Deep learning on geometric data

Michael Bronstein

University of Lugano

Intel Corporation

Prague, 12 November 2015

Lenovo / Intel 2015

(Acquired by Intel in 2012)

(intel) REALSENSE

Different form factor computers featuring Intel RealSense 3D camera

Deluge of geometric data

Applications

Reconstruction

Recognition

Retrieval

Avatars

Virtual dressing

Gesture control

Images: Davison et al. 2011; Zafeiriou et al. 2012; Kim et al. 2013; Faceshift; Fashion3D; Minority report

Basic problems: shape similarity and correspondence

Basic problems: shape similarity and correspondence

Basic problems: shape similarity and correspondence

3D feature descriptors

9/68

Task-specific features

Correspondence

Task-specific features

Correspondence

...

Similarity

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

2014 Very Deep Convolutional Networks for Large-Scale Image Recognition

Karen Simonyan" & Andrew Zisserman+

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen, az}@robots.ox.ac.uk

2012

Outline

- Background: Laplacians and spectral analysis on manifolds
- Spectral descriptors (heat- and wave-kernel signatures)
- Convolutional neural networks on manifolds

Outline

- Background: Laplacians and spectral analysis on manifolds
- Spectral descriptors (heat- and wave-kernel signatures)
- Convolutional neural networks on manifolds

Geodesic convolution

Windowed Fourier transform

Anisotropic diffusion

Smooth scalar field f

• Gradient $\nabla f(x) =$ 'direction of the steepest increase of f at x'

Smooth scalar field f

- Gradient ∇f(x) = 'direction of the steepest increase of f at x'
- Divergence div(F(x)) = 'density of an outward flux of F from an infinitesimal volume around x'

Smooth vector field F

- Gradient $\nabla f(x) =$ 'direction of the steepest increase of f at x'
- Divergence div(F(x)) = 'density of an outward flux of F from an infinitesimal volume around x'

Divergence theorem:

$$\int_V {\rm div}({\bf F}) dV = \int_{\partial V} \langle F, \hat{n} \rangle dS$$

' \sum sources + sinks = net flow'

Smooth vector field F

- Gradient ∇f(x) = 'direction of the steepest increase of f at x'
- Divergence div(F(x)) = 'density of an outward flux of F from an infinitesimal volume around x'

Divergence theorem:

$$\int_V {\rm div}({\bf F}) dV = \int_{\partial V} \langle F, \hat{n} \rangle dS$$

' \sum sources + sinks = net flow'

• Laplacian $\Delta f(x) = -\operatorname{div}(\nabla f(x))$

'difference between f(x) and the average of f on an infinitesimal sphere around x' (consequence of the Divergence theorem)

Physical application: heat equation

$$f_t = -c\Delta f$$

Newton's law of cooling: rate of change of the temperature of an object is proportional to the difference between its own temperature and the temperature of the surrounding

 $c \, [m^2/sec] = thermal diffusivity constant (assumed = 1)$

• Tangent plane $T_x X = \text{local}$ Euclidean representation of manifold (surface) X around x

- Tangent plane $T_x X = \text{local}$ Euclidean representation of manifold (surface) X around x
- Riemannian metric

 $\langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \to \mathbb{R}$

depending smoothly on \boldsymbol{x}

- Tangent plane $T_x X = \text{local}$ Euclidean representation of manifold (surface) X around x
- Riemannian metric

 $\langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \to \mathbb{R}$

depending smoothly on xIsometry = metric-preserving shape deformation

- Tangent plane $T_x X = \text{local}$ Euclidean representation of manifold (surface) X around x
- Riemannian metric

 $\langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \to \mathbb{R}$

depending smoothly on xIsometry = metric-preserving shape deformation

• Exponential map

$$\exp_x: T_x X \to X$$

- Tangent plane $T_x X = \text{local}$ Euclidean representation of manifold (surface) X around x
- Riemannian metric

