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Overview

1 Introduction to min-sum problem, its usage in computer vision.

2 Linear programming (LP) relaxation of the problem.

3 How hard is to solve the LP relaxation, what are fundamental
limitations.
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Min-sum problem
(a.k.a. MAP inference in graphical models or discrete energy
minimization problem)

Pairwise min-sum problem with graph (V ,E ) and label set K :

min
k∈KV

[∑
u∈V

fu(ku) +
∑
{u,v}∈E

fuv (ku, kv )
]
.

All weights fu(k), fuv (k , `) ∈ R ∪ {∞} form a vector f.
Problem instance is defined by (V ,E ,K , f).
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Min-sum problem in computer vision

Segmentation

Stereo (correspondences)

Multiview reconstruction, surface fitting, shape matching,
deconvolution, texture restoration, super resolution, . . .
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Complexity of min-sum problem

In general, NP-hard.

Certain classes of instances are tractable.

I min-sum problems on trees (restricting structure of graph)

I submodular min-sum problems (restricting weight functions f )

I . . .
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Linear programming relaxation of min-sum problem

LP relaxation = linear optimization over local marginal polytope:

〈f,µ〉 → min∑
k∈K

µu(k) = 1, u ∈ V∑
`∈K

µuv (k , `) = µu(k), {u, v} ∈ E , k ∈ K

µ ≥ 0

where in scalar product 〈f,µ〉 we define ∞ · 0 = 0.
Components µu(k) and µuv (k , `) of µ are pseudomarginals.
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Solving the LP relaxation

2 labels
I the optimal solution is half-integral (pseudomarginals in {0, 1

2
, 1})

I efficiently solvable by max-flow/min-cut algorithms [Boros &
Hammer 1991]

3+ labels
I general solvers (simplex, interior point): quadratic space

complexity ⇒ not applicable for large-scale instances
I convergent message-passing algorithms: linear space complexity,

but only local optimum, convergence rate not known
I recently, other algorithms with linear space (using subgradients

[Komodakis et al. 2010], bundle methods [Kappes et al. 2012],
steepest descent methods [Schwing et al. 2012, 2014], etc). But
these are considerably slower than message-passing.

Is there a chance of inventing something better?
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Reductions inside the class P

X ≤P Y (problem X is polynomial time reducible to problem Y )

Assuming, X is a well known problem, what does it say about Y ?
Why it can be difficult to design a special efficient algorithm for Y ?

1 [stronger argument] Proposing a very fast algorithm for Y might
result in a new, faster algorithm for X .

2 [weaker argument] Proposing an algorithm for Y might bring a
new principle for solving X .

In our case, X is general LP, Y is the LP relaxation of min-sum
problem.
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Linear programming - history

Simplex algorithm [Dantzig 1947]

I quadratic space, polynomial time not guaranteed

Ellipsoid algorithm [Khachiyan 1979]

I first polynomial time algorithm for LP

Karmarkar’s algorithm [Karmarkar 1984]

I interior point method

I fastest known algorithm for LP
O(n3.5L2 log L log log L)
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Main result

Theorem (Pr̊uša-Werner-CVPR2013)

Any linear program can be reduced in linear time to the LP relaxation
of a pairwise min-sum problem with 3 labels.

Consequences:

I Finding an efficient algorithm to solve LP relaxation of min-sum
problem might be as hard as improving the complexity of the
best known algorithm for LP.

I LP relaxation of min-sum problem with 3+ labels is inherently
more complex than for 2 labels.
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Elementary min-sum problems

The reduction is done by combining elementary min-sum problems.

I They perform simple operations on unary pseudomarginals.

I Depicting a pair {u, v} ∈ E with |K | = 3 labels:

a cb

p q
r

u

v

p + q + r = a

a + b + c = 1

I Visible edges have weights fuv (k , `) = 0.
Invisible edge have weights fuv (k , `) =∞, implying µuv (k , `) = 0.
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Elementary min-sum problem Copy

a b c

d e f

Enforces a = d .

Precisely:
Given any feasible unary pseudomarginals a, b, c , d , e, f ,
feasible pairwise pseudomarginals exist if and only if a = d .
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Elementary min-sum problem Addition

ba

c

Enforces c = a + b.
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Elementary min-sum problem Equality

ba

= ba

Enforces a = b.

shorthand
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Elementary min-sum problem Powers

=

=

=

=

a

2a

4a

8a

Constructs unary pseudomarginals with values 2ia for i = 0, . . . , d ,
where d is the depth of the problem.
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Elementary min-sum problem NegPowers

=

=

=

1

1/2

1/4

1/8

Constructs unary pseudomarginals with values 2−i for i = 0, . . . , d .
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Example of combining elementary min-sum problems

=

=

=

1/8

5/8

1/2 1/4

1/8

1

1/2

Constructs a unary pseudomarginal with value 5/8 = 5 · 2−d .
Similarly, we can construct any multiple of 2−d (not greater than 1).
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The input LP

The input of the reduction is the LP

min{ 〈c, x〉 | Ax = b, x ≥ 0 }

where A ∈ Zm×n, b ∈ Zm, c ∈ Zn, m ≤ n.

