Predictive Clustering for Image Annotation & Retrieval

Sašo Džeroski

Jozef Stefan Institute, Ljubljana, Slovenia (joint work with Ivica Dimitrovski, Dragi Kocev and Suzana Loškovska)

LEARNING FROM MASSIVE, INCOMPLETELY ANNOTATED, AND STRUCTURED DATA

- Predictive clustering
 - From predictive modeling and clustering to predictive clustering
 - Predictive clustering for predicting structured outputs
 - Learning predictive clustering trees
 - Ensembles of predictive clustering trees
- Image annotation with PCTs and ensembles
 - Taxonomical classification of diatom images
 - Hierarchical annotation of medical images
- Visual codebook construction with PCTs and ensembles
 - Supervised for image annotation
 - Unsupervised for image retrieval

Predictive Modelling/Supervised L.

- Predictive models focus on a target variable and predict its value from the values of input variables
- Classical problem: Medical diagnosis
- An example: Neurodegenerative diseases
- Target variable: Diagnosis; Possible values:
 - CN Cognitively Normal (0)
 - SMC Significant Memory Concern
 - EMCI Early Mild Cognitive Impairment
 - LMCI Late Mild Cognitive Impairment
 - AD Alzheimer's Disease (4)
- Descriptive vars.: genetic and image markers

Predictive Modelling

• Input: A table of data, a row is an object, single target

		Desci	riptive space		T	1	
	Gender	Fusiform	Hippocampus	ICV	Target space		
Example 1	F	16471	6350	1445040,208	SA, AD		
Example 2	M	20680	7440	1610298,246	CN		
Example 3	F	18751	6615	1257475,402	CN	1	
Example 4	M	22895	9311	1755672,837	SA, LMCI	1	
Example 5	F	18446	6544	1527253,171	SA, LMCI	1	
Example 6	F	16056	6869	1262875,649	CN		
						PB.FDG_I	bl
	Ар	redic	tive		<= 5.2823 > 5.282	23	
	mo			AD (95.99/27.47)	<= 5.2823	PB.Entorhina	al hi
					1		
	for	the t	arget,		<= 348	33	> 3483
	e.g.	deci	sion ti	ree	AD (101.51/59.88)		EMCI (100.68/64.53) 4

To construct a tree T from a training set S:

• If all the examples belong to the same class C (the values of the target have low variance), construct a leaf labeled with the class value C (the target average)

• Otherwise:

- Select the best attribute A with values v1, ..., vn,
 which reduces the most the impurity of the target
- Partition S into S1, ..., Sn according to A
- Recursively construct subtrees T1 to Tn for S1 to Sn
- Result: a tree with root A and subtrees T1, ..., Tn

Clustering/ Unsupervised L.

- Partition a set of objects into clusters of similar objects
- High similarity of objects within individual clusters, low similarity between objects from different clusters
- Minimize intra-cluster variance (ICV)
- Distance/similarity measure in the example space

Basic Clustering Approaches

- K-Means clustering
 - Randomly assign instances to k clusters, then repeat:
 - Calculate centroids of clusters, reassign instances to clusters
 - Until convergence (i.e., cluster assignment doesn't change)
- Hierarchical agglomerative clustering
 - Start with each instance as a cluster, then repeat
 - Merge the two closest clusters
 - Until all instances are in one single cluster

Predictive Clustering

Combines prediction and clustering

 We can have hierarchical clustering (trees) and flat/overlapping clusterings (rules)

- With each cluster, predictive clustering provides
 - A description of the cluster
 - A prediction of the selected targets for that cluster
- The output of PC can be viewed both as a clustering and as a predictive model (cf. next example)

