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Abstract. This paper investigates, how two fundamental measurement
operations in Euclidean space, namely the construction of a straight
line of given orientation angle and the measurement of distances along
this line, are mapped to the non-Euclidean log-polar image plane. It is
shown, how these two operations can be efficiently implemented for dis-
crete log-polar images. The measurement operations are used to perform
line and circle detection in log-polar sampled images, a task, which can
only be solved with the usual methods known from Cartesian images, if
the two operations are available: chains of edgels are extracted from an
image, then lines and circles are found through geometric constructions
and testing of geometric relations. Experiments with both synthetic and
real images are presented, and the detection results are quantitatively
evaluated.

1 Introduction

This paper addresses the detection of geometric features in log-polar sampled
images. The log-polar mapping is an imaging method with space-variant reso-
lution, which has been introduced theoretically by Weiman and Chalkin [1] and
by Sandini and Tagliasco [2] in an effort to mimic the imaging geometry of the
human retina. The first sensor prototype was presented by Tistarelli and Sandini
[3], which was later followed by an advanced version [4]. The main advantages
of log-polar imaging are that it provides a large field of view on one hand and a
high resolution in the image center on the other hand, while keeping the amount
of data to be stored and processed low. An example showing the same image in
Cartesian and in log-polar coordinates is depicted in Figure 1.

Besides the attention-sensitive data reduction, the log-polar geometry has
also shown to have advantages for several robotics applications such as linear
flow estimation [5], looming detection [6] and vergence control [7]. An important
property of the log-polar image plane is that local operations such as gradient-
based interest point detection can be performed in the traditional way, without
the need for modifications.

On the other hand, however, many image computations are more complicated
– for example, the stereo problem cannot be solved with conventional methods
[8, 9], and the same is true for the detection of line features. The reason behind



these difficulties is that the basic operations of Euclidean geometry commonly
used to explore the image space, namely the measurement of Euclidean distances
and directions, cannot be directly performed in log-polar coordinates, because
the mapping is non-linear and not isotropic: straight lines are not mapped to
straight lines, and the distance between neighboring pixels depends on their
location in the image. In order to overcome the problem, this paper takes a
closer look at the two fundamental operations of image measurement, namely
the construction of straight lines of a given orientation and the measurement of
distances along these lines, shows how they are mapped to the log-polar plane,
and presents efficient methods for their implementation.

The target application is the detection of straight line segments and circles
in log-polar sampled images. This problem has been addressed before in a clever
way by Young [10]. The fundamental idea of his work is to convolve the image
with a log-polar image of the searched feature, which has the same size. The
method however involves non-linear preprocessing, and it is only able to detect
features, which produce a significant peak of the convolution output, i.e., globally
dominant features.

In contrast, we propose a more conventional approach to feature detection.
Our work-flow starts with the detection of local edge elements (’edgels’) with a
gradient-based operator. Then edgels which are close to each other are iteratively
linked to edgel chains, and these chains are inspected with a regression algorithm
such as RANSAC in order to find straight line segments and circles. For the
regression, we must on one hand be able to construct lines and circles in the
log-polar plane, and on the other hand we must be able to test, whether edgels
satisfy some metric constraints (e.g., whether their distance to some hypothetical
circle center is equal to the circle’s radius). In this part we will make use of the
geometric operations in the log-polar plane.

The paper is structured as follows: in section 2, the basic properties of log-
polar images are briefly reviewed, and the notation is introduced. In section 3,
geometric properties of straight lines in log-polar coordinates are exploited to
derive incremental algorithms for the two fundamental measurement operations.
Section 4 presents feature detection results on both synthetic images with known
ground truth and real images. In section 5 the paper is summarized and an
outlook is given on potential future work.

2 Log-polar imaging

A log-polar image is produced through a projection onto an image plane, which is
not sampled in a rectangular (x, y)-grid, but in the following way: the pixels are
arranged in concentric circular rings around the focus of attention (in existing
perspective log-polar cameras this is the principal point). On each ring the same
number of pixels is sampled, and the pixel size increases exponentially with
growing radius of the rings in such a way, that all pixels are approximately
square (see Figure 1). An approximation of this sampling scheme can also be
found in the ganglion cells of the retina and visual cortex of primates [11, 12].
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Fig. 1. Log-polar imaging. (a) A log-polar image generated from the ’corridor’ dataset
with parameters N = 360 and rmin = 95. (b) The original image overlayed with a
log-polar grid. (c) The log-polar image with the same grid overlayed. One grid cell has
been marked in to illustrate the mapping procedure. (d) The log-polar image mapped
back to Cartesian coordinates. Note the decrease in resolution with increasing radius.
The size of a pixel is the same in all images to illustrate the data reduction.