 $\langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \to \mathbb{R}$

depending smoothly on xIsometry = metric-preserving shape deformation

• Exponential map

$$\exp_x: T_x X \to X$$

• Geodesic = shortest path on X between x and x'

*We assume manifolds without boundary for simplicity

Smooth field $f:X\to \mathbb{R}$

Smooth field $f \circ \exp_x : T_x X \to \mathbb{R}$

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

 $\begin{array}{ll} (f \circ \exp_x)(\mathbf{v}) &\approx \\ f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X} \end{array}$

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

$$\begin{array}{ll} (f \circ \exp_x)(\mathbf{v}) &\approx \\ f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X} \end{array}$$

• Laplace-Beltrami operator

 $\Delta_X f(x) = \Delta(f \circ \exp_x)(\mathbf{0})$

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

$$\begin{array}{ll} (f \circ \exp_x)(\mathbf{v}) &\approx \\ f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X} \end{array}$$

• Laplace-Beltrami operator

$$\Delta_X f(x) = \Delta(f \circ \exp_x)(\mathbf{0})$$

• Intrinsic (expressed solely in terms of the Riemannian metric)

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

$$(f \circ \exp_x)(\mathbf{v}) \approx f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X}$$

• Laplace-Beltrami operator

$$\Delta_X f(x) = \Delta(f \circ \exp_x)(\mathbf{0})$$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

$$(f \circ \exp_x)(\mathbf{v}) \approx f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X}$$

• Laplace-Beltrami operator

 $\Delta_X f(x) = \Delta(f \circ \exp_x)(\mathbf{0})$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint $\langle \Delta_X f, g \rangle_{L^2(X)} = \langle f, \Delta_X g \rangle_{L^2(X)}$

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

$$(f \circ \exp_x)(\mathbf{v}) \approx f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X}$$

• Laplace-Beltrami operator

 $\Delta_X f(x) = \Delta(f \circ \exp_x)(\mathbf{0})$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint $\langle \Delta_X f, g \rangle_{L^2(X)} = \langle f, \Delta_X g \rangle_{L^2(X)} \Rightarrow$ orthogonal eigenfunctions

Laplace-Beltrami operator

• Intrinsic gradient

$$\nabla_X f(x) = \nabla (f \circ \exp_x)(\mathbf{0})$$

Taylor expansion

$$\begin{array}{ll} (f \circ \exp_x)(\mathbf{v}) &\approx \\ f(x) + \langle \nabla_X f(x), \mathbf{v} \rangle_{T_x X} \end{array}$$

• Laplace-Beltrami operator

 $\Delta_X f(x) = \Delta(f \circ \exp_x)(\mathbf{0})$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint $\langle \Delta_X f, g \rangle_{L^2(X)} = \langle f, \Delta_X g \rangle_{L^2(X)} \Rightarrow$ orthogonal eigenfunctions
- Positive semidefinite ⇒ non-negative eigenvalues

Discrete Laplacian (Euclidean)

Discrete Laplacian (non-Euclidean)

Undirected graph (V, E)

$$(\Delta f)_i \approx \sum_{(i,j)\in E} w_{ij}(f_i - f_j)$$

$$(\Delta f)_i \approx \frac{1}{a_i} \sum_{(i,j) \in E} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} (f_i - f_j)$$

Triangular mesh (V, E, F)

 $a_i = \text{local area element}$

Tutte 1963; MacNeal 1949; Duffin 1959; Pinkall, Polthier 1993

A function $f:[-\pi,\pi]\to\mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{\omega} -\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) e^{i\omega\xi} d\xi \ e^{-i\omega x}$$

A function $f:[-\pi,\pi]\to\mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{\omega} \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) e^{i\omega\xi} d\xi}_{\hat{f}(\omega) = \langle f, e^{-i\omega x} \rangle_{L^2([-\pi,\pi])}} e^{-i\omega x}$$

A function $f:[-\pi,\pi]\to\mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{\omega} \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) e^{i\omega\xi} d\xi}_{\hat{f}(\omega) = \langle f, e^{-i\omega x} \rangle_{L^2([-\pi,\pi])}} e^{-i\omega x}$$

