Towards Machine
Learning of Motor Skills
for Robotics

;/
) Jan Peters
‘ \ \) Technische Universitdt Darmstadt
™
Max Planck Institute
, for Intelligent Systems
-~

l.
Al
AN 485 TecHNISCHE E
N\ i) UNIVERSITAT
N %’ DARMSTADT



Motivation

How can wé
create all of
these
behaviors!?



Motivation

Adapt to humans S ._..-_ .

Uncertainty in tasks and interact Programming complexity
and environment beyond human imagination

How can we fulfill Hollywood’s vision of future robots!?

® Smart Humans?! Hand-engineering of behaviors has allowed us to go very far!
® Maybe we should allow the robot to learn new tricks, adapt to situations, refine skills?
o “Off-the-shelf” machine learning approaches for regression/classification?

B \Ve need to develop learning approaches suitable for robotics!
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Modeling Assumptions

Policy: Generates action u; in state X;.

00—

Should we use a deterministic policy u; = w(x;)?

Stochasticity is important:
- needed for exploration
- breaks “curse of dimensionality”
- optimal solution can be stochastic

Hence, we use a stochastic policy: u; ~{7(u;|x;)

Teacher: Evaluates the performance and
rates it with 7.

Environment: An action u; causes the system
to change state from X; to X;. .

Model in the real world: X471 ~ p(Xt—l—l‘Xta Ut)



Let the loop roll out!

G == @—> @ —> .. Trajectories

l / l / l / T:[Xo,uo,Xl,ul...,XT_l,uT_l,XT]

Q @ @ Path distributions

p(T) = p(Xo) 1:[ P(Xgp1]Xe, wg ) (ug |x¢)
l l l Path rewards:

Q @ @ r(rT) = ;T%Oét?“(xta uy)




@R What is learning?

In our model:
Optimize the expected scores

J(0) = E.{r(r)} = /T po (7)1 (7)dr

of the teacher.

Peters & Schaal (2003).
Reinforcement Learning

for Humanoid Robotics,
HUMANOIDS
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Imitation Learning

Given a path distribution, can we reproduce the policy?

Imitation
A
r(r) = f(po(7),p(7)). 3
® Using f(p,q) = log(p/q) as -
measure, we obtain States»
J(m) = / po(T) log potT) 47 —D(po(7)|p(7))
T p(T)

Boularias, A. et al. (2011). Relative Entropy Inverse Reinforcement Learning, AISTATS 2011
Englert, P. et al. (2013). Probabilistic Model-based Imitation Learning, Adaptive Behavior



Imitation Learning

Given a path distribution, can we reproduce the policy?

Imitation

D(po(7)||p()) — min

Actions

® adapt the policy parameters O
® possible model-free, purely sample-
based (Boularias et al., 201 |) and States

model-based (Englert et al.,201 3)
® results in one-shot and expectation
maximization algorithms

Boularias, A. et al. (2011). Relative Entropy Inverse Reinforcement Learning, AISTATS 2011
Englert, P. et al. (2013). Probabilistic Model-based Imitation Learning, Adaptive Behavior
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Reinforcement Learning

Given a path distribution, can we find the optimal policy?

® Goal:

® Optimization function is an arbitrary expected reward

7(6) = /T po(T)r(T)dT

® This part usually results into a greedy, softmax updates or a
‘vanilla’ policy gradient algorithm...

® Problem: Small steps, optimization bias, results ‘fragile’.



Success Matching

“When learning from a set of their own trials in iterated decision problems,

humans attempt to match not the best taken action but the reward-weighted
frequency of their actions and outcomes” (Arrow, 1958).

Can we create better policies by matching the reward-
weighted previous policy ?

Observed or Exploratory Policy

A Match
Successes

A New Policy

Actions

.

States

* at
\ ] |
““““““

RN States
Reward *** . —>

= Failure (low reward)

Many related frameworks, e.g., (Dayan&Hinton 1992;Andrews,’03;Attias,’04;Bagnell,’03;Toussaint,’06;...). 12
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lllustrative Example
Foothold Selection

Match successful foothlds!
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Reinforcement Learning
by Return-Weighted Imitation

Matching successful actions corresponds to minimizing the Kullback-Leibler ‘distance’
D(po ()|r()p(r)) — min

For a Gaussian policy 7(u|x) = N (u|¢(x)? 0, 0°I), we get the update rule

Opy1 = (<I>TR<I>)—1<I>TR

New Policy Parameters Features Returns Actions

Peters & Schaal (2007). Policy Learning for Motor Skills, International Conference on Machine Learning (ICML)
Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information Processing Systems (NIPS) 14



Resulting EM-like
Policy Search Methods

This insight has allowed us to derive a series of new
reinforcement learning methods:

® Reward-Weighted Regression (Peters & Schaal, ICML 2007)
® PoWER (Kober & Peters, NIPS 2009)

® |aWER (Neumann & Peters, NIPS 2009+ICML 2009)

® CrKR (Kober, Oztop & Peters, R:SS 2010; |JCAI 201 1)

All of these approaches are extensions of this idea.

|5



Experience vs Reward Trade-Off

Requirements:

® Uses experience and initial demonstrations
® Aims at high reward but only “updates to a safe distance”

® EM-like policy search does this only implicitly

Experience %@

& > High Reward
REPS: Adjustable Trade-Off

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI
Lioutikov et al. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, JAIS
Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR 16



More focussed trade-off?
Relative Entropy Policy Search (REPS)

|. Maximize expect reward

maxy J(0) = /pg(T)r(T)dT
T
ll. Ensure path distribution remains a probability distribution

s.t. /TpQ(T)dT =1 po(7) >0

lll. Trade off/limit information loss to past trial or trials

€ > /TPH(T) log ]zf((:))dT

Variations of this program yield analytic
solutions for the policy!