Example Task: Cluster Alzheimer's Patients wrt. Clinical Scores

- 1. CDRSB Clinical Dementia Rating Sum of Boxes
- 2. ADAS13 AD assessment scale
- 3. MMSE Mini Mental State Examination
- 4. RAVLT (immediate, learning, forgetting, perc. forgetting) Rey Auditory Verbal Learning Test (4 features)
- 5. FAQ Functional Assessment Questionnaire
- 6. MOCA Montreal Cognitive Assessment
- Ecog**Pt** (Memory, Language, Visuospatial Abilities, Planning, Organization, Divided Attention, Total score) – Everyday cognition questionnaire – filled in by patient (7 features)
- 8. Ecog**SP** (Memory, Language, Visuospatial Abilities, Planning, Organization, Divided Attention, Total score) Everyday cognition questionnaire filled in by study parter (7 features)

Example Predictive Clustering Tree for Multi-Target Regression

Multi-Label Classification

- Special case of multi-target prediction (incl. MTR & MTC)
- Learning models that simultaneously predict several binary target variables (a set of labels)
- Input: A vector of descriptive variables (as for STC/STR)

	Descriptive variables											Tar	get v	ariak	oles					
Sample ID	Temperature	K ₂ Cr ₂ O ₇	NO ₂	O	CO ₂		Cladophora sp.	Gongrosira incrustans	Oedogonium sp.	Stigeoclonium tenue	Melosira varians	Nitzschia palea	Audouinella chalybea	Erpobdella octoculata	Gammarus fossarum	Baetis rhodani	Hydropsyche sp.	Rhyacophila sp.	Simulim sp.	Tubifex sp.
ID1	0.66	0.00	0.40	1.46	0.84		1	0	0	0	0	1	1	0	1	1	1	1	1	1
ID2	2.03	0.16	0.35	1.74	0.71		0	1	0	1	1	1	1	0	1	1	1	1	1	0
ID3	3.25	0.70	0.46	0.78	0.71		1	1	0	0	1	0	1	0	1	1	1	0	1	1

Multi-Label Classification Example

A decision tree for multi-label classification

Hierarchical Multi-Label Classification (HMC)

- Labels organized in a hierarchy
- Taxonomic classification of diatoms
- From microscopic images
- Taking into account the existing taxonomy of diatoms

image		featu	res/d	escri	ptors	;	4
iiiage	Η	euristi	c shap	e desc	riptors		taxonomy
	48	24	59	66	37	:	olivaceum
	36	25	53	45	15	:	minutissimum
	35	25	56	52	19		exigua
•••							

Top-down induction of PCTs

To construct a tree T from a training set S:

- If the examples in S have low variance,
 construct a leaf labeled target(prototype(S))
- Otherwise:
 - Select the best attribute A with values v1, ..., vn, which reduces the most the variance (measured according to a given distance function d)
 - Partition S into S1, ..., Sn according to A
 - Recursively construct subtrees T1 to Tn for S1 to Sn
 - Result: a tree with root A and subtrees T1, ..., Tn

Learning PCTs

- Recursively partition data set into subsets (clusters)
 with low intra-cluster variance
 - Variance = avg. squared distance to prototype

$$ICV(S) = \sum_{y_j \in S} d(y_j, p(S))^2$$

- For the variance, the distance is measured
 - In standard clustering, along all dimensions
 - In prediction, along a single target dimension
 - In predictive clustering, along a structured target, e.g., several target dimensions

<u>Predictive clustering:</u> A divides data into clusters
1 and 2 coherent along two dimensions

Distances/variances for SOP tasks

- The algorithm
- Variance for MT regression

$$Var(E) = \sum_{i=1}^{T} Var(Y_i).$$

 Variance for MT classification

$$Var(E) = \sum_{i=1}^{T} Entropy(E, Y_i)$$

procedure BestTest(E)

1:
$$(t^*, h^*, \mathcal{P}^*) = (none, 0, \emptyset)$$

2: for each possible test t do

3:
$$\mathcal{P} = \text{partition induced by } t \text{ on } E$$

4:
$$h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$$

if $(h > h^*) \land Acceptable(t, \mathcal{P})$ then 5:

6:
$$(t^*, h^*, \mathcal{P}^*) = (t, h, \mathcal{P})$$

7: **return** $(t^*, h^*, \mathcal{P}^*)$

$$Var(E) = \frac{1}{|E|} \cdot \sum_{E \in E} d(L_i, \overline{L})^2$$

$$Var(E) = \frac{1}{|E|} \cdot \sum_{E \in E} d(L_i, \overline{L})^2 \qquad d(L_1, L_2) = \sqrt{\sum_{l=1}^{|L|} w(c_l) \cdot (L_{1,l} - L_{2,l})^2}$$

