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Min-sum problem in computer vision

Segmentation

- s

Multiview reconstruction, surface fitting, shape matching,
deconvolution, texture restoration, super resolution, ...



Complexity of min-sum problem

In general, NP-hard.

Certain classes of instances are tractable.
» min-sum problems on trees (restricting structure of graph)
» submodular min-sum problems (restricting weight functions f)
> ...



Linear programming relaxation of min-sum problem

LP relaxation = linear optimization over local marginal polytope:
(f, ) — min
D m(k)=1 ueV
keK
> gk 0) = pu(k), {uv}eE kek
teK 4> 0

where in scalar product (f, ) we define 0o - 0 = 0.
Components 11, (k) and pi,,(k, ¢) of p are pseudomarginals.
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2 labels
> the optimal solution is half-integral (pseudomarginals in {0, 1,1})
» efficiently solvable by max-flow/min-cut algorithms [Boros &
Hammer 1991]

3+ labels

» general solvers (simplex, interior point): quadratic space
complexity = not applicable for large-scale instances

» convergent message-passing algorithms: linear space complexity,
but only local optimum, convergence rate not known

» recently, other algorithms with linear space (using subgradients
[Komodakis et al. 2010], bundle methods [Kappes et al. 2012],
steepest descent methods [Schwing et al. 2012, 2014], etc). But
these are considerably slower than message-passing.

Is there a chance of inventing something better?
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Reductions inside the class P

X <p Y (problem X is polynomial time reducible to problem Y)

Assuming, X is a well known problem, what does it say about Y7
Why it can be difficult to design a special efficient algorithm for Y7

@ [stronger argument| Proposing a very fast algorithm for Y might
result in a new, faster algorithm for X.

@® |weaker argument| Proposing an algorithm for Y might bring a
new principle for solving X.

In our case, X is general LP, Y is the LP relaxation of min-sum
problem.
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Linear programming - history

Simplex algorithm [Dantzig 1947]

» quadratic space, polynomial time not guaranteed

Ellipsoid algorithm [Khachiyan 1979]
» first polynomial time algorithm for LP

Karmarkar's algorithm [Karmarkar 1984
» interior point method

» fastest known algorithm for LP
O(n*°L?log Lloglog L)



Main result

Theorem (Priisa-Werner-CVPR2013)

Any linear program can be reduced in linear time to the LP relaxation
of a pairwise min-sum problem with 3 labels.
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Main result

Theorem (Priisa-Werner-CVPR2013)

Any linear program can be reduced in linear time to the LP relaxation
of a pairwise min-sum problem with 3 labels.

Consequences:

» Finding an efficient algorithm to solve LP relaxation of min-sum
problem might be as hard as improving the complexity of the
best known algorithm for LP.

» LP relaxation of min-sum problem with 3+ labels is inherently
more complex than for 2 labels.
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Elementary min-sum problems

The reduction is done by combining elementary min-sum problems.

» They perform simple operations on unary pseudomarginals.

» Depicting a pair {u, v} € E with |K| = 3 labels:
@ ® O ptq+r=a

R e

O O O

» Visible edges have weights f,,(k, () = 0.
Invisible edge have weights f,,(k, () = oo, implying 1., (k,¢) = 0.
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Elementary min-sum problem Copy

@ © 0

Enforces a = d.

Precisely:
Given any feasible unary pseudomarginals a, b, c, d, e, f,
feasible pairwise pseudomarginals exist if and only if a = d.
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Elementary min-sum problem ADDITION

Q)

®© O
/
© O O

Enforces ¢ = a + b.
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Elementary min-sum problem EQUALITY

Q_Q Q

N\
5100
A/
g C O

Enforces a = b.
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Elementary min-sum problem EQUALITY

Q_Q Q

N\

@ ® O ®=0 O
N/
g O O

Enforces a = b. shorthand
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Elementary min-sum problem POWERS

®=0 O

Constructs unary pseudomarginals with values 2'a for i =0, ..., d,
where d is the depth of the problem.
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Elementary min-sum problem NEGPOWERS
Q@ O O

@
I
O
O

Constructs unary pseudomarginals with values 2=/ for i = 0,...,d.
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Example of combining elementary min-sum problems

=
@/
@

@ 0O

AN N

Q@ @ Ol [@=0 O

Constructs a unary pseudomarginal with value 5/8 = 5279,

Similarly, we can construct any multiple of 279 (not greater than 1).
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The input LP

The input of the reduction is the LP
min{ (c,x) | Ax=b, x >0}
where A € Z™" be Z™ c <€ Z", m<n.
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The input LP

The input of the reduction is the LP
min{ (c,x) | Ax=b, x >0}
where A € Z™" be Z™ c <€ Z", m<n.