Before reduction, the system Ax = b is rewritten as

A+x = A−x + b

where all entries of A+,A−,b are non-negative and A = A+ − A−.
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Bounding the variable ranges

Lemma

Let x be a vertex of the polyhedron { x | Ax = b, x ≥ 0 }. Then each
component xj of x satisfies either xj = 0 or M−1 ≤ xj ≤ M, where

M = mm/2(B1 × · · · × Bn+1)

Bj = max{1, |a1j |, . . . , |amj |}, j = 1, . . . , n

Bn+1 = max{1, |b1|, . . . |bm|}.

Lemma

Let the polyhedron { x | Ax = b, x ≥ 0 } be bounded. Then for
any x from the polyhedron, each component of A+x and A−x + b is
not greater than N = M(B1 + · · ·+ Bn+1).
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Initializing the reduction

The reduction algorithm:

I Its input is (A,b, c), assuming w.l.o.g. that the polyhedron
{ x | Ax = b, x ≥ 0 } is bounded.

I Its output will be a min-sum problem (V ,E ,K , f) with
V = {1, . . . , |V |} and K = {1, 2, 3}.

The algorithm is initialized as follows:

1 For each variable xj in the input LP, introduce a new object j
into V and set fj(1) = cj .
(Pseudomarginal µj(1) will represent variable xj .)

2 For each such object j ∈ V , build Powers with the depth
dj = blog2 Bjc based on label 1.

3 Build NegPowers with the depth d = dlog2 Ne.
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Encoding the equality constraints

Each equation

a+i1x1 + · · ·+ a+inxn = a−i1x1 + · · ·+ a−inxn + bi

of the system A+x = A−x + b is encoded as follows:

1 Construct pseudomarginals with values a+ij xj and a−ij xj
by summing selected values from the Powers.

2 Construct a pseudomarginal with value 2−dbi by summing
selected values from the NegPowers.
(The number 2−d plays the rôle of the unit.)

3 Sum the terms on each side of the equation by repetitively
applying Addition and Copy.

4 Enforce equality of the two sides of the equation by Copy.

Finally, set fi(k) = 0 for all i > n or k > 1.
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min{ 2x−5y+z | x+2y+2z = 3; x = 3y+1; x , y , z ≥ 0 }
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Complexity of the reduction

Let L be the number of bits of the binary representation of (A,b, c).
Want to prove that the reduction time is O(L).

This is easy:

I Let the output of the reduction be (V ,E ,K , f).

I Clearly, the reduction time is O(|E |).

I Clearly, |E | = O(|V |).

I Thus we need to prove |V | = O(L).

I For that, it suffices to prove that the numbers dj = dlog2 Bje and
d = dlog2 Ne are O(L).
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Other results

Corollary

Every polytope is (up to scale) a coordinate-erasing projection of a
face of a local marginal polytope with 3 labels, whose description can
be computed from the description of the original polytope in linear
time.

If only finite weights are allowed (fu(k), fuv (k , `) ∈ R) then:

Theorem

Any linear program reduces in time and space O(L2) to a linear
optimization over a local marginal polytope with 3 labels.
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Planar graphs

Vision applications usually induce sparse, planar graphs (like grids).

Is it possible to reduce every LP to a min-sum problem with the
underlying planar graph?

Theorem (Pr̊uša-Werner-PAMI2014)

Every LP reduces to a linear optimization (with infinite costs) over a
local marginal polytope with 3 labels over a planar graph. The size of
the output and the reduction time are O(mL).
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Planar graphs – eliminating one edge crossing
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Reduction to a grid

Theorem (Tamassia 1989)

Any planar graph G = (V ,E ) with maximal node degree 4 can be
embedded in linear time into a grid with the area O(|V |2).

All degrees of nodes in a planar min-sum problem can be reduced to 3
(for a chosen node, create its copies and distribute incident edges
among them).

u u u′

⇒
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I S. Živný, T. Werner, D. Pr̊uša: The Power of LP Relaxation for
MAP Inference. A chapter in: Advanced Structured Prediction,
MIT Press, 2014 (To appear).
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