Ensembles of PCTs

- Ensembles of PCTs use several methods for constructing base classifiers
 - Bagging & Random forests
 - Random subspaces & Bagged Random subspaces
- PCTs and Ensembles of PCTs implemented in SW package CLUS, jointly developed by JSI, Ljubljana and KULeuven, Belgium
- Written in Java
- Open source, available for download from http://sourceforge.net/projects/clus

Ensembles of PCTs: Bagging

SSL: Incomplete Annotations

• Some examples have labels, some don't, some incmpl.

			Та	rget space							
Example 1	L	1	1		TRUE	0.49		0.69		1 1/1 1/2 1/4 1/4 1/2 1/4 1/4 1/4	
Example 2		2		FALSE		0.08		0.07			?
Example 3		1	_		FALSE	0.08	0.0		07		?
Example 4	1	2	-	TRUE		0.49		0.0	69		
			Desc	ript	ive space				Target sp	ace	
Example 1		1	TRUE		0.49	0.69		?	0.60	į	3.91
Example 2		2	FALSE	E 0.08		0.07		0.56	0.99		7.59
Example 3		1 FALS		SE 0.08		0.07	?		?		Ş
Example 4		2 TRUE		0.49		0.69		0.08	0.77		8.86
Example 5		3	TRUE		0.49	0.69		0.11	?		?
Example 6		4	FALSE	0.08		0.07		0.43	2.10		8.09

Semi-Supervised Learning w. PCTs

 New definition of variance that includes both targets and attributes, e.g., for MTR

$$Var(E) = \frac{1}{T+D} \cdot \left(w \cdot \sum_{i=1}^{T} Var(Y_i) + (1-w) \cdot \sum_{j=1}^{D} Var(X_j) \right)$$

- T = #target attributes, D = #descriptive attributes
- w = weight parameter, trades-off focus on
 - Prediction (w=1)
 - Clustering (w=0)
- w tuned by internal cross-validation on labeled part

SSL: Calculating Variance for Attributes with Missing Values

Variances of individual target (Y_i) and descriptive (X_i) attributes:

$$Var(Y_i) = \frac{\frac{N-1}{K_i - 1} \cdot \sum_{j=1}^{N} \left(y_{ij}\right)^2 - N \cdot \left(\frac{1}{K_i} \cdot \sum_{j=1}^{N} y_{ij}\right)^2}{N}$$

N = number of examples,

 K_i = number of examples with **non missing values**

In extreme cases (K=0), est. var. with var. of parent node:

- (1) leafs of the decision tree may contain only unlabeled examples
- (2) in a leaf, some descr. attributes may have only missing values.

Image Annotation and Retrieval with PCTs

- Automated diatom classification
 - image processing (feature extraction from images)
 - image classification (labels and groups the images)
- Labels organized in a hierarchy
- Predict all different levels in the hierarchy of taxonomic ranks: genus, species, variety, and form
- Goal of the complete system: assist a taxonomist in identifying a wide range of different diatoms

Feature Extraction from Images

- Contour extraction, then
- Simple geometric properties
- length, width, size and the length-width ratio
- Simple shape descriptors: rectangularity, triangularity, compactness, ellipticity, and circularity
- Fourier descriptors (30 coefficients)
- SIFT histograms (key-point detection+)
 - Invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint
 - Cluster key-points, assign KPs to clusters, hist.

