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Multi-class Multi-instance Fitting Problem 

Interpreting the input data as a set of model instances of multiple classes. 
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Instance of Single Class Multi Model Fitting: 
# Fitting multiple homographies. 
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Instance of Single Class Multi Model Fitting: 
# Fitting multiple two-view rigid motions. 
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Instance of Single Class Multi Model Fitting: 
# Fitting multiple motions in video sequences. 
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Instance of Multi Class Multi Model Fitting: 
# Fitting lines and circles (or other 2D shapes) on edge map.  
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Instance of Multi Class Multi Model Fitting: 
# Fit planes and cylinders to detect traffic signs and columns in LIDAR data 
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It is and Active and Old Problem 
Multi-model fitting of a single class is still an open problem.  

 

Publications from the last few years:  

• D., Barath, L., Hajder, and J., Matas [BMVC 2016] 

• L., Magri and A., Fisuello: [ECCV 2008, CVPR 2014, BMVC 2015, CVPR 2016] 

• H. Wang, G. Xiao, Y. Yan, and D. Suter: [ICCV 2015] 

• T. T. Pham, T.-J. Chin, K. Schindler, and D. Suter: [TIP 2014] 

• H. Isack and Y. Boykov: [IJCV 2012] 

• E. Elhamifar and R. Vidal: [CVPR 2009]  

• J.-P. Tardif: [ICCV 2009] 

• N. Lazic, I. Givoni, B. Frey, and P. Aarabi: [ICCV 2009] 

 

Multi-model fitting of multiple classes??? 

• No recent publications in the literature.  
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It is and Active and Old Problem 

Multi-model fitting of multiple classes??? 

• No recent publications in the literature 

 

I have two interpretations: 

• Even the single-class case is barely solved: good results, but for the per-test-

tuned case. (Parameters tuned separately for each test case.)  

• It becomes important in 3D and cheap 3D sensors have only been available for the 

last few years.   
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Energy Minimization 
for single class multi instance fitting 
PEARL: H. Isack and Y. Boykov: [IJCV 2012] 

MFIGP: T. T. Pham, T.-J. Chin, K. Schindler, and D. Suter [TIP 2014] 

Multi-H: D., Barath, L., Hajder, and J., Matas [BMVC 2016] 

11 



© SZTAKI 2015. 

PEARL 
H. Isack and Y. Boykov: [IJCV 2012] 

A global energy term consisting of three terms: 

1. Data term: Penalize point-to-model 

assignment. 

2. Spatial Regularization term: Close points 

are more likely belong to the same model 

instance.  

3. Complexity term: Penalize the introduction of 

new labels.  

 

PEARL algorithm: iteration of labeling and 

model refitting.  
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MFIGP 
T. T. Pham, T.-J. Chin, K. Schindler, and D. Suter [TIP 2014] 

Introduce geometric priors into the energy. 
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Multi-H 

1. Concentrating on multi-homography estimation. 

2. Achieves more accurate results than state-of-the-art multi-homography estimation methods using 

mode-seeking and energy minimization. 

3. Doesn’t consider the general case, only homographies are fitted.    

D., Barath, L., Hajder, and J., Matas [BMVC 2016] 
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Multi-H 
D., Barath, L., Hajder, and J., Matas [BMVC 2016] 
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Multi-X 
for multi class multi instance fitting 
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Goals 

1. Fit multiple model instances of different classes. 

2. Having accurate results without tuning the parameters 

problem-by-problem. 
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Problem Formulation 
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Example Model: Line Model 

Line model instance:  

Distance function:  

Parameter vector: 

Line model: 
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Example Model: Circle Model 
 

 
Circle model instance:  

Distance function: 

Parameter vector: 

Circle model: 
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Problem Formulation 
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Parameter vector Distance function 
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Given: 
 - the input data  P 
 - the multi class model H* 
 
Output: 
- model instances G ½H*  
- the labelling L assigning points from P! G 
  minimizing an energy E. 
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Multi-class Multi-instance Fitting Problem 
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Energy – Data Term  

The term penalizing the point-to-
model assignment used in the 
literature: 
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Energy – Data Term  
 

 Assumption: randomly generated model instances form modes 

around the ground truth instances in the model parameter 

space.  