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI
Lioutikov et al. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, JAIS
Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR

|7



Relative Entropy Policy Search

is currently our favorite policy search method!

results in an analytic solution which resembles a reward-weighted
method with a reward transformation.

explicitly trades experience against reward maximization.
results in very efficient exploration.

can be kernelized well (van Hoof et al. 2015, Learning of Non-
Parametric Control Policies with High-Dimensional State Features,

AISTATS)

. has been extended with quite some success by Levine & Abbeel
(NIPS 2013/4,1CML 2014).

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI
Lioutikov et al. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, JAIS
Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR 18
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- A Blue Print for Skill Learning?

Task Parameters

?nd 1 .
A Activation Desired

Behavior , .
Cortext ’ » Learning

Signal
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4

Current State m Motor

Command
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- How can robots
learn elementary
behaviors?

- How can behaviors
be adapted to new
situations?

Outline

. > a i)
Primitives|

21



Acquisition by Imitation

Teacher shows the
task and the student
reproduces It.

® maximize similarity

A Imitation

Action

State
4>

Kober & Peters (2009). Learning Motor Primitives, ICRA 22




Self-Improvement by
Reinforcement Learning

Student improves by

reproducing his

successful trials.

® maximize reward-weighted

similarity

Reward-weighted Self-Imitation

A

Action

State

Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, NIPS
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.
2.

Task Context:
Goal Learning

Adjusting Motor Primitives through their Hyperparameters:

learn a single motor primitive using imitation and reinforcement learning
learn policies for the goal parameter and timing parameters by reinforcement
learning

Kober, Oztop & Peters (2012). Goal Learning for Motor Primitives, Autonomous Robots

25
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Composition by
R A Selectlon Superposition & Sequencing

Task Parameters

?nd 1 .
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Current State m Motor

Command

Let us put all these elements together!



Superposition
of Motor Primitives

“Naive” Approach:
|. Learn several motor primitives by imitation.

2. Self-Improvement on repetitive targets by reinforcement
learning.

3. Generalize among targets and hitting points.

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in

Robot Table Tennis, International Journal on Robotics Research. 28



Demonstrations

Demonstrations
with Kinesthetic Teach-In

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.



Select & Generalize

From Imitation Learning
we obtain 25 Movement
Primitives

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.



Covered Situations

Ball-racket impact
Demonstration
Test set
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Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Self-Improvement

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.



Changed Primitive
Activation

Orininal MP distribution on the hitting manifold Learned MP distribution on the hitting manifold
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(a) Before training. (b) After training.

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.



Current Gameplay

Final Challenge:
Match against a Human

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.



Selection and Superposition
of Motor Primitives

Problems with the
“Naive” Approach?

. Weighted superposition
works well in Robot Table
Tennis: A

- convex combinations
possible

- few primitives are
equally responsible for
an incoming ball

2. It fails if selection is
needed!

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR 35



Problems with the
Naive Approach

B &) @) @
0y (&) B (B
'teration O 'teration 3 'teration 6 'teration 9

If all primitives are equally responsible, we can represent
versatile behavior but it will never be parsimonious.

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR
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Localized behavior can
be learned efficiently!

SN (T a// //

| | ) e
* / | / /
@ \\Q/ < O/ r O/
lteration O lteration 3 [teration 6 lteration 9

We can reduce to the number of needed primitives!

Force the primitives to

(0|8, a) logp(o|s, ”)} limited responsibility

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR
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Good performance

Fast reduction in
the number of
primitives
Daniel, Neumann & Peters
(conditionally accepted).

Hierarchical Relative Entropy
Policy Search, JMLR

Localized behavior can
be learned efficiently!

Tetherball average reward achieved
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What'’s next! The
Reinforcement Learning Games!
Handcrafted

Parisi et al. (2015).
Reinforcement

Learning vs Human
Programming in
Tetherball Robot
Games, IROS
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Problems in Robot Table Tennis

Problem |: Workspace is too limited.
Problem |l: Arm accelerations are too low.

Problem lll: Limited reaction time.
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Wang, Z. et al.
Probabilistic Modeling
of Human Movements

for Intention Inference,

R:SS 2012, IURR 2013

- Reactive Opponent Pr

Probabilistic Modeling of Human
Movements for Intention Prediction

prototype system

Z. Wang, K. Muelling, M. Deisenroth,
B. Schoelkopf, and }. Peters

,/§

ediction
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N Zhikun
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Extracting Strategies
from Game Play

Mulling, K. et al.
(2014). Biological
Cybernetics.