Diatom Classification Results

 Predictive performance of the different feature sets and their combinations

			Overall recognition rate [%]					
Classifier	Descriptors	# features	55 diatom taxa	48 diatom taxa	37 diatom taxa			
	Geometric and shape descriptors	9	76.3	76.7	77.2			
ing	Fourier descriptors	30	86.7	88.1	88.6			
Bagging	SIFT histograms	200	88.4	89.2	91.3			
	Geometric and shape desc.+Fourier desc.+SIFT hist.	239	96.2	98.1	98.8			
		,						
sts	Geometric and shape descriptors	9	76.3	76.7	77.2			
Fore	Fourier descriptors	30	86.6	88.1	88.7			
dom	SIFT histograms	200	88.2	87.9	91.1			
Random Forests	Geometric and shape desc.+Fourier desc.+SIFT hist.	239	96.2	98.1	98.7			

Medical Image Annotation

- ImageCLEF2009 Challenge
 - 12677 annotated x-ray images; 1733 non-annotated images
- Hierarchical classification according to two labeling sets:
 - ImageCLEF2007: 116 IRMA codes
 - ImageCLEF2008: 196 IRMA codes

IRMA Coding System

- Four axes marked with {0, ..., 9, a, ..., z}
 - T (Technical): image modality
 - D (Directional): body orientation
 - A (Anatomical): body region
 - B (Biological): biological system
- IRMA code: TTTT DDD AAA BBB
- The code is strictly hierarchical
 - 5 uropoietic system
 - 51 uropoietic system, kidney
 - 512 uropoietic system, kidney, renal pelvis

Medical Image Annotation

- Set of images with their visual descriptors and annotations
- Annotations with IRMA codes, hierarchical

image		featu	res/d	escri	ptors	;					
			/	\	S		annotations/labels				
	48	24	59	66	37		cervical spine@ musculoskeletal system				
Book	36	25	53	45	15		middle abdomen@renal pelvis				
Milkego	35	25	56	52	19		lumbar spine@ musculoskeletal system				

Feature Extraction

- Local Binary Pattern (LBP) histograms
- Edge Histogram Descriptor (EHD)
- Scale Invariant Feature Transform (SIFT) histograms
- Raw pixel representation (RPR)
 - Scale the image to a common size (32x32 pixels)
 - Represent the image by a feature vector that contains image pixel values

Local Binary Patterns

 Binary code to describe the local texture pattern in a circular region thresholding each neighborhood on the circle by the gray value of its center

75	99	29	41	1	1	0	$ \ \rangle$		
81	45	63	threshold	1		1		binary code	11010011
74	36	31		1	0	0			11010011

• Circular symmetric neighborhood with different radius R and number of points P

LBP Histograms

- Image divided in 4x4 parts
- From each sub-image extract ULBP(1,8)

Edge Histogram Descriptor

- Sharp change of luminous intensity
- Information about the shapes of the objects
- Frequency and the directionality of the brightness changes in the image

SIFT: Bag of Visual Words

- Extract local SIFT features
- Construct visual word dictionary
- Using K-means clustering
- Vocabulary size number of visual words
- Local feature histogram

Medical Image Annotation

Comparative study of ensembles of PCTs for HMC and collections of SVMs, one per label

Summary of results

- Ensembles (RFs) of PCTs for HMC perform better
 - Lower hierarchical error measure
 - Higher overall recognition rate
 - Best results on these datasets so far
- RFs of PCTs for HMC are also much more efficient/ faster

Constructing BOW Codebooks w PCTs

- Visual codebook construction
 - Unsupervised for image retrieval
 - Supervised for image annotation
- Image annotation with hierarchically structured labels (medical X-ray images) and general images
- We used (small) ensembles of PCTs for constructing BOW codebooks
- We learned to annotate using collections of SVMs

Bag-of-Visual-Words (BoVW)

1. Extract features

Select key points/patches/regions

Calculate descriptors/features of the selected patches

	12 45 78
AC	34 56 124
	1 6 84

BoVW: Learning a Visual Codebook

2. Learn a visual codebook

- Input: Set of descriptors
- Output: Clusters (Visual Words)

Visual Word 1

Visual Word 2

Visual Word 3

BoVW: Representing Images

- Extract features
- Learn a visual codebook
- 3. Represent the images by histograms (distribution of the patches over the visual words)

