Learning Sensorimotor Control

from Experience and Demonstration

Alexey Dosovitskiy
Intel Visual Computing Lab, Munich

CMP Colloquium

05.10.2017, Prague

[0]Vision intel)



Generating flow, depth and octrees
* FlowNet and FlowNet 2.0

* DeMoN: Depth and Motion Net

* OGN: Octree Generating Networks
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Sensorimotor control

Producing useful motor actions based on sensory inputs

VAT

“We have a brain for one reason and one reason only, and
that's to produce adaptable and complex movements.”

- Daniel Wolpert )



Perception and action




End-to-end learning

Predicting controls directly from observations

—> | Control |

Convolutional
network

How do we train this?




Reinforcement learning

Observation
—

Reward

Action

e Learn from interaction with the environment

e ... by maximizing the (discounted) sum of future rewards



End-to-end deep reinforcement learning

Observation
—
| Reward |

Action

* Learn from interaction with the environment
e ... by maximizing the (discounted) sum of future rewards
* Directly map sensory inputs to actions

* ... with a deep network



Reinforcement learning 101
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Problems with end-to-end deep RL?

* Very brittle, lots of parameter tuning
* Sample-inefficient
* Single goal only

* Does not work on complex tasks



End-to-end deep reinforcement learning

Observation
—
| Reward |

Action

* Learn from interaction with the environment
e ... by maximizing the (discounted) sum of future rewards
* Directly map sensory input to returns/actions

* ... with a deep network



Learning to Act by Predicting the Future

Published as a conference paper at ICLR 2017

LEARNING TO ACT BY PREDICTING THE FUTURE

Alexey Dosovitskiy Vladlen Koltun
Intel Labs Intel Labs
ABSTRACT

We present an approach to sensorimotor control in immersive environments. Our
approach utilizes a high-dimensional sensory stream and a lower-dimensional
measurement stream. The cotemporal structure of these streams provides a rich
supervisory signal, which enables training a sensorimotor control model by in-
teracting with the environment. The model is trained using supervised learning
techniques, but without extraneous supervision. It learns to act based on raw sen-
sory input from a complex three-dimensional environment. The presented formu-
lation enables learning without a fixed goal at training time, and pursuing dynam-
ically changing goals at test time. We conduct extensive experiments in three-
dimensional simulations based on the classical first-person game Doom. The
results demonstrate that the presented approach outperforms sophisticated prior
formulations, particularly on challenging tasks. The results also show that trained
models successfully generalize across environments and goals. A model trained
using the presented approach won the Full Deathmatch track of the Visual Doom
AI Competition, which was held in previously unseen environments.



Direct Future Prediction

* Control as “future-supervised” learning

* Instead of learning to maximize returns,
learn to predict the future

How to represent the future?




Naive approach: predict pixels

* Predict the future observation (image)
* Oh et al. 2015, Finn et al. 2016, Chiappa et al. 2017, ...

* Problem: uncertainty!

‘ We only need to predict relevant values




Measurements

* Measurements are behaviorally relevant values
available to the agent

« Assumption: goals (objective functions) can be
expressed as functions of measurements —




Using future predictions to act
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Objective is linear in future measurements



Direct future prediction

* Predict the future measurements for each action

 Simple supervised learning
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 The future is stochastic Predict expectations
* ... and depends on the future actions On-policy



Network architecture
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ViZDoom - tasks
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Comparison to existing methods
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Learning to Act by Predicting the Future

Alexey Dosovitskiy Vladlen Koltun




Generalization

This was testing on the training set

Can we generalize?



Generalization across goals

* Train with a random goal vector in every episode
e Uniform [o,1]
e Uniform [-1,1]

* Change the goal vector at test time

* The end goal does not have to be known at training
time!



