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Analyzing Human Behavior 

Videos

Low level features, e.g., gradients, optical flow

Analyzing Human Behavior 

Human Pose
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21 Actions from HMDB
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928 clips, 33183 frames

HMDB51 (Kuehne et al, ICCV 2011)



Puppet Annotation
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Joint-annotated HMDB (JHMDB)
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[ H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013 ]

[ http://jhmdb.is.tue.mpg.de ]



Study with Annotated Data (2013)

• Large potential gain for pose feature 

• Not with existing 2d human pose methods  
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[ H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013 ]

[ http://jhmdb.is.tue.mpg.de ]



CNNs for Pose Estimation

Stack CNNs:
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[ S.-E. Wei et al. Convolutional Pose Machines. CVPR 2016 ]



Coupled Action Recognition and Pose 

Estimation 
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[ U. Iqbal et al. Pose for Action – Action for Pose. FG 2017 ]



Pose Estimation in Videos 

Video datasets for human pose in unconstrained videos 

does not exist.
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Estimation in Videos 

Video datasets for human pose in unconstrained videos 

does not exist.

Unconstrained means

• Public available content from the Internet (e.g. 

Youtube)       

• Multiple persons in a video (no assumption about 

position)

• Arbitrary number of visible joints (truncation and 

occlusion)

• Large scale variations (unknown scale)
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose-Track Dataset
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Joint-annotated HMDB (JHMDB)
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[ H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013 ]

[ http://jhmdb.is.tue.mpg.de ]



Pose-Track Dataset
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose-Track Dataset
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Challenge ICCV 2017
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[ http://posetrack.net/workshops/iccv2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Estimate pose + person association over time:
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Estimate pose + person association over time:

• Predict body joints (CNN trained on MPII Pose)
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Pose Track: Simultaneous Pose 

Estimation and Tracking

Estimate pose + person association over time:

• Predict body joints (CNN trained on MPII Pose)

• Build a graph with temporal and spatial edges 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking
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f’f f’’f’f f’’

[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking
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f’f f’’

[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Unaries: Confidences of detected joints 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Spatial binaries: Extract quadratic bounding box around 

detection

Two cases:

• Different joint type: 

• Logistic regression based on distance and orientation  
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Spatial binaries: Extract quadratic bounding box around 

detection

Two cases:

• Same joint type: 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Temporal binaries: Compute optical flow (DeepMatching)
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Temporal binaries: Compute optical flow (DeepMatching)

Logistic regression:
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f’f
[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Solve integer linear program: 
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f’f f’’

[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Solve integer linear program: 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Solve integer linear program: 
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f’f f’’

[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

To obtain plausible pauses, constraints are added:

• Spatial transitivity:
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

To obtain plausible pauses, constraints are added:

• Spatial transitivity:

• Temporal transitivity: 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

To obtain plausible pauses, constraints are added:

• Spatial transitivity:

• Temporal transitivity: 

• Spatio-temporal trans.: 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking
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Pose Track: Simultaneous Pose 

Estimation and Tracking

To obtain plausible pauses, constraints are added:

Spatio-temporal consistency:
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking

Estimate pose + person association over time:

• Predict body joints (CNN trained on MPII Pose)

• Build a graph with temporal and spatial edges

• Partition spatio-temporal graph 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Simultaneous Pose 

Estimation and Tracking
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Pose Track: Evaluation

• Pose estimation accuracy (mAP)

• Person association (MOTA) 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Pose Track: Evaluation

• Pose estimation accuracy (mAP)

• Person association (MOTA) 
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[ U. Iqbal et al. Pose-Track: Joint Multi-Person 

Pose Estimation and Tracking. CVPR 2017 ]



Joint-annotated HMDB (JHMDB)
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[ H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013 ]

[ http://jhmdb.is.tue.mpg.de ]



Video Analysis for Studying the 

Behavior of Mice 
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Recurrent Neural Networks  

• Gated units (LSTM/GRU)
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Weakly Supervised Learning 

• Fully supervised:

• Weakly supervised (transcripts)
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Weakly Supervised Learning 
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Weakly Supervised Learning 
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• Represent an activity a like “spoon_powder” by latent 

sub-activities s1
(a) ,s2

(a),s3
(a),…

• Optimal number of sub-activities is unknown:

• Many sub-activities for long activities

• Few sub-activities for short activities  

s1
(a) s2

(a) s3
(a) s4

(a) s5
(a) s6

(a)



Model 

• RNN with Gated Recurrent Units (GRU)
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Model 

• Hidden Markov Model (HMM) enforce fixed order of 

sub-activities: s1
(a) ,s2

(a),s3
(a),…

• HMMs use probabilities of RNN as input
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Model 

• Hidden Markov Model (HMM) for each activity
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Model 

• The transcripts define the order of activities: 
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Model 

• The transcripts define the order of activities: 
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Model 

• The transcripts define the order of activities: 
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Weakly Supervised Learning 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Weakly Supervised Learning 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Weakly Supervised Learning 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Weakly Supervised Learning 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Weakly Supervised Learning 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Results
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Results

• Accuracy on unseen sequences (video without 

transcript) 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Results

• Accuracy on unseen sequences (video without 

transcript) 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Results

• Accuracy on unseen sequences (video with 

transcript) 
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[ A. Richard et al. Weakly Supervised Action Learning with RNN

based Fine-to-Coarse Modeling. CVPR 2017 ]



Research Unit - Anticipating Human 

Behavior 

20 .09 .2 01 6 Resear ch  Uni t  2535  - Ant ic i p a t in g  Hum an Behavior 94

[ https://pages.iai.uni-bonn.de/FOR2535 ]



Research Unit - Anticipating Human 

Behavior 
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Thank you for your attention.
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