Fourier basis = Laplacian eigenfunctions: $\Delta e^{-i\omega x} = \omega^2 e^{-i\omega x}$

Fourier analysis (non-Euclidean spaces)

A function $f:X\to \mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{k \ge 1} \underbrace{\int_X f(\xi)\phi_k(\xi)d\xi}_{\hat{f}_k = \langle f, \phi_k \rangle_{L^2(X)}} \phi_k(x)$$

Fourier basis = Laplacian eigenfunctions: $\Delta_X \phi_k(x) = \lambda_k \phi_k(x)$

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

$$f(x,t) = e^{-t\Delta_X} f_0(x)$$

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

$$f(x,t) = e^{-t\Delta_X} f_0(x) = \sum_{k\geq 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x)$$

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

$$f(x,t) = e^{-t\Delta_X} f_0(x) = \sum_{k \ge 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x)$$
$$= \int_X f_0(\xi) \sum_{k \ge 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi) d\xi$$

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

$$\begin{split} f(x,t) &= e^{-t\Delta_X} f_0(x) = \sum_{k \ge 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x) \\ &= \int_X f_0(\xi) \underbrace{\sum_{k \ge 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi)}_{\text{heat kernel } h_t(x,\xi)} d\xi \end{split}$$

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$\begin{split} f(x,t) &= e^{-t\Delta_X} f_0(x) = \sum_{k \ge 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x) \\ &= \int_X f_0(\xi) \underbrace{\sum_{k \ge 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi)}_{\text{heat kernel } h_t(x,\xi)} d\xi \end{split}$$

"impulse response" to a delta-function at ξ

$$\left\{ \begin{array}{l} f_t(x,t) = -\Delta_X f(x,t) \\ \\ f(x,0) = f_0(x) \end{array} \right.$$

- f(x,t) = amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

$$\begin{split} f(x,t) &= e^{-t\Delta_X} f_0(x) = \sum_{k \ge 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x) \\ &= \int_X f_0(\xi) \underbrace{\sum_{k \ge 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi) \, d\xi}_{\text{heat kernel } h_t(x,\xi)} \end{split}$$

- "impulse response" to a delta-function at ξ
- "how much heat is transferred from point x to ξ in time t"

Spectral descriptors

$$\mathbf{f}(x) = \sum_{k \ge 1} \begin{pmatrix} \tau_1(\lambda_k) \\ \vdots \\ \tau_Q(\lambda_k) \end{pmatrix} \phi_k^2(x)$$

Sun, Ovsjanikov, Guibas 2009; Aubry, Schlickewei, Cremers 2011

$$\mathbf{f}_{\boldsymbol{\tau}}(x) = \sum_{k \ge 1} \begin{pmatrix} \tau_1(\lambda_k) \\ \vdots \\ \tau_Q(\lambda_k) \end{pmatrix} \phi_k^2(x)$$

parametrized by frequency responses $\boldsymbol{\tau}(\lambda) = (\tau_1(\lambda), \dots, \tau_Q(\lambda))^{\top}$

Litman, Bronstein 2014

$$\mathbf{f}_{\mathbf{A}}(x) = \sum_{k \ge 1} \mathbf{A} \begin{pmatrix} \beta_1(\lambda_k) \\ \vdots \\ \beta_M(\lambda_k) \end{pmatrix} \phi_k^2(x)$$

parametrized by frequency responses $\boldsymbol{\tau}(\lambda) = (\tau_1(\lambda), \dots, \tau_Q(\lambda))^\top$ represented in some fixed basis $\beta_1(\lambda), \dots, \beta_M(\lambda)$ by an $Q \times M$ matrix \mathbf{A}