Related Work

- Construction of a visual codebook is a bottleneck in the bag-of-visual-words approach
- k-means to cluster local image regions into visual words
 - Serious limitations for large scale object retrieval
- Hierarchical k-means, approximate k-means and extremely randomized tree ensembles
 - Improve the efficiency at the cost of decrease of the discriminative power of the obtained codebook
- Our method: Visual codebook construction using predictive clustering trees to alleviate the efficiency issues and increase the predictive power

Codebook: Random forest of PCTs

Here we use a small number of trees in the forest

- Large scale object retrieval
 - Random forest of PCTs for multi-target regression
 - Descriptive and target space are the same
- Multi-label image annotation
 - Random forest of PCTs for multi-label classification
 - Use the annotations of the images to guide the construction of the visual codebooks

Visual Codebook

- Each tree leaf is a visual word
- Each image is described with a histogram of the number of regions per visual word

- PCTs are computationally efficient in both construction and prediction, but rather unstable: small random forest of PCTs to obtain the overall codebook
- Concatenation of the codebooks of each PCT

Data Description

- Oxford5k dataset: 5062 high-resolution images of Oxford landmarks
- Paris dataset: 6412 high-resolution images
- Pythia: 5555 high-resolution images
- PASCAL VOC 2007: 9963 images, 20 labels, 1.46 labels per image
- ImageCLEF@ICPR: 8000 images, 53 labels, 8.68 labels per image
- ImageCLEF 2010: 8000 images, 93 labels, 12.06 labels per image
- Oxford100K: 100K images from Flickr by searching the 145 most popular tags
- Oxford1M: 1M images from Flickr by searching the 450 most popular tags
- Challenges: substantial variations in scale, viewpoint and lighting conditions of the images and the objects

Unsupervised Codebook Constr.

Unsupervised PCTs

• The descriptive space is simultaneously used as a target space

Large Scale Object Retrieval: Performance & Scalability

Comparison of the retrieval performance (given as mean average precision)

	Without Spatial re-ranking			With Spatial re-ranking		
Image dataset	AKM	ExtraTrees	RF of PCTs	AKM	ExtraTrees	RF of PCTs
Oxford5K	0.680	0.675	0.712	0.720	0.710	0.761
Paris	0.687	0.661	0.701	0.688	0.673	0.710
Pythia	0.164	0.172	0.213	0.170	0.189	0.234

- Spatial re-ranking of a short-list of top ranked results to further boost the retrieval performance
- Better results with larger codebooks and when considering more descriptors
- The retrieval performance of our method is better than the one of both approximate k-means and ensembles of extremely randomized trees
- We are also more efficient than the competition
 - 24.5 times faster than k-means
 - 1.6 times faster than AKM

Supervised Codebook Construction

Supervised Codebook Construction

Multi-Label Image Annotation

Image database	Efficiency [s]		Performance [MAP]	
	k-Means	PCTs for MLC	<i>k</i> -Means	PCTs for MLC
PASCAL VOC 2007 ImageCLEF@ICPR 2010 ImageCLEF 2010	12334.820 11977.230 11209.750	456.114 466.829 544.740	0.477 0.425 0.329	0.485 0.453 0.367

- The visual codebook constructed with random forests of PCTs for MLC outperforms the one constructed with kmeans on all three databases: It is more discriminative
- The improvement is larger for the databases with a larger average number of labels per image
- Dimitrovski et al., Pattern Recognition Letters 2013

Codebooks Learnt from more KPs have Better Performance

- PCTs for MLC are ~40 times more efficient than k-means
- Codebooks using larger number of key-points can be constructed
- Codebooks of 4000 words, diff. no. of KPs, diff. no. of trees in forest

We acknowledge European Commission support through the grants

- MAESTRA: Learning from Massive, Incompletely annotated, and Structured Data, grant 612944
- HBP SGA1: The Human Brain Project, grant 720270
- LANDMARK: LAND Management: Assessment, Research, Knowledge base, grant 635201

As well as the Slovenian Research Agency through

- P2-0103 Knowledge technologies
- L2-7509 Structured output prediction ...

51

ECML PKDD 2017 SKOPJE, MACEDONIA 18-22 September 2017

Thank you ...

- For your attention.
- Questions welcome!