Example:  

A 2D line can be represented by a 3D vector 

 

 

Represent a set of line instances in the model parameter space...   
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Energy – Data Term 
 

 

Line instances in their 3D space. Median-Shift, iteration #1 25 
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Energy – Data Term 
 

 

Line instances in their 3D space. Median-Shift, iteration #2 26 
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Energy – Data Term 
 

 

Line instances in their 3D space. Median-Shift, iteration #3 27 
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Energy – Data Term 
 

 The term penalizing the point-to-
mode assignment: 

is a mode-seeking 
function. 

   is the mode 
assigned to point p.  
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Energy – Spatial Coherence Term 
 

 

Isack, Hossam, and Yuri Boykov. "Energy-based geometric multi-model fitting." International journal of computer vision 97.2 (2012): 123-147. 
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Energy – Spatial Coherence Term 
 

 The term penalizing neighbors with different 
labels: 

Isack, Hossam, and Yuri Boykov. "Energy-based geometric multi-model fitting." International journal of computer vision 97.2 (2012): 123-147. 

Weighting parameter 

Labels of point p and q 

Iverson bracket 

Edges in the neighborhood 
graph 
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Energy – Complexity 
 

 The term to suppress weak model instances by penalizing the introduction of new labels. 

 

 

We propose a term having different cost for each model classes: 

Set of distinct labels 

Penalty of class 
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Overall Energy 

Data term 
(point-to-mode assignment)  

Spatial Coherence term 
(close points belong to the 

same instance) 

Regularization term 
(penalize new instances)  
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Algorithm 
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Algorithm: Input Points 

Input 2D points 34 
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Algorithm: Model Instance Generation 

Generated model instances 35 
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Algorithm: Mode-Seeking  

Mode-Seeking in the line space 36 
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Algorithm: Replacing with Mode  

Replacing lines with the corresponding modes. 37 
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Algorithm: Labeling 

Label points to lines (by color) 38 
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Algorithm: Outlier Removal 

Remove outliers and instances which have not enough inliers.  39 
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Algorithm: Instance Refitting 

Refit instances w.r.t. the labeling 40 
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Model Description and Generation 
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Model Representation (2D Line Example) 

Line model 1: 
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Model Representation (2D Line Example) 

Line model 2: 
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Model Representation 
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Model Representation: Two Rules 
  

1. Represent in an orthonormal coordinate system, e.g. a 

2D line by two points.  

2. A minimal representation which satisfies the first 

criterium. 
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Model Generation 
  

Stochastic Sampling (like RANSAC): 

1. Selecting a minimal subset (MSS), e.g. 2 points for a line. 

2. Fit the model to the MSS. 

3. Start from 1. 
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Mode-Seeking 
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Mode-Seeking: Mode Types 

Shapira, Lior, Shai Avidan, and Ariel Shamir. "Mode-detection via median-shift." 2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009. 
48 
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Mode-Seeking: Clustering Algorithm 

Clustering in arbitrary dimensions: 

• K-Means is not applicable since the number of modes is 

unknown. 

• Mean-Shift is a good choice. 

• Median-Shift is more robust than Mean-Shift.  <<  we chose 

this 

 

Median-Shift is applied using Tukey-median. 49 
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Mode-Seeking: Automatic Parameter Setup 

Different bandwidth for all data points determined as the 
distance from the k-th nearest neighbor.  