Litman, Bronstein 2014

$$\mathbf{f}_{\mathbf{A}}(x) = \mathbf{A} \underbrace{\sum_{k \ge 1} \begin{pmatrix} \beta_1(\lambda_k) \\ \vdots \\ \beta_M(\lambda_k) \end{pmatrix}}_{\mathbf{g}(x)} \phi_k^2(x)$$

$$\mathbf{f}_{\mathbf{A}}(x) = \mathbf{A} \underbrace{\sum_{k \ge 1} \begin{pmatrix} \beta_1(\lambda_k) \\ \vdots \\ \beta_M(\lambda_k) \end{pmatrix}}_{\mathbf{g}(x)} \phi_k^2(x) = \mathbf{A}\mathbf{g}(x)$$

$$\mathbf{f}_{\mathbf{A}}(x) = \mathbf{A} \underbrace{\sum_{k \ge 1} \begin{pmatrix} \beta_1(\lambda_k) \\ \vdots \\ \beta_M(\lambda_k) \end{pmatrix}}_{\mathbf{g}(x)} \phi_k^2(x) = \mathbf{A}\mathbf{g}(x)$$

- Optimal A in the spirit of Wiener filter:
 - attenuate frequencies with large noise content (deformation)
 - pass frequencies with large signal content (discriminative geometric features)

$$\mathbf{f}_{\mathbf{A}}(x) = \mathbf{A} \underbrace{\sum_{k \ge 1} \begin{pmatrix} \beta_1(\lambda_k) \\ \vdots \\ \beta_M(\lambda_k) \end{pmatrix}}_{\mathbf{g}(x)} \phi_k^2(x) = \mathbf{A}\mathbf{g}(x)$$

- Optimal A in the spirit of Wiener filter:
 - attenuate frequencies with large noise content (deformation)
 - pass frequencies with large signal content (discriminative geometric features)
- Hard to model axiomatically...

$$\mathbf{f}_{\mathbf{A}}(x) = \mathbf{A} \underbrace{\sum_{k \ge 1} \begin{pmatrix} \beta_1(\lambda_k) \\ \vdots \\ \beta_M(\lambda_k) \end{pmatrix}}_{\mathbf{g}(x)} \phi_k^2(x) = \mathbf{A}\mathbf{g}(x)$$

parametrized by linear combination coefficients A of geometry vectors $\mathbf{g}(x) = (g_1(x), \dots, g_M(x))^\top$

- Optimal A in the spirit of Wiener filter:
 - attenuate frequencies with large noise content (deformation)
 - pass frequencies with large signal content (discriminative geometric features)
- Hard to model axiomatically...
- ...yet easy to learn from examples!

Litman, Bronstein 2014

Convolutional neural networks

Typical CNN architecture

• Combination of convolution and pooling layers

Fukushima 1980; LeCun et al. 1989; Image: H. Wang

Convolutional neural networks

Typical CNN architecture

- Combination of convolution and pooling layers
- Learn hierarchical abstractions from data with little prior knowledge

Fukushima 1980; LeCun et al. 1989; Image: H. Wang

Convolutional neural networks

Typical CNN architecture

- Combination of convolution and pooling layers
- Learn hierarchical abstractions from data with little prior knowledge
- State-of-the-art performance in a wide range of applications

Fukushima 1980; LeCun et al. 1989; Image: H. Wang

Convolution

Convolution

?

Geodesic convolution

Windowed Fourier transform

Anisotropic diffusion

Geodesic polar coordinates

- Local system of geodesic polar coordinates at x
 - ρ-level set of geodesic distance function d_X(x, ξ), truncated at ρ₀
 - points along geodesic $\Gamma_{\theta}(x)$ emanating from x in direction θ