Generalization across goals

Battle - #frags
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® Test Goal (0.5, 0.5, 1.0)

* Goal-agnostic training performs very close to
training with a fixed goal

* Generalizes to different goals much better



Generalization across environments

* Train with randomized textures




Generalization across environments
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Generalization across environments

Battle - #frags
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Train - fixed textures Train - random textures

B Test - seen textures M Test - new textures

* Good generalization to previously unseen
textures and labyrinth layouts



ViZDoom Competition: Full Deathmatch

Place Team 1 2 3 4 5 6 7 8 9 10 11 12 Total
1 IntelAct 29 21 23 21 6 11 9 6 30 32 33 35 256
2 The Terminators 2 17 21 15 13 12 6 5 14 13 13 13 164
3 TUHO 8 11 13 12 0 -1 -1 4 2 2 6 3 51

4 ColbyCS 2 4 0 1 -1 0o -1 0 3 3 4 3 18

5 5vision 3 0 < 2 1 0 1 0 0 -1 1 1 12

6 lvomi 3 0 1 0 1 -1 -4 -4 1 1 0 0 -2

7 PotatoesArePrettyC 0 0 2 0 -1 -3 -1 0 -2 -1 -1 -2 -9



» Simple finite-horizon supervised training
performs very well on visuomotor control tasks

* Predicting measurements instead of rewards:
* Better training signal
* Flexible goal setting, goal-agnostic learning

* Training with random textures leads to good
generalization across environments



Are we done?

* We can learn relatively difficult tasks in Doom

« ... but even in Doom algorithms fail in complex
scenarios, e.g. requiring reasoning or memory

* ...and Doom is unrealistic and simplistic




Better task?

* Requires complex perception, planning, control,
memory, mapping, reasoning

* Real problem, there is no way to cheat or hack

e Difficult even for humans




CARLA: An Open Urban Driving Simulator

CARLA: An Open Urban Driving Simulator

Alexey Dosovitskiy German Ros Felipe Codevilla Antonio Lopez Vladlen Koltun

Abstract: We introduce CARLA, an open-source simulator for autonomous driv-
ing research. CARLA has been developed from the ground up to support training,
prototyping, and validation of autonomous urban driving models, including both
perception and control. In addition to open-source code and protocols, CARLA
provides open digital assets (urban layouts, buildings, vehicles, pedestrians, etc.)
that were created specifically for this purpose and can be used and redistributed
freely. The simulation platform supports flexible specification of sensor suites and
a wide range of environmental conditions. Using the presented simulation plat-
form and content, we study the performance of two approaches to autonomous
urban driving: a classic modular rule-based pipeline and an end-to-end model
trained via imitation learning. The approaches are evaluated on a series of con-
trolled scenarios of increasing difficulty, and their performance is examined in
detail via metrics provided by the platform, illustrating the platform’s utility for
research on autonomous urban driving.

To appear soon intel)



CARLA: An Open Urban Driving Simulator
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How do we learn driving?

From experience? From demonstration!

‘ Fails so far! ‘




Imitation learning

Steering
(Gas)
(Brake)

* Training data recorded from human drivers

e An old idea:
 ALVINN - Pomerleau, NIPS 1988
« DAVE - LeCun et al., NIPS 2005
* “DAVE 2” - Bojarski et al. arxiv 2016



Conditional imitation learning

Steering
(Gas)
(Brake)

* Problem: no way to control the system
* [dea: feed commands to the ConvNet



Conditional imitation learning

End-to-end Driving via Conditional Imitation Learning

Felipe Codevillal>  Matthias Miiller’>  Alexey Dosovitskiy! ~ Antonio Lépez?  Vladlen Koltun'

o

(a) Aerial view of test environment (b) Vision-based driving, view from onboard camera (c) Side view of vehicle

Fig. 1. Conditional imitation learning allows an autonomous vehicle trained end-to-end to be directed by high-level commands. (a) We train and evaluate
robotic vehicles in the physical world (top) and in simulated urban environments (bottom). (b) The vehicles drive based on video from a forward-facing
onboard camera. At the time these images were taken, the vehicle was given the command “turn right at the next intersection”. (c) The trained controller
handles sensorimotor coordination (staying on the road, avoiding collisions) and follows the provided commands.

Under submission



Basic architecture
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Branched architecture

4 ) .
J
Image O g | i
i
- — D
Measurements C) = || »\1 o ]
m M(m) Act|on

Command C

* 3 commands: “straight”, “left”, “right”
* A “specialist” branch for each command

* Command input acts as a switch



Conditional imitation learning - Video

Experiments

- Simulation (CARLA) -




Autonomous driving solved?

* No!
* In CARLA reaches ~90% goals and crashes every
~3 km
* Far from the desired 99.9999% quality



* Imitation learning works surprisingly well on
difficult sensorimotor control tasks

* Command-conditional imitation learning:
* Controllable by the user

* I[f combined with a navigation device, makes a fully
autonomous driving system

» Still a very long way to go!