Extracting Strategies from Game Play

Weights of the individual reward features

Weights of

the most
Opponent
relevant Elbow
features!
Smash
Distance to the or not

Edge of the Table

Angle of Incoming
Bouncing Ball

Velocity
of the Ball

Distance to
the Opponent

Movement Direction
of the Opponent

Mulling, K. et al. (2014)

Biological Cybernetics. 45



Extracting Strategies from Game Play

anferences in the average reward between expert and naive player

Differences =
between
Experts :
. g Opponent
and Naive : Elbow
Player only in |
few features! \ N N I
Smash
Distance to the OO Table 5,5, Sy Ve % Oy Vo Bapow | or not
Edge of the Table o

Angle of Incoming
Bouncing Ball

Velocity
of the Ball

- - Distance to
Movement Direction Mlling, K. et al. (2014)

of the Opponent the Opponent Biological Cybernetics.

46



Interaction Primitives
for a Semi-Autonomous 3rd Hand!?
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Interaction Primitives

The High-Five Task

* Infer the task (aka primitive) Generate the appropriate robot
* Infer the human trajectory trajectory

Observed trajectory Predicted trajectory OPredicted goal

48



Interaction Primitives

known agent unknown agent

Agent 1 (M joints) Agent 2 (N joints)

gl — [ fw{ Jgi ... ’w]j\} gm ’w? gi ... wjj\} gN |

An Interaction primitive can simply be a motor primitive that
includes both the known agent and the unknown agent.

49



Interaction Primitives
for a Semi-Autonomous 3rd Hand
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Ben Amor, H.; Neumann, G.; Kamthe, S.; Kroemer, O.; Peters, J. (2014). Interaction Primitives for Human-Robot
Cooperation Tasks , Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). 50



~ Interaction Primitives
for a Semi-Autonomous 3rd Hand
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Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben Amor, H.; Peters, J.; Maeda, G. (2015). Learning Multiple Collaborative

Tasks with a Mixture of Interaction Primitives, International Conference on Robotics and Automation (ICRA).
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It’s not all Table Tennis...

Industrial Application: Key bottleneck in manufacturing is the
high cost of robot programming and slow implementation.

Bosch: If a product costs less than 50€ or is produced less
than 10.000 times, it is not competitive with manual labor.

Assistive Robots & Companion Technologies: In hospital and

rehablitation institutions, nurses need to “program” the robot —
not computer scientists.

Robots@Home: Robots need to adapt to the human and “blend
into the kitchen”.

53



Robot
Engineering

Outlook

Skill

Learning
Systems

Machine
Learning

Biomimetic
Systems
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Robot Systems S
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Humanoid RbBotics

Robot Grasping Ry
and Manipulation e
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Robot
Engineering

High-Speed
Real-Time Vision

Real-Time Software &
Simulations for Robots

Industrial

Partnership with
Honda, ABB and
Bosch.

Tactile Perception &
Sensory Integration ’

Nonlinear Robot Control
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Real-Time Regression

(Nguyen-Tuong & Peters, Neurocomputing 201 |) Bayesian
M h - L - Optimization
ac I ne earn I ng (Calandra et al, 2014)
= WGP model
. "g True objective
Model Learning Se .
Y (Nguyen-Tuong & Peters, % \"'
. 2|
Much more Advanced Robotics 2010) :8?
Reinforcement ©

~ Parameters 0

Learning...

Maximum Entropy

(Peters et al., AAAI 2010;
Daniel, Neumann & Peters,
AlStats 2012)

Probabilistic Movement Representation
(Paraschos et al. NIPS 201 3)

Policy Gradient
Partnership with the Max

Manifold Gaussian Processes Methods
Planck Institute for (Calandra et al, 2014) (Peters et al, IROS 2006)
Intelligent Systems. : §>€_>
Machine :‘
Learning Machine
for Motor Learning Pattern Recognition in
Games

Time Series

(Alvarez, Peters et al., NIPS 2010a;
Chiappa & Peters, NIPS 2010b)

(Wang, Boularias &
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. Biological Inspiration and
Application

Brain-Computer Interfaces with ECoG
for Stroke Patient Therapy

(Gomez, Peters & Grosse-Ventrup, Journal of
Neuroengineering 201 1)

Biomimetic

Brain Robot
Interfaces

(Peters et al.,, Int. Conf.

on Rehabilitation
Robotics, 201 1)

Computational Models
of Motor

Collaboration with the Max .
Control & Learning

Planck Institute for
Intelligent Systems and the
Tubingen University

Hospital.

=5 Understanding

e Human Movements

R (Mulling, Kober & Peters,
' Adaptive Behavior 201 I)
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Conclusion

Motor skill learning is a promising way to avoid programming
all possible scenarios and continuously adapt to the
environment.

We have efficient Imitation and Reinforcement Learning
Methods which scale to anthropomorphic robots.

Basic skill learning capabilities of humans can be produced in
artificial skill learning systemes.

We are working towards learning of complex tasks such as
table tennis and a semi-autonomous 3rd hand.

59
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