Geodesic polar coordinates

- Local system of geodesic polar coordinates at *x*
 - ρ-level set of geodesic distance function d_X(x, ξ), truncated at ρ₀
 - points along geodesic $\Gamma_{\theta}(x)$ emanating from x in direction θ
- Local chart: bijective map

$$\Omega(x): B_{\rho_0}(x) \to [0, \rho_0] \times [0, 2\pi)$$

from manifold to local coordinates (ρ,θ) around x

Geodesic polar coordinates

- Local system of geodesic polar coordinates at x
 - ρ-level set of geodesic distance function d_X(x, ξ), truncated at ρ₀
 - points along geodesic $\Gamma_{\theta}(x)$ emanating from x in direction θ
- Local chart: bijective map

$$\Omega(x): B_{\rho_0}(x) \to [0, \rho_0] \times [0, 2\pi)$$

from manifold to local coordinates (ρ,θ) around x

• Patch operator applied to $f \in L^2(X)$

$$(D(x)f)(\rho,\theta) = (f \circ \Omega^{-1}(x))(\rho,\theta)$$

Patch operator construction

$$(D(x)f)(\rho,\theta) = \frac{\int_X v_\rho(x,\xi)v_\theta(x,\xi)f(\xi)d\xi}{\int_X v_\rho(x,\xi)v_\theta(x,\xi)d\xi}$$

Radial weight

$$v_{\rho}(x,\xi) \propto e^{-(d_X(x,\xi)-\rho)^2/\sigma_{\rho}^2}$$

Angular weight

$$v_{\theta}(x,\xi) \propto e^{-d_X^2(\Gamma(x,\theta),\xi)/\sigma_{\theta}^2}$$

• Geodesic convolution = apply filter a to patches extracted from $f \in L^2(X)$ in local geodesic polar coordinates

$$(f \star a)(x) = \sum_{\theta, r} (D(x)f)(r, \theta) \ a(\theta, r)$$

• Geodesic convolution = apply filter a to patches extracted from $f\in L^2(X)$ in local geodesic polar coordinates

$$(f \star a)(x) = \sum_{\theta, r} \underbrace{(D(x)f)(r, \theta)}_{\theta, r} \underbrace{a(\theta, r)}_{\theta, r}$$

Masci, Boscaini, Bronstein, Vandergheynst 2015

• Geodesic convolution = apply filter a to patches extracted from $f\in L^2(X)$ in local geodesic polar coordinates

$$(f \star a)(x) = \sum_{\theta, r} \underbrace{(D(x)f)(r, \theta)}_{\Theta} \underbrace{a(\theta + \Delta \theta, r)}_{\Theta}$$

• Angular coordinate origin is arbitrary = rotation ambiguity!

Masci, Boscaini, Bronstein, Vandergheynst 2015

• Geodesic convolution = apply filter a to patches extracted from $f\in L^2(X)$ in local geodesic polar coordinates

$$(f \star a)(x) = \sum_{\theta, r} \underbrace{(D(x)f)(r, \theta)}_{\theta, r} \underbrace{a(\theta + \Delta \theta, r)}_{\theta, r}$$

- Angular coordinate origin is arbitrary = rotation ambiguity!
- Keep all possible rotations

Masci, Boscaini, Bronstein, Vandergheynst 2015
Geodesic Convolution layer

• $a_{\Delta\theta,qp}(\theta,r) = a_{qp}(\theta + \Delta\theta,r)$ are coefficients of *p*th filter in *q*th filter bank rotated by $\Delta\theta$

Geodesic Convolution layer

- $a_{\Delta\theta,qp}(\theta,r) = a_{qp}(\theta + \Delta\theta,r)$ are coefficients of *p*th filter in *q*th filter bank rotated by $\Delta\theta$
- Angular max pooling to remove rotation ambiguity

Toy ShapeNet architecture

Learning local descriptors with ShapeNet

- As similar as possible on positives \mathcal{T}^+
- As dissimilar as possible on negatives \mathcal{T}^-
- Minimize siamese loss w.r.t. ShapeNet parameters Θ

$$\ell(\mathbf{\Theta}) = (1-\gamma) \sum_{(x,x^+)\in\mathcal{T}^+} \|\mathbf{f}_{\mathbf{\Theta}}(x) - \mathbf{f}_{\mathbf{\Theta}}(x^+)\|$$