 

Georgescu, Bogdan, Ilan Shimshoni, and Peter Meer. "Mean shift based clustering in high dimensions: A texture classification example." Computer Vision, 2003. 
Proceedings. Ninth IEEE International Conference on. IEEE, 2003. 
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Mode-Seeking: Automatic Parameter Setup 

Georgescu, Bogdan, Ilan Shimshoni, and Peter Meer. "Mean shift based clustering in high dimensions: A texture classification example." Computer Vision, 2003. 
Proceedings. Ninth IEEE International Conference on. IEEE, 2003. 
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3. Labeling 
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Labeling 

Each point is labeled to a model instance using α-expansion algorithm minimizing 

energy  
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Adaptive Outlier Removal 
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Adaptive Outlier Removal 
Removal of data points too far from the assigned model. 

 

 

Original labeling 55 
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Adaptive Outlier Removal 

Sorted distances Distance differences Highest difference 
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Adaptive Outlier Removal 

Original labeling Labeling without outliers 
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Model Fitting 
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Model Fitting 

The task is to update the instance 

parameters using the obtained labeling. 

 

L1 model fitting using Weiszfeld 

algorithm (iteratively re-weighted least-

squares).  
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Convergence 
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Convergence 

Due to the mode-seeking the energy can increase, thus the 

convergence have to be defined over the full state of the algorithm. 
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Convergence 
1. Mode-Seeking:  

1. Instance number must decrease or hold.  

2. The energy can increase. 

 

2. Labeling:  

1. Instance number does not change. 

2. Energy must decrease or hold.  

 

3. Outlier Removal: 

1. Instance number does not change.  

2. Energy can’t increase.  

 

4. Model Fitting: 

1. Instance number does not change. 

2. Energy must decrease or hold.  

Convergence is ensured since the 

number of possible labelings is 

finite and the model  instance 

number monotonically decrease.  

 

 

Convergence is reached when 
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Experimental Results 
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Tests – Lines and Circles 
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Tests – Homographies 

Top row: AdelaideRMF dataset, bottom row: Multi-H dataset.  

Points assigned to planes by color. 65 
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Tests – Homographies 

Misclassification error (%) for the two-view plane segmentation on AdelaideRMF test pairs.  

All methods, including Multi-X, are tuned separately for each test. 66 
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Tests – Homographies 

Misclassification errors (%, average and median) for two-view plane segmentation on all 
the 19 pairs from AdelaideRMF test pairs using fixed parameters. 
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Tests – Two-view Motions  
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Tests – Two-view Motions  
 

 

Misclassification errors (%) for two-view motion segmentation on the AdelaideRMF dataset.  

All methods, including Multi-X, are tuned separately for each test. 
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Tests – Two-view Motions  
 

 

Misclassification errors (%, average and median) for two-view motion segmentation on all 
the 21 pairs from the AdelaideRMF dataset using fixed parameters. 
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Tests – Planes and Cylinders 
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Tests – Planes and Cylinders 
 

 

 Misclassification error (%) of simultaneous plane and cylinder fitting to LIDAR data. 

All methods, including Multi-X, are tuned separately for each test. 
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Tests – Motions in video sequences 
 

 

73 



© SZTAKI 2015. 

Tests – Motions in video sequences 
 

 

Misclassification errors (%, average and median) for multi-motion detection on 51 videos of Hopkins dataset.  

All methods, including Multi-X, are tuned separately for each test. 74 
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Processing Time 
 

 

Processing times (sec) of Multi-X (M) and T-Linkage (T) for the problem of fitting (1) lines and circles, 

(2) homographies, (3) two-view motions, (4) video motions, and (5) planes and cylinders. The 

number of data point is shown in the first column. 
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Conclusions 
 

 
1. Simultaneous fitting of models is an old open problem.  

 

2. A novel method for the multi-class multi-instance method was proposed. 

 

3. Energy minimization combined with mode seeking  for multi model fitting 

outperforms the state of the art on several problems. 

 

4. Automatic parameter setting makes the proposed method applicable to real 

world tasks without high effort on manual parameter tuning.  
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Work in Progress 
 

 

Multiple free-form surface (3D) and curve (2D) fitting.  

A possible application: car fitting to LIDAR point cloud. 
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Thank you for your attention! 
 
Questions, please? 
 
 
 
Paper will be available on arXiv later today. 
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