Before reduction, the system Ax = b is rewritten as
A'x=A"x+b

where all entries of A", A~ b are non-negative and A = AT — A~
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Bounding the variable ranges

Let x be a vertex of the polyhedron {x | Ax =b, x > 0}. Then each
component x; of x satisfies either x; = 0 or M~' < x; < M, where
M= mm™?(By x - x Bpy1)
B; = max{1,|ayl,...,|amjl}, Jj=1,...,n
By1 = max{1,|b1|,...|bm|}
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Bounding the variable ranges

Let x be a vertex of the polyhedron {x | Ax =b, x > 0}. Then each
component x; of x satisfies either x; = 0 or M~' < x; < M, where
M= mm™?(By x - x Bpy1)
B; = max{1,|ayl,...,|amjl}, Jj=1,...,n
Bni1 = max{1,|bi|,...|bm|}

Let the polyhedron { x | Ax = b, x > 0} be bounded. Then for
any x from the polyhedron, each component of A*x and A~ x + b is
not greater than N = M(By + -+ -+ B,11).
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Initializing the reduction

The reduction algorithm:

» Its input is (A, b, c), assuming w.l.o.g. that the polyhedron
{x| Ax=b, x > 0} is bounded.

» Its output will be a min-sum problem (V. E, K, f) with
V=A{1,...,|V]} and K = {1,2,3}.
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The algorithm is initialized as follows:

©® For each variable x; in the input LP, introduce a new object j
into V and set f;(1) = ¢;.
(Pseudomarginal 1;(1) will represent variable x;.)

® For each such object j € V, build POWERS with the depth
d; = |log, B;| based on label 1.

©® Build NEGPOWERS with the depth d = [log, N].

20 /28



Encoding the equality constraints

Each equation
+ ty _ o— -
ailxl + ct s + a,'an — aflxl + tee + a,'an + bi

of the system A"x = A" x + b is encoded as follows:
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aixi+ - t+aix,=a;xi+--+ax,+b
of the system A"x = A" x + b is encoded as follows:

© Construct pseudomarginals with values aj;x; and a;; x;
by summing selected values from the POWERS.

® Construct a pseudomarginal with value 279b; by summing
selected values from the NEGPOWERS.
(The number 279 plays the réle of the unit.)

©® Sum the terms on each side of the equation by repetitively
applying ADDITION and COPY.

@ Enforce equality of the two sides of the equation by CopPY.

Finally, set fi(k) =0 for all i > nor k > 1.
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Complexity of the reduction

Let L be the number of bits of the binary representation of (A, b, c).
Want to prove that the reduction time is O(L).
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Complexity of the reduction

Let L be the number of bits of the binary representation of (A, b, c).
Want to prove that the reduction time is O(L).
This is easy:
» Let the output of the reduction be (V, E, K, f).
Clearly, the reduction time is O(|E|).
Clearly, |E| = O(|V]).
Thus we need to prove |V| = O(L).

For that, it suffices to prove that the numbers d; = [log, B;| and
d = [log, N| are O(L).

>
>
>
>
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Other results

Every polytope is (up to scale) a coordinate-erasing projection of a
face of a local marginal polytope with 3 labels, whose description can
be computed from the description of the original polytope in linear
time.
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Other results

Every polytope is (up to scale) a coordinate-erasing projection of a
face of a local marginal polytope with 3 labels, whose description can
be computed from the description of the original polytope in linear
time.

If only finite weights are allowed (f,(k), f.,(k,?) € R) then:

Any linear program reduces in time and space O(L?) to a linear
optimization over a local marginal polytope with 3 labels.
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Planar graphs

Vision applications usually induce sparse, planar graphs (like grids).

Is it possible to reduce every LP to a min-sum problem with the
underlying planar graph?
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Planar graphs

Vision applications usually induce sparse, planar graphs (like grids).

Is it possible to reduce every LP to a min-sum problem with the
underlying planar graph?

Theorem (Prisa-Werner-PAMI2014)

Every LP reduces to a linear optimization (with infinite costs) over a
local marginal polytope with 3 labels over a planar graph. The size of
the output and the reduction time are O(mL).
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Planar graphs — eliminating one edge crossing
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Reduction to a grid

Theorem (Tamassia 1989)

Any planar graph G = (V, E) with maximal node degree 4 can be
embedded in linear time into a grid with the area O(|V|?).

All degrees of nodes in a planar min-sum problem can be reduced to 3
(for a chosen node, create its copies and distribute incident edges
among them).

u u u
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