figure 5. A summary of the performance evaluation in Ta-
ble 3 and Table 4.

Surface
Ours Weimer et. al. [16]

TPR TNR TPR TNR

1 100 98.8 100 100
2 100 99.8 97.3 100
3 100 96.3 100 95.5
4 98.5 99.8 98.7 100
5 100 100 100 98.8
6 100 100 99.5 100
7 100 100 - -
8 100 100 - -
9 100 99.9 - -

10 100 100 - -

Table 2. Classification performance of our proposed
CNN architecture with configuration v1173 vs Weimer et.
al. [16].

6. Conclusion

We examined the effect of different CNN configu-
rations on segmentation and detection performance.
We identified criteria for network architectures de-
signed for the use in specific problem domains such
as textured-surface defect segmentation and detec-
tion. We evaluated different network configurations
on a dataset consisting of diverse textured surfaces
with variously-shaped weakly-labeled defects.

We achieve state-of-the-art results in terms of de-
fect segmentation as well as classification with the
configuration v1173. The latter accounts for local
context in a global pyramid-fashion by decreasing
the filter size in each subsequent convolution block.
The proposed configurations meets the identified cri-
teria; (i) compactness in terms of parameter count;
(ii) robustness across diverse surface textures; (iii)
explanation as it provides a segmentation and classi-

fication score output.
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Figure 6. Segmentation results on different examples. The individual numbers in the bottom-right corners indicate the
assigned scores to each segmentation output.