+ $\gamma \sum_{(x,x^-)\in\mathcal{T}^-} \max\{\mu - \|\mathbf{f}_{\mathbf{\Theta}}(x) - \mathbf{f}_{\mathbf{\Theta}}(x^-)\|, 0\}$

Masci, Boscaini, Bronstein, Vandergheynst 2015

Į

HKS descriptor distance

WKS descriptor distance

Optimal Spectral descriptor distance

ShapeNet descriptor distance

Descriptor performance

Descriptor performance using symmetric Princeton benchmark (training and testing: FAUST)

Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, Bronstein 2014 (OSD); Masci, Boscaini, Bronstein, Vandergheynst 2015 (ShapeNet); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

Descriptor performance

Descriptor performance using symmetric Princeton benchmark (training: FAUST, testing: TOSCA)

Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, Bronstein 2014 (OSD); Masci, Boscaini, Bronstein, Vandergheynst 2015 (ShapeNet); data: Bogo et al. 2014 (FAUST); Bronstein et al. 2008 (TOSCA); benchmark: Kim et al. 2011

Learning shape correspondence with ShapeNet

- Correspondence = labeling problem
- ShapeNet output $\mathbf{f}_{\Theta}(x) = \text{probability distribution on reference } Y$
- Minimize logistic regression cost w.r.t. ShapeNet parameters Θ

$$\ell(\boldsymbol{\Theta}) = -\sum_{(x,y^*(x))\in\mathcal{T}} \langle \delta_{y^*(x)}, \log \mathbf{f}_{\boldsymbol{\Theta}}(x) \rangle_{L^2(Y)}$$

Rodolà et al. 2014; Masci, Boscaini, Bronstein, Vandergheynst 2015

ShapeNet correspondence performance

Correspondence evaluated using symmetric Princeton benchmark (training and testing: FAUST)

Masci, Boscaini, Bronstein, Vandergheynst 2015; Rodolà et al. 2014; Kim et al. 11

Correspondence examples: Random forest

(similar colors encode corresponding points)

Correspondence examples: ShapeNet

From local to global features: covariance layer

$$\begin{aligned} \mathbf{F}^{\text{out}} &= \int_X (\mathbf{f}^{\text{in}}(x) - \boldsymbol{\mu}_{\mathbf{f}^{\text{in}}}) (\mathbf{f}^{\text{in}}(x) - \boldsymbol{\mu}_{\mathbf{f}^{\text{in}}})^\top dx \\ \boldsymbol{\mu}_{\mathbf{f}^{\text{in}}} &= \int_X \mathbf{f}_{\text{in}}(x) dx \end{aligned}$$

• Aggregates local features into a global shape descriptor

Tuzel et al. 2006; Masci, Boscaini, Bronstein, Vandergheynst 2015

Learning shape similarity with ShapeNet

- $\bullet\,$ Global shape descriptor using covariance layer in ShapeNet ${\bf F}_{\Theta}$
- As similar as possible on positives \mathcal{T}^+
- \bullet As dissimilar as possible on negatives \mathcal{T}^-
- Minimize siamese loss w.r.t. ShapeNet parameters Θ

Rodolà et al. 2014; Masci, Boscaini, Bronstein, Vandergheynst 2015

ShapeNet retrieval performance

1-layer ShapeNet; Training and testing: FAUST

Retrieval examples: HKS

Shape retrieval using similarity computed with HKS

Masci, Boscaini, Bronstein, Vandergheynst 2015; data: Pickup et al. 2014

Retrieval examples: ShapeNet

Shape retrieval using similarity computed with ShapeNet

Masci, Boscaini, Bronstein, Vandergheynst 2015; data: Pickup et al. 2014

Geodesic convolution

Windowed Fourier transform

Anisotropic diffusion

Uncertainty principle

Spatial localization \times Frequency localization = const

Uncertainty principle

Spatial localization \times Frequency localization = const

Uncertainty principle

Spatial localization \times Frequency localization = const

WFT
$$(f(x))(\xi,\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) w(x-\xi) e^{-i\omega x} dx$$