Let the origin of the image coordinate system be the image center. Then
points xc = [x, y]T of the Cartesian image plane are transformed to points x =
[r, α]T in the log-polar plane by the following function, which is sometimes called
the logmap λ:



x = λU (xc) =
[

1
2 logU (x2 + y2)

arctan y
x

]
(1)

The transformation is conformal, has a singularity in the coordinate center
(which is overcome in practice by stopping at a minimal radius rmin), and it
has only one parameter, namely the base of the logarithm U , which depends on
the desired number N of pixels per ring via U = N+2π

N . In the images resulting
from the log-polar sampling method, image rotations are mapped to shifts of the
polar angle α, and expansions are mapped to shifts of r. The inverse mapping µ
from log-polar to Cartesian coordinates (the inverse logmap) is given by

xc = µU (x) =
[
x
y

]
= Ur

[
cos α
sinα

]
(2)

Log-polar images are commonly stored and displayed by plotting the (r, α)-values
into an conventional Cartesian coordinate system with orthogonal axes, which
generates an image with N rows and (rmax − rmin) columns. In this paper the
axes of the log-polar images have been flipped for display purposes, so that the
α-axis runs from the left to the right and the r-axis from top to bottom of the
page.

3 Lines in the log-polar plane

The analytic expression for a straight line L in log-polar coordinates is given by

r = r0 − log cos(α− α0) (3)

In this paper, we will however not use this expression directly, but rather param-
eterize a line through a point p1 and the tangent direction γ1 of the line in p1.
A finite line segment is either given by p1, γ1 and a length l, or by two points
p1 = [r1, α1]T and p2 = [r2, α2]T.
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Fig. 2. Trigonometric relations between points on a line in log-polar coordinates.

Let us now consider the relation between two points p1, p2 on the line and
the corresponding tangent directions γ1, γ2. Lines αi = const. in the log-polar



system correspond to radial lines of constant polar angle in the Cartesian plane
(see Figure 2), which directly leads to the fundamental relation

γ2 − γ1 = α2 − α1 = ∆α (4)

This expression states that for any point on a given line, α determines γ and vice
versa. Elementary trigonometry gives the equation which is needed to construct
a new point p2 on L given r2:

sin γ2 = Ur2−r1 sin γ1 = U∆r sin γ1 (5)

Conversely, a point is constructed for a given polar angle α2 through

r2 = r1 + logU

sin γ2

sin γ1
(6)

If the straight line is given by two points rather than a point and a tangent,
we have to compute the tangents first. For this task, γ2 in equation (5) has
to be substituted using equation (4), and after some straight-forward algebraic
manipulations we get the expression

tan γ1 =
sin∆α

U−∆r − cos ∆α
(7)

3.1 Constructing lines

In a log-polar image the polar angle α is uniformly sampled at discrete intervals
αS = αi+1 − αi. For neighboring pixels equation (4) therefore can be rewritten
as

γi+1 = γi + αS (8)

and equation (6) becomes

ri+1 = ri + logU

sin(γi + αS)
sin γi

= ri + Λ(γi) (9)

The function Λ(x) has to be evaluated only for equally spaced discrete values
in the range 0 ≤ xi ≤ 2π. It depends only on the tangent angle γi (except for
the sensor parameters U and αS) but not on the line L. It can therefore be
stored in a single, one-dimensional, sensor-specific lookup-table. With equations
(8) and (9) we can incrementally construct a straight line in the image with only
two additions per step by iteratively updating r and γ. Examples are shown in
Figure 4.

3.2 Measuring distances

The second problem is how to measure distances in the log-polar plane, given
that the scale of the mapping is space-variant, i.e., the same distance in the log-
polar plane corresponds to different Euclidean distances in the Cartesian plane



depending on the radius Ur from the coordinate center. In a discrete log-polar
image we can regard the pixels as squares (the difference between the inner and
outer side of a pixel is < 3.5% for