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Perceptual Signals
Theory of shape (Grenander 1976)

� Noise and Blur

��� � � � �

Superposition

Interruptions or

Domain warping

Solutions:

� Noise and Blur: Tikhonov regularisation

Superposition: Unmixing, ICA

Interruptions: Mumford-Shah ....

Domain warping: ?????? Mumford 1996: The
best approach is unclear
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Warps
A warp is a geometrical transformation:

� � �
� � �

If the warp is continuous and invertible it’s a
Homeomorphism

If the warp is also

�

it’s a
Diffeomorphism

Our choice: a diffeomorphism of Jacoby determinant

det

��
��� � � � 	
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Bayesian Warps
Given some (stochastic) constraints on the warp
we seek

� � � �

�

�
� � � � � � �

� � � �

is a matching term:
How well does the warped image match the goal?

� � �

is the prior on warps:
What is the likelihood of a given warp?
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Motivation
Earlier work on � � �

does not seem adequate for all
situations:

� Not derived from first principles

Not invariant with respect to Euclidean
coordinate system

not invertible
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Euler-Lagrange formulation
We define the energy functional

� � �

� � log � � � �

�

� � � � �

For Markov models of p(W), we find

� �

�

�

� �
�

� � �
�

and the gradient descend algorithm

�
� � �

� � �

�

�

constraints
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Glasbey and Mardia
[Journal of Royal Stat. Soc. B (2001), vol 63, part 3]
Define a base distortion criterion

�� � 	

�� � �

� 	
and the null set distortion criterion

� �

� � ����� � ��

�� �

where is a group of invariance.
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1st order model
Glasbey and Mardia use

� �

� �
� �

�
� �

�

This may be viewed as a Brownian motion model in
Euclidean coordinates, and

�
�

�
�

�

This is a simple diffusion as in [Andresen and Nielsen,

1999]
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1st order model, problems
The basic problems with this model are

� Derived from first principles

� Invariant with respect to Euclidean coordinate
system,

� � � �

� � � �
� �

� � �

� � � �
�

� � �

�
� �

�

� not invertible

� � � �

� 	
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2nd Order Model
Glasbey and Mardia use

� �

� � �

� � �

�
� � � � �

�

This is the bending energy of a thin plate [Bookstein
91].

Advantage:
Very fast implementation
Affine invariance
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2nd order model, problems
The basic problems with this model are
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Constrained Diffusion
Glasbey and Mardia’s 1st order model leads to

�
�

�
�

�
Suppose constraint are given as

� �
� � � �
� � � �

�

�
� � � �
� � �

Then we may construct

�
�

�
�

�
�

� � �
�

�

if � � �
�
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Growing Mandible

� The mandibular bone is identified as an
iso-intensity surface in 3D CT-scans.

5 CT scans are given pr. patient: 2, 9, 22, 48, 84
months

Initial registration is performed as similarity
transform to minimize distance.

Closest point projection to make .

Geometry constrained diffusion to make as
smooth as possible.
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Growing Mandible
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Infinitessimal I.I.D. Warps
Just like the brownian motion model arrises as the
sum of infinitessimal statistically independent motion:

�

� � ���� �
�

� � �
�

� � �

� Gauss

� �

We construct a warp as

� �

� � ���� �
�

� � �
� �

where � are infinitessimal independent warps.
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1st order structure
Let ��� �

� ���
�

be the Jacobian of .
Then

��� � �

� � ���� �
�

� � �
��� �

We may model

��� � � � �
�

�
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Limiting Distribution
The limiting distribution of

�� � �

� � ���� �
�

� � �
� �

�

�

when � are independent and � � �
� � �

, is given
as

� � ��� �
�

� Gauss
� � �

�
� � �

� �
� � � �� � � � �

[Jackson, Lautrup, Johansen, Nielsen 2001]
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Parameters

� � ��� �
�

� Gauss

� � �

�
� � �

� �
� � � �� � � � �

where
Scaling

�

�

� �� �

det
� ��� �
� �

Skewness �

�

� det �� � � �
� ��� �
� �
�

Rotation
�

� �� � � �� � �
� � �

�
� ��

� �

	 �
� �

�
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Scaling

� � 	
�

�
� � �
�

�

� 	
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Skewness

�

� 	
�

� �
�

�

� 	
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Rotation

�

� 	
� � �
�

� � 	
�

�
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Inversion symmetry
Define

� � � �
� �, then

� �� � � � �
�

� �
and

� �

� �
�

�

�

� �

� �
�

Since � � � � �
�

is even in

�

and

�

:
� � ��� �

�

� � � � �
�

� �
�
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�

For � � 	
�

�

we approximate:

� � �� �
�

� Gauss

� � � � Gauss

� � � � Exp

�

�

� �

� � � � � 	
�

� � � 	
�

�
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Warp Distribution
Assumption:
All local linear transformations are statistically
independent.

� � �

�

�

� � � � � �

� � �

�

� � � � � � � ��� � � �
�

� � � � �

where
� � � � det

� � � �
�
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Scaling term
The scaling term

� �

aims at keeping the local area
constant:

� �

Thin-Plate
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Skewness term
The skewness term aims at keeping the local skew
low:
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� approximation

� � ��� �
�

� Gauss

� � �� � � �

� �
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Large Deformation

� �
� Thin-Plate
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Inversion symmetry
Implementation not perfect,.....yet

� �
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Inversion statistics
25 trials on

� 	 � � 	

grid for each complexity
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Wrap up

� Definition of Least Committed Warps

� Inversion symmetry

� Distribution approximated

� Maximum Likelihood interpolation

� Needs: Better implementation, expansion to nD

� Application: registration, flow, shape complexity

� Physics: chaotic flows

�
�
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