WFT
$$(f(x))(\xi,\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) w(x-\xi) e^{-i\omega x} dx$$

WFT
$$(f(x))(\xi,\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) w(x-\xi) e^{-i\omega x} dx$$

WFT
$$(f(x))(\xi, \omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) w(x-\xi) e^{-i\omega x} dx$$

$$WFT(f(x))(\xi,\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \underbrace{w(x-\xi)e^{-i\omega x}}_{\text{atom } g_{\xi,\omega}(x)} dx$$

WFT
$$(f(x))(\xi,\omega) = \langle f, g_{\xi,\omega} \rangle_{L^2([-\pi,\pi])}$$

Translation: convolution with delta

 $(T_{x'}f)(x) = (f \star \delta_{x'})(x)$

Shuman et al. 2014

Translation: convolution with delta

$$(T_{x'}f)(x) = (f \star \delta_{x'})(x) = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(X)} \langle \delta_{x'}, \phi_k \rangle_{L^2(X)} \phi_k(x)$$

Translation: convolution with delta

$$(T_{x'}f)(x) = (f \star \delta_{x'})(x) = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(X)} \langle \delta_{x'}, \phi_k \rangle_{L^2(X)} \phi_k(x)$$
$$= \sum_{k \ge 1} \hat{f}_k \phi_k(x') \phi_k(x)$$

Translation: convolution with delta

$$(T_{x'}f)(x) = (f \star \delta_{x'})(x) = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(X)} \langle \delta_{x'}, \phi_k \rangle_{L^2(X)} \phi_k(x)$$
$$= \sum_{k \ge 1} \hat{f}_k \phi_k(x') \phi_k(x)$$

Modulation: multiplication by basis function

$$(M_k f)(x) = f(x)\phi_k(x)$$

Shuman et al. 2014

Translation: convolution with delta

$$(T_{x'}f)(x) = (f \star \delta_{x'})(x) = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(X)} \langle \delta_{x'}, \phi_k \rangle_{L^2(X)} \phi_k(x)$$
$$= \sum_{k \ge 1} \hat{f}_k \phi_k(x') \phi_k(x)$$

Modulation: multiplication by basis function

$$(M_k f)(x) = f(x)\phi_k(x)$$

Windowed Fourier transform:

$$(Sf)_{x,k} = \langle f, M_k T_x g \rangle_{L^2(X)} = \sum_{l \ge 1} \hat{g}_l \phi_l(x) \langle f, \phi_l \phi_k \rangle_{L^2(X)}$$

Shuman et al. 2014

$$g_{x',k}(x) = (M_k T_{x'}g)(x) = \phi_k(x) \sum_{l \ge 1} \hat{g}_l \phi_l(x') \phi_l(x)$$

Boscaini, Masci, Melzi, Bronstein, Castellani, Vandergheynst 2015

Learning WFT windows

$$f_q^{\text{out}}(x) = \sum_{p=1}^{P} \sum_{k=1}^{K} a_{qpk} |(Sf_p^{\text{in}})_{x,k}|, \ q = 1, \dots, Q$$

where for each input dimension WFT uses a different window

$$(Sf_p^{\rm in})_{x,k} = \sum_{l \ge 1} \underbrace{\gamma_p(\lambda_l)}_{\sum_{m=1}^M b_{pm}\beta_m(\lambda)} \phi_l(x) \langle f_p^{\rm in}, \phi_l \phi_k \rangle_{L^2(X)}, \quad p = 1, \dots, P$$

• Learn window for each input dimension (coefficients b_{pm})

Boscaini, Masci, Melzi, Bronstein, Castellani, Vandergheynst 2015
Learning WFT windows

$$f_q^{\text{out}}(x) = \sum_{p=1}^{P} \sum_{k=1}^{K} a_{qpk} |(Sf_p^{\text{in}})_{x,k}|, \ q = 1, \dots, Q$$

where for each input dimension WFT uses a different window

$$(Sf_p^{\rm in})_{x,k} = \sum_{l \ge 1} \underbrace{\gamma_p(\lambda_l)}_{\sum_{m=1}^M b_{pm}\beta_m(\lambda)} \phi_l(x) \langle f_p^{\rm in}, \phi_l \phi_k \rangle_{L^2(X)}, \quad p = 1, \dots, P$$

• Learn window for each input dimension (coefficients b_{pm})

• Learn bank of filters for each WFT (coefficients a_{qpk})

Example of learned WFT windows

WFT windows $\gamma_p(\lambda)$ learned on FAUST dataset

Localized Spectral CNN (LSCNN) descriptors

Example of learned LSCNN shape descriptors

LSCNN descriptor robustness: point clouds

LSCNN descriptor distance

LSCNN descriptor performance

Descriptor performance using symmetric Princeton benchmark (training and testing: FAUST)

Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, Bronstein 2014 (OSD); Masci, Boscaini, Bronstein, Vandergheynst 2015 (ShapeNet); Boscaini, Masci, Melzi, Bronstein, Castellani, Vandergheynst 2015 (NN, LSCNN); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

Geodesic convolution

Windowed Fourier transform

Anisotropic diffusion

$f_t(x) = -\operatorname{div}(c\nabla f(x))$

c = thermal diffusivity constant describing heat conduction properties of the material (diffusion speed is equal everywhere)

$$f_t(x) = -\operatorname{div}(A(x)\nabla f(x))$$

A(x) = heat conductivity tensor describing heat conduction properties of the material (diffusion speed is position + direction dependent)

Anisotropic diffusion on manifolds

Andreux et al. 2014; Boscaini, Masci, Rodolà, Bronstein, Cremers 2015

Anisotropic diffusion on manifolds

- Anisotropic Laplacian $\Delta_{\alpha\theta} f(x) = \operatorname{div}_X \left(D_{\alpha\theta}(x) \nabla_X f(x) \right)$
- θ = orientation w.r.t. max curvature direction
- α = 'elongation'

Andreux et al. 2014; Boscaini, Masci, Rodolà, Bronstein, Cremers 2015

Anisotropic heat kernels

$$h_{\alpha\theta t}(x,\xi) = \sum_{k\geq 1} e^{-t\lambda_{\alpha\theta k}} \phi_{\alpha\theta k}(x) \phi_{\alpha\theta k}(\xi)$$

Examples of anisotropic heat kernels $h_{\alpha\theta t}$ for different values of $t\text{, }\theta$ and α

Isotropic vs Anisotropic HKS

Anisotropic Diffusion Descriptor (ADD) robustness

Anisotropic Diffusion Descriptor (ADD) distance

Anisotropic Diffusion Descriptor (ADD) performance

Descriptor performance using symmetric Princeton benchmark (training and testing: FAUST)

Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, Bronstein 2014 (OSD); Masci, Boscaini, Bronstein, Vandergheynst 2015 (ShapeNet); Boscaini, Masci, Melzi, Bronstein, Castellani, Vandergheynst 2015 (LSCNN); Boscaini, Masci, Rodolà, Bronstein, Cremers 2015 (ADD); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

Anisotropic Diffusion Descriptor (ADD) performance

Descriptor performance using asymmetric Princeton benchmark (training and testing: FAUST)

Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, Bronstein 2014 (OSD); Masci, Boscaini, Bronstein, Vandergheynst 2015 (ShapeNet); Boscaini, Masci, Melzi, Bronstein, Castellani, Vandergheynst 2015 (LSCNN); Boscaini, Masci, Rodolà, Bronstein, Cremers 2015 (ADD); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

ADD correspondence example: meshes

ADD correspondence example: point clouds

- First construction of generalizable intrinsic convolutional neural networks
- Learnable, task-specific, intrinsic features
- State-of-the-art performance in a variety of applications in 3D shape analysis
- Beyond shapes: graphs, social networks, etc.

D. Boscaini

J. Masci

P. Vandergheynst

U. Castellani S. Melzi

D. Cremers

Funded by

Thank you!