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Overview

• Perception tasks:

– Object detection

– Semantic segmentation

• Objectives

– High recognition accuracy and precision

– Fast execution time

– Enable real-time detection on mobile devices



Overview

• Common framework for detection and segmentation:

– Features: image channels

• Word Channels

• Multiresolution Filtered Channels

• Semantic Channels

• Multimodal Channels

• Deep Convolutional Channels

– Classification: boosting over channel features

• Easy fusion of different features types

• Low computational costs



EU Research Projects

• CoMoSeF – Co-operative Mobility Services of the Future

Celtic Plus EU project (2012-2015)

• PAN-Robots – Plug & Navigate robots for smart factories

FP7 EU project (2012-2015)

• UP-Drive – Automated Urban Parking and Driving

H2020 EU project (2016-2019)



Word Channels

• Visual codebook based image representation

• Image is represented as a distribution of visual words

Input Texton Map

[Shotton et al. 2006]



Word Channels

Local Descriptors:

• Describe a local neighborhood of pixels

• We employ three descriptor types:

– HOG, LBP and color

• Dense sampling of descriptors (pixelwise)

Visual Codebooks: a collection of descriptor vectors



Word Channels:

Word Channels

Color HOG LBP

Codebook mapping:



Pedestrian classification

• Shape filter:

– One codebook word

– Rectangle (relative position and size)

• Shape filter response: 

– Normalized codebook word count inside the rectangle



Pedestrian classification

• Detection window classification:

– Pedestrian vs. Non-pedestrian

• Classification features:

– Shape filter responses

– |S| x |F| features

• Classifier:

– Boosted decision stumps over shape filter responses

– 1000 boosting rounds

• Train a cascade of boosting classifiers



Multiscale detection

• Multiscale sliding window based detection



Pedestrian detection

Cascade classification:



Pedestrian detection evaluation

Caltech – reasonable INRIA

(2014)



Computational costs

• Average execution times for 640 x 480 images:

(GPU implementation on an Nvidia 780 GTX)

– Pixel-wise local descriptor computation: 4 ms

– Codebook matching: 8 ms

– Integral image computation: 11 ms

– Classification of each bounding box: 39 ms

• Total detection time: 62 ms (16 FPS)

• Total training time: ~30 minutes



Pixel classification

Word Channel feature based pixel classification:

• Similar classification scheme

• A pixel is classified based on surrounding visual words

• Use of 100 random rectangles inside of a 200x200 pixel region

for learning (TextonBoost [Shotton et al. 2006])

• Classifier:

– Multi-class boosted decision stumps => joint boosting

– 4096 boosting rounds



Multi-class segmentation results

CamVid segmentation benchmark



Segmentation evaluation

CamVid segmentation benchmark:
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Brostow et al. (Motion) [4]

1

61 43 43 46 79 44 19 82 24 58 0 61 18

Brostow et al. (Appearance) [4] 66 52 38 60 90 71 51 88 54 40 1 55 23

Brostow et al. (Combined) [4] 69 53 46 61 89 68 42 89 53 46 0 60 22

Our - Unary pixel – SS1 14 74 53 60 77 82 72 8 92 53 27 29 62 19

Our - Unary pixel – SS5 65 72 53 52 73 82 73 7 90 62 29 31 67 17

Our - Unary superpixel (SS5) + Smoothness 36 76 52 66 81 84 71 2 94 50 25 20 60 13



Accelerating Pedestrian Detection

Challenge: Pedestrian detection on mobile devices
• Faster image features

• Faster classification scheme

• State of art accuracy and precision



LUV + HOG Channels

• 10 LUV + HOG image channels [Dollar et al. 2009]:

– 3 LUV channels

– 1 gradient magnitude

– 6 oriented gradient magnitudes



Aggregated channels

ACF approach [Dollar et al. 2014]:

– 4 x 4 pixel aggregation (average computation) => aggregated channels

– Classsification features: simple pixel lookups

– Classifier: boosted two-level decision trees (2048)

State of art detection at 30 FPS on CPU

Proposed solution:

• Multiresolution features  from multiple aggregations:

– 2 x 2 cells

– 4 x 4 cells

– 8 x 8 cells

 30 aggregated channels



Multiscale detection

Proposed approach:

• 8 pedestrian models: 64, 72, 80, 88, 96, 104, 112, 120 pixel height

• 3 image scales: 1, ½, ¼ 

 24 detection scales



Implementation details

Feature computation:

• Lookup tables for: LUV, gradient magnitude and orientation

• Larger aggregation computed from smaller aggregation

• No need for integral images

• No need for approximations for intermediate scales

Classification:

• Prediction using soft-cascade:

– stop when the classification cost drops below -1

– 90% rejection after only 32 WLs

• Early NMS

– It is time consuming to evaluate all WLs for overlapping dets.

