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Motivation

Source: Movie iRobot

How can we 
create all of 

these  
behaviors?
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Motivation

Adapt to humans
and interact Programming complexity 

beyond human imagination
Uncertainty in tasks 

and environment 

How can we fulfill Hollywood’s vision of future robots?
• Smart Humans? Hand-engineering of behaviors has allowed us to go very far! 
• Maybe we should allow the robot to learn new tricks, adapt to situations, refine skills?
• “Off-the-shelf” machine learning approaches for regression/classification?

➡ We need to develop learning approaches suitable for robotics! 
3
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Environment:  An action     causes the system
to change state from       to         .    

xt xt+1

ut

Modeling Assumptions

xt+1xt

ut

rt

xt+1 � p(xt+1|xt,ut)Model in the real world: 

Policy: Generates action     in state    .ut xt

Teacher:  Evaluates the performance and 
rates it with     .rt

5

Should we use a deterministic policy                   ?
ut = ⇡(xt)

ut � ⇥(ut|xt) = p(ut|xt, �)Hence, we use a stochastic policy:

NO! Stochasticity is important:
- needed for exploration
- breaks “curse of dimensionality”
- optimal solution can be stochastic

Robot learning 
implies “policy 
optimization”!



Let the loop roll out!

Trajectories

Path distributions

Path rewards:

� = [x0,u0,x1,u1 . . . ,xT�1,uT�1,xT ]

r(� ) =
T�

t=0

�tr(xt,ut)

xt

ut

rt
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ut+2

xt+2

rt+2

xt+1

ut+1

rt+1

...

...

...

xt+1

p(⇥) = p(x0)
T�1Y

t=0

p(xt+1|xt,ut)�(ut|xt)



What is learning?

7

Peters & Schaal (2003). 
Reinforcement Learning 
for Humanoid Robotics, 
HUMANOIDS

In our model:
Optimize the expected scores

of the teacher.

J(�) = E⌧{r(⇥)} =

Z

T
p✓(⇥)r(⇥)d⇥
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Imitation Learning

• We need to measure similarity 
between distributions, e.g., 
using an f-measure as reward 

• Using f(p,q) = log(p/q) as f-
measure, we obtain 

Given a path distribution, can we reproduce the policy?

9

r(⌧) = f(p✓(⌧), p(⌧)).

J(⇡) =

Z

T
p✓(⌧) log

p✓(⌧)

p(⌧)
d⌧ = �D(p✓(⌧)||p(⌧))

Ac
tio

ns

States

* *
** *

**

** *

* *

Imitation 

Boularias, A. et al. (2011). Relative Entropy Inverse Reinforcement Learning, AISTATS 2011

Englert, P. et al. (2013). Probabilistic Model-based Imitation Learning, Adaptive Behavior



Imitation Learning

Given a path distribution, can we reproduce the policy?

D(p�(� )||p(� ))� min

10

• match given path distribution p(τ) 
with a new one pθ(τ), i.e., 

• adapt the policy parameters θ
• possible model-free, purely sample-

based (Boularias et al., 2011) and 
model-based (Englert et al.,2013)

• results in one-shot and expectation 
maximization algorithms

Ac
tio

ns

States

* *
** *

**

** *

* *

Imitation 

Boularias, A. et al. (2011). Relative Entropy Inverse Reinforcement Learning, AISTATS 2011

Englert, P. et al. (2013). Probabilistic Model-based Imitation Learning, Adaptive Behavior



Reinforcement Learning

• Goal: maximize the return of the paths r(τ) generated by path 
distribution pθ(τ)! 

• Optimization function is an arbitrary expected reward

• This part usually results into a greedy, softmax updates or a 
`vanilla’ policy gradient algorithm...

• Problem: Small steps, optimization bias, results ‘fragile’.

Given a path distribution, can we find the optimal policy?

J(�) =
�

T
p�(⇥ )r(⇥ )d⇥

11



Success Matching

“When learning from a set of their own trials in iterated decision problems, 
humans attempt to match not the best taken action but the reward-weighted 

frequency of their actions and outcomes” (Arrow, 1958).

Ac
tio

ns

States

+ Succes (high reward)    - Failure (low reward)

Observed or Exploratory Policy

+ +
++ +++

-- -

- -
Reward

+ +
++ +

++

--
-

- -
Ac

tio
ns

States

 New Policy
Match 

Successes

Can we create better policies by matching the reward-
weighted previous policy ?

12Many related frameworks, e.g., (Dayan&Hinton 1992;Andrews,’03;Attias,’04;Bagnell,’03;Toussaint,’06;...).



Illustrative Example 
Foothold Selection

Match successful footholds! 13



Reinforcement Learning 
by Return-Weighted Imitation

Matching successful actions corresponds to minimizing the Kullback-Leibler ‘distance’  

➡This minimization can be shown to correspond to optimizing a lower bound on the 
expected return!

D(p�(� )||r(� )p(� ))� min

Second Policy
Third Policy

Policy Parameters

Ex
pe

ct
ed

 R
et

ur
n

Initial Policy

Expected Return
1st Lower Bound 

2nd Lower Bound 

14

For a Gaussian policy                                                       , we get the update rule


➡Reduces Reinforcement Learning onto Return-Weighted Regression!


θk+1 = (ΦT
RΦ)−1

Φ
T
RU

New Policy Parameters Features  φ(s) Returns r(x,u)

�(u|x) = N (u|⇥(x)T �,⇥2I)

Actions 

Peters & Schaal (2007). Policy Learning for Motor Skills, International Conference on Machine Learning (ICML)
Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information Processing Systems (NIPS)



Resulting EM-like  
Policy Search Methods

This insight has allowed us to derive a series of new 
reinforcement learning methods:

• Reward-Weighted Regression (Peters & Schaal, ICML 2007)

• PoWER (Kober & Peters, NIPS 2009)

• LaWER (Neumann & Peters, NIPS 2009+ICML 2009)

• CrKR (Kober, Oztop & Peters, R:SS 2010; IJCAI 2011)

All of these approaches are extensions of this idea.

15



Experience vs Reward Trade-Off

Requirements:

• Uses experience and initial demonstrations

• Aims at high reward but only “updates to a safe distance”

• EM-like policy search does this only implicitly

16

Experience High Reward
REPS: Adjustable Trade-Off

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

Lioutikov et al. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, JAIS

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR

EM-like policy search: Implicit Trade-Off



More focussed trade-off?

17

Relative Entropy Policy Search (REPS)
1. Maximize expect reward

II. Ensure path distribution remains a probability distribution

III. Trade off/limit information loss to past trial or trials

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

Lioutikov et al. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, JAIS

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR

J(�) =
�

T
p�(⇥ )r(⇥ )d⇥

Z

T
p✓(⌧)d⌧ = 1 p✓(⌧) � 0s.t.

✏ �
Z

T
p✓(⌧) log

p✓(⌧)

p(⌧)
d⌧

Variations of this program yield analytic 
solutions for the policy!

max✓



Relative Entropy Policy Search

... is currently our favorite policy search method!

... results in an analytic solution which resembles a reward-weighted 
method with a reward transformation.

... explicitly trades experience against reward maximization.

... results in very efficient exploration.

... can be kernelized well (van Hoof et al. 2015, Learning of Non-
Parametric Control Policies with High-Dimensional State Features, 
AISTATS)

... has been extended with quite some success by Levine & Abbeel 
(NIPS 2013/4, ICML 2014).

18

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

Lioutikov et al. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, JAIS

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR
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A Blue Print for Skill Learning?
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Learning
Signal

Teacher
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- How can robots 
learn elementary 
behaviors?

- How can behaviors 
be adapted to new 
situations?



Acquisition by Imitation

Teacher shows the 
task and the student 
reproduces it.


• maximize similarity

Ac
tio

n

Imitation

*
*

**
*

*
*

** *

* * State

22Kober & Peters (2009). Learning Motor Primitives, ICRA



Self-Improvement by  
Reinforcement Learning

Ac
tio

n

Reward-weighted Self-Imitation

+ +
++
+
++

-- -

- - State

Student improves by 
reproducing his 
successful trials.


• maximize reward-weighted 
similarity

23Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, NIPS
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- How can robots 
learn elementary 
behaviors?

- How can behaviors 
be adapted to new 
situations?

✔



Task Context: 
Goal Learning

Adjusting Motor Primitives through their Hyperparameters:

1. learn a single motor primitive using imitation and reinforcement learning
2. learn policies for the goal parameter and timing parameters by reinforcement 

learning

25Kober, Oztop & Peters (2012). Goal Learning for Motor Primitives, Autonomous Robots



Outline

PrimitivesPrimitivesPrimitivesPrimitives

Execute
Motor 

Command

ActionState
Current State

Context

Task Parameters
and

Activation Desired
State

1. Introduction

2. How can we develop suitable machine learning methods?

3. How can elementary behavior be learned with such machine 
learning methods?

4. Can complex skills be learned leveraging on elementary 
behaviors? 

5. How can we adapt to humans and learn interaction? 

6. Conclusion

26



Composition by 
Selection, Superposition & Sequencing
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Let us put all these elements together! 27



Selection and Superposition 
of Motor Primitives

“Naïve” Approach: 

1. Learn several motor primitives by imitation.

2. Self-Improvement on repetitive targets by reinforcement 
learning.

3. Generalize among targets and hitting points.

28
Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Demonstrations

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Select & Generalize

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Covered Situations

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Self-Improvement

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Changed Primitive 
Activation

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Current Gameplay

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal on Robotics Research.




Selection and Superposition 
of Motor Primitives

Problems with the 
“Naïve” Approach? 

1. Weighted superposition 
works well in Robot Table 
Tennis: 

- convex combinations 
possible

- few primitives are 
equally responsible for 
an incoming ball

2. It fails if selection is 
needed! 

35Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR



Problems with the 
Naïve Approach

36

Iteration 3 Iteration 6 Iteration 9Iteration 0

If all primitives are equally responsible, we can represent 
versatile behavior but it will never be parsimonious.

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR



Localized behavior can 
be learned efficiently!

37

Iteration 3 Iteration 6 Iteration 9Iteration 0

We can reduce to the number of needed primitives!

Daniel, Neumann & Peters (conditionally accepted). Hierarchical Relative Entropy Policy Search, JMLR



38

Daniel, Neumann & Peters 
(conditionally accepted). 
Hierarchical Relative Entropy 
Policy Search, JMLR

Good performance

Fast reduction in 
the number of 

primitives

Localized behavior can 
be learned efficiently!



39

What’s next? The 
Reinforcement Learning Games!

Parisi et al. (2015). 
Reinforcement 
Learning vs Human 
Programming in 
Tetherball Robot 
Games, IROS
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Problems in Robot Table Tennis





43

Reactive Opponent Prediction

Wang, Z. et al. 
Probabilistic Modeling 
of Human Movements 
for Intention Inference, 
R:SS 2012, IJRR 2013

Zhikun
Wang



Extracting Strategies 
from Game Play

44

Reconstruction of the Reward from Subjects

Mülling, K. et al. 
(2014). Biological 
Cybernetics. 



Extracting Strategies from Game Play

45

Weights of 
the most 
relevant 
features!

Angle of Incoming 
Bouncing Ball

Distance to the 
Edge of the Table

Distance to 
the Opponent

Velocity 
of the Ball

Movement Direction 
of the Opponent

Opponent 
Elbow

Smash 
or not

Mülling, K. et al. (2014)

Biological Cybernetics. 



Extracting Strategies from Game Play

46

Differences 
between 
Experts

and Naive
Player only in 
few features!

Angle of Incoming 
Bouncing Ball

Distance to the 
Edge of the Table

Distance to 
the Opponent

Velocity 
of the Ball

Movement Direction 
of the Opponent

Opponent 
Elbow

Smash 
or not

Mülling, K. et al. (2014)

Biological Cybernetics. 



Interaction Primitives
for a Semi-Autonomous 3rd Hand?

47



Interaction Primitives

48

The	  High-‐Five	  Task

• Infer	  the	  task	  (aka	  primitive)	  
• Infer	  the	  human	  trajectory

Generate	  the	  appropriate	  robot	  
trajectory

Observed	  trajectory Predicted	  trajectory Predicted	  goal



Interaction Primitives

49

Agent&1&(M&joints)& Agent&2&(N&joints)&

Goal&

An	  Interaction	  primitive	  can	  simply	  be	  a	  motor	  primitive	  that	  
includes	  both	  the	  known	  agent	  and	  the	  unknown	  agent.

known	  agent unknown	  agent



Interaction Primitives
for a Semi-Autonomous 3rd Hand

50

Agent&2&& Agent&1&

S&set&of&DMP&
parameters&

S&
de

m
on

st
ra
5o

ns
&

Observe&Agent&1& Condi5oning&
Dynamic&5me&warping&

Ben Amor, H.; Neumann, G.; Kamthe, S.; Kroemer, O.; Peters, J. (2014). Interaction Primitives for Human-Robot 
Cooperation Tasks , Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). 



Interaction Primitives
for a Semi-Autonomous 3rd Hand

51
Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben Amor, H.; Peters, J.; Maeda, G. (2015). Learning Multiple Collaborative 
Tasks with a Mixture of Interaction Primitives, International Conference on Robotics and Automation (ICRA). 



Outline

PrimitivesPrimitivesPrimitivesPrimitives

Execute
Motor 

Command

ActionState
Current State

Context

Task Parameters
and

Activation Desired
State

1. Introduction

2. How can we develop suitable machine learning methods?

3. How can elementary behavior be learned with such machine 
learning methods?

4. Can complex skills be learned leveraging on elementary 
behaviors? 

5. Outlook

6. Conclusion

52



It’s not all Table Tennis...

Industrial Application: Key bottleneck in manufacturing is the 
high cost of robot programming and slow implementation.

Bosch:  If a product costs less than 50€ or is produced less 
than 10.000 times, it is not competitive with manual labor.

Assistive Robots & Companion Technologies: In hospital and 
rehablitation institutions, nurses need to “program” the robot – 
not computer scientists.

Robots@Home: Robots need to adapt to the human and “blend 
into the kitchen”.

53
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Systems

54



Robot Systems

Nonlinear Robot Control

Industrial 
Partnership with 
Honda,  ABB and 

Bosch.

Robot
Engineeringn

Robot Grasping
and Manipulation

High-Speed 
Real-Time Vision R

ea
l-T

im
e 

So
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w
ar

e 
&

 
Si

m
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at
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 fo

r 
R

ob
ot

s
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Tactile Perception & 
Sensory Integration

Humanoid Robotics



Machine Learning

Machine 
Learning
for Motor 
Games
(Wang, Boularias & 
Peters, AAAI 2011)

Real-Time Regression
(Nguyen-Tuong & Peters, Neurocomputing 2011)

Policy Gradient
Methods

(Peters et al, IROS 2006)

Pattern Recognition in 
Time Series

(Alvarez, Peters et al., NIPS 2010a; 
Chiappa & Peters, NIPS 2010b)

Much more 
Reinforcement 

Learning...

Model Learning
(Nguyen-Tuong & Peters, 
Advanced Robotics 2010)

Machine  
Learning 

75 67 68 61 94 56 53 53 51

Ob
se

rv
at

ion
s

647397

Hi
dd

en
 d

yn
am

ics

Figure 1: The three hidden trajectories shown on the
top layer generate the time-series at the bottom. Time
re-scaling is present during the generation process.

are assumed to underlie in each observed time-series.

We apply the model to a data set recorded with a
Barrett WAM used as a haptic input device in order to
record a human game of table tennis and show that the
presented model provides a meaningful segmentation
of the time-series.

2 The Segmentation Model

In the proposed segmentation approach the observa-
tions originate from a set of continuous-valued hidden
trajectories, each representing a di�erent movement
template. Specifically, we assume that the observed
time-series consists of a concatenation of segments (ba-
sic actions), each generated through a noisy transfor-
mation of one of the hidden trajectories, with possible
time re-scaling. This generation process is illustrated
in Figure 1, where the observations on the lower graph
are generated from the 3 underlying hidden trajecto-
ries on the upper graph. Time re-scaling happens dur-
ing the generation process, e.g., the first hidden trajec-
tory of length 97 gives rise to three segments of length
75, 68 and 94 respectively.

The observed time-series and the S hidden trajec-
tories are represented with the continuous random
variables2 v1:T ⇤ v1, . . . , vT (vt ⌅ ⇧V ) and h1:S

1:M ⇤
h1

1:M , . . . , hS
1:M (hi

m ⌅ ⇧H) respectively. Furthermore,
we introduce two sets of discrete random variables ⌅1:T

and z1:T . The first set is used to model dynamics
switching, to define hard constraints on the minimum
and maximum duration of each observed action and to
detect the boundaries of action replicates, whilst the
second set is used to model time re-scaling from the
hidden trajectories to the observations. We assume
that the joint distribution of these variables factorizes

2For the sake of notation simplicity, we describe the
model for the case of a single observed time-series and hid-
den trajectories of the same length M .

