An Optimal Sequence of Learned Motion Estimators

Karel Zimmermann¹, Jiří Matas¹, Tomáš Svoboda^{1,2}

- ¹: Center for Machine Perception
- ²: Center for Applied Cybernetics Czech Technical University Prague, Czech Republic

Introduction

Video: 3D tracking

Tracking objectives:

Accurate

State-of-the-art: Tracking by gradient optimization

- Minimize dissimilarity: $\mathbf{t} = \arg \min_{\mathbf{t}} \sum (I(\mathbf{x} + \mathbf{t}) J(\mathbf{x}))^2$
 - [1] S.Baker and I.Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, pp.221-255, 2004

Video: example of KLT divergence

Drawbacks:

- Convergence to a local minimum
- Unknown basin of attraction
- Criterial function

State-of-the-art: Tracking by regression

m p

4/19

$$\Phi(\square) = (0,0)^{T} \quad \Phi(\square) = (-14,2)^{T} \quad \Phi(\square) = (14,-14)^{T}$$

$$\Phi(\square) = (12,7)^{T} \quad \Phi(\square) = (-9,18)^{T} \quad \Phi(\square) = (-16,-12)^{T}$$

There is an inverse relation approximated by mapping

 $\Phi: intensities around a point \rightarrow motion$

State-of-the-art: Tracking by regression

- Linear motion regression: $\mathbf{t} = H(I(\mathbf{x}) J(\mathbf{x}))$
 - [2] T.Cootes, G.Edwards, and C.Taylor, Active Appearance Model, Pattern Analysis and Machine Intelligence, pp.681-685, 2001
 - [3] F.Jurie and M.Dhome, Real time robust template matching, British Machine Vision Conference, pp.123-131, 2002

• Non-linear motion regression: RVM

 [4] O.Williams, A.Blake and R.Cipolla, Sparse Bayesian Learning for Efficient Visual Tracking, Pattern Analysis and Machine Intelligence, pp.1292-1304, 2005

Our approach

• Sequential motion regression: $\mathbf{t} = \varphi_h \Big(\dots I \big(\mathbf{x} + \varphi_1 (I(\mathbf{x})) \big) \Big)$

• We are looking for a sequence of predictors $\Phi = [\varphi_1, \varphi_2, \dots \varphi_h]$ with the lowest complexity.

- How many iterations *h* are required?
- How many pixels are neccesary for each iteration?
- What neighbouring pixels are used?

Uncertainty region

- Range r the set of admissible motions.
- Complexity c cardinality of support set.
- **Uncertainty region** λ the region within which all the estimations lie.

Optimal sequence of optimal predictors

p

8/19

• **Predictors** $\phi_i(c, r, \lambda)$ lie in a subspace of the (c, r, λ) -space.

- **Optimal sequence of predictors** is a sequence $\Phi = [\varphi_1, \varphi_2, \dots, \varphi_h]$ with the lowest total complexity $\sum c_i$ given:
 - range r_1 of the first predictor
 - uncertainty region λ_h of the last predictor.

•
$$r_{i+1} \ge \lambda_i, \ i = 1, \dots, h-1.$$

- Only those predictors lying on the λ -lower bound of the set of achievable predictors can create an optimal sequence $\hat{\Theta}$.
- Given (c,r), minimax task is solved to find the predictor with the smallest uncertainty region.
- Color codes the size of the uncertainty region.

Searching for an optimal sequence.

р

Dynamic programming searches for an optimal sequence of predictors.

- The algorithm searches for the cheapest path to a sufficiently small uncertainty region.
- In each state either complexity is increased or the next iteration initialized.

Support set selection

Greedy LSQ selection (red) of an efficient support set.

 Much better than 1%-quantile (green) achieavable by randomized sampling

Online selection of an active predictor set

a) w=0 b) w=0.1 c) w=0.5 d) w=1

• Greedy online selection.

- Trade-off between abilities of local predictors and coverage of an object.
- Strong features may not provide good tracking results.

RANSAC iterations \times Number of predictors

m p

13/19

- Probability of successful tracking as a function of number of ransac iterations and predictors.
- We maximize the probability, given a time, we are allowed to spent with the motion estimation in the actual frame,

Motion blur, fast motion, views from acute angles and other image distortions.

Video: 3D tracking

Video: acute angles

Video: fast motion

Video: bending

Video: pseudo planar

Video: occlusions

Video: blured motion

Video: illumination

Video: occlusions

Experiments: 3D fast blured tracking

a) slow motion

b) fast blured motion

c) close view

Experiments: Results on sequences 2000-7000 frames.

object	processing	loss-of-locks	mean-error
mouse pad minmax	18.9 fps	13/6935	[1.3%, 1.8%, 1.5%, 1.6%]
mouse pad sift	0.5 fps	281/6935	[1.6%, 1.2%, 1.5%, 1.4%]
towel minmax	21.8 fps	5/3229	[3.0%, 2.2%, 1.4%, 1.9%]
phone minmax	16.8 fps	20/1799	[1.2%, 1.8%, 2.6%, 1.9%]

• Data captured at 22.7fps frame-rate.

Comparison to SIFT detector.

Experiments: Comparison with KLT.

р

17/19

Much lower complexity and substantionally smaller error rate.

 If the number of iteration is constant than error rate is independent of the range.

Experiments: Application to a face detector.

р

m

18/19

	memory accesses	summations	multiplications
Alignment	15	30	30
Detector	25	25	0
Align+Det	6.5	9	5

Conclusion

Drawbacks:

- Learning required.
- Predictor range is limited by the size of the object.
- Advantages:
 - Very fast motion estimation ($30\mu s$ per predictor).
 - Ability to cover arbitrary cases (bluring, change of appearance).

19/19

• Automatic setup of tracking procedure.

$$\Phi\left(\left[12,7\right]^{T} \Phi\left(\left[12,7\right]^{T} \Phi\left(\left[12,7\right]^$$

2:2

3:11.1%

4:20.5%

KI