=> Detection at over 100 FPS on CPU



Validation

Caltech pedestrian detection benchmark – reasonable (2015) :

• 37 % log-average miss rate for [10-2, 100] FPPI precision range at 105 FPS



Porting to mobile platforms

The proposed solution was ported and tested on android based 

mobile devices:

• Samsung Galaxy Tab Pro T325 tablet (Quad-core 2.3 GHz Krait 400 CPU)

• Sony Xperia Z1 smartphone (Quad-core 2.2 GHz Krait 400 CPU)

Detection at: 8 FPS for pedestrians with heights above 50 pixels

20 FPS for pedestrians with heights above 100 pixels



Porting to mobile platforms

Driver assistance application:

• Visual and audio warning when a pedestrian is detected in the front



Demo Application

Video



Real-time scene perception

Challenge: real-time perception for autonomous driving

• Need for more powerful features and classification scheme

• Exploitation of multisensorial perception

• Keep computational costs relatively low



Filtered Channels

Filtering layer over LUV + HOG channels [Zhang et al. 2015]:

SquaresChntrs Filters LDCF8 Filters Checkerboards Filters



Multiresolution Filtered Channels

• Multiresolution filtering scheme:

– Low pass and high pass filters

– Applied iteratively at multiple scales

– 7 scales => (5 x 3) x 10 = 150 channels

• Efficient implementation:

– < 3 ms for a 640 x 480 pixel image on GPU



Multiscale Detection

Multiscale sliding window : 

• Single image feature scale 

• Single pedestrian classifier model

• Feature sampling adapted to window size

=> Full detection at over 50 FPS



Semantic Segmentation

Similar classification scheme for pixels:

• Boosting over Multiresolution Channel features

• Short range features  => local structure  - dense sampling

• Long range features => context   - sparse sampling



Semantic Segmentation

Simplified multi-range classification features (linear sampling):



Semantic Channels for Detection



Detection using MRCF + SemanticCF



Computational costs

Average execution times for different steps (GPU / CPU)

• 210 filtered channel computation: 2 ms / 21 ms

• 8 semmantic channel prediction: 22 ms / 45 ms

• dense CRF inference: - / 28 ms

• sliding window classifications: 14 ms / 29 ms

Average frame rate for pedestrian detection for a 640 x 480 

pixel image:

• 60 FPS on GPU / 20 FPS on CPU with 210 filtered channels

• 15 FPS on GPU / 8 FPS on CPU also with semantic channels



Pedestrian detection evaluation

60 FPS        

15 FPS        

Caltech pedestrian detection benchmark results:

(2016)



Multimodal Sensorial Input

Color

Depth

Motion



Multimodal Multiresolution Channels



Feature scale correction

One image scale & multiple sliding window scales:

=> Fast detection, but the raw channel features are not scale invariant



Feature scale correction



2D context channels

2D spatial and symmetry channels:



3D Context Channels

• 3D Context channels:

– Spatial channels: X, Y, Z

– Ground Plane

– Geometric channels: height, width, size



Deep Convolutional Channels

[Iqbal et al. 2017]

VGG-16 Net [Simonyan and Zisserman 2015]:



Deep Convolutional Channels

Convolutional net feature visualization [Zeiler & Fergus 2013]



Deep Convolutional Channels

Convolutional channel features [Yang et al. 2015]:

• best results for pedestrian detection using

the standard VGG16 pre-trained model

• VGG16 was trained for 2 weeks on ImageNet

(over 1 million images, 1000 classes)



Detection Demo (KITTI)

Pedestrian and vehicle detection using color, motion and depth (LIDAR)

Video



Detection Demo (Tsinghua - Daimler)

Cyclist detection using color and depth (stereo)

Video



Detection evaluation

Caltech Pedestrian detection benchmark - reasonable:

– 11.41 % avg. MR at 30 FPS

– 9.58 % avg. MR at 25 FPS using deep conv. chnl. features

(2017)



Detection evaluation

Feature evaluation for pedestrian detection:

Caltech KITTI (val)



Segmentation results (Cityscapes)



Segmentation results (Cityscapes)

Cityscapes test set - comparison:



360 degree semantic perception

Video



Conclusions

• Channel types:
– Word channels

– LUV + HOG:

• Aggregated channels (single or multiple times)

• Multiresolution filtered channels (MRFC)

– Multimodal MRFC

– 2D & 3D context channels

– Semantic channels

– Deep convolutional channels

• Boosting over channel features can be a powerful tool:
– enables easy fusion of different feature types

– computational cost friendly

– easy tuning



Conclusions
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Thank you for your attention!

Questions?