· · · ⌅t�1 ⌅t ⌅t+1 · · ·

zt�1 zt zt+1

vt�1 vt vt+1

h1:S
1:M

Figure 2: Belief network representation of the pro-
posed segmentation model. Rectangular nodes indi-
cate discrete variables, while (filled) oval nodes indi-
cate (observed) continuous variables.

as follows

p(h1:S
1:M)

⇥

t

p(vt|h1:S
1:M , zt, ⌅t)p(zt|zt�1, ⌅t�1:t)p(⌅t|⌅t�1).

This statistical dependency structure is graphically
represented by the belief network of Figure 2.

The variable ⌅t is a triple ⌅t = {st, dt, ct} with a
similar role as in segmental Hidden Markov Models
(HMMs) (Rabiner, 1989; Ostendorf et al., 1996; Mur-
phy, 2002). The state variable st ⌅ {1, . . . , S} in-
dicates which of the S hidden trajectories underlies
the observations at time t. The duration variables dt

specifies the time interval spanned by the observations
forming the action vt belongs to, and takes a value be-
tween dmin and dmax. The count variable ct indicates
at which point of the current action we are at time
t; it takes values ct = dt at the beginning of an ac-
tion and is decremented by one until when the end of
the action is reached. More specifically, p(⌅t|⌅t�1) =
p(ct|dt, ct�1)p(dt|dt�1, ct�1)p(st|st�1, ct�1) with3

p(st|st�1, ct�1) =

�
⇥st,st�1 if ct�1 =1
�(st, st�1) if ct�1 >1

p(dt|dt�1, ct�1) =

�
⇤dt if ct�1 =1
�(dt, dt�1) if ct�1 >1

p(ct|dt, ct�1) =

�
�(ct, dt) if ct�1 =1
�(ct, ct�1 � 1) if ct�1 >1,

where �(·) is the Dirac delta, ⇥ is a matrix specifying
time-invariant dynamics-switching probabilities, and ⇤
is a vector of probabilities of taking a duration.

The variable zt indicates which of the M elements in
the hidden trajectory generated vt. More specifically,
p(zt|zt�1, ⌅t�1:t) = p(zt|zt�1, dt, ct�1:t) with

p(zt|zt�1, dt, ct�1:t) =

�
⇧̃dt,ct

zt
if ct�1 =1

⇧dt,ct
zt,zt�1

if ct�1 >1.

3For t = 1, p(s1) = ⇥̃s1 , p(d1) = ⇤d1 , p(c1|d1)=�(c1, d1).
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Maximum Entropy
(Peters et al.,  AAAI 2010; 
Daniel, Neumann & Peters, 
AIStats 2012)Probabilistic Movement Representation

(Paraschos et al. NIPS 2013)

Bayesian 
Optimization 

(Calandra et al,  2014)

Manifold Gaussian Processes
(Calandra et al, 2014)

Partnership with the Max 
Planck Institute for 
Intelligent Systems.



Biological Inspiration and 
Application

Understanding 
Human Movements

(Mülling, Kober & Peters, 
Adaptive Behavior 2011)

Brain-Computer Interfaces with ECoG 
for Stroke Patient Therapy
(Gomez, Peters & Grosse-Wentrup, Journal of 
Neuroengineering 2011)

Brain Robot 
Interfaces

 (Peters et al.,  Int. Conf.
on Rehabilitation 

Robotics, 2011)

Biomimetic
Systems

Computational Models
of Motor 

Control & Learning

57

Collaboration with the Max 
Planck Institute for 

Intelligent Systems and the
Tübingen University 

Hospital.
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Conclusion

• Motor skill learning is a promising way to avoid programming 
all possible scenarios and continuously adapt to the 
environment.

• We have efficient Imitation and Reinforcement Learning 
Methods which scale to anthropomorphic robots.

• Basic skill learning capabilities of humans can be produced in 
artificial skill learning systems.

• We are working towards learning of complex tasks such as 
table tennis and a semi-autonomous 3rd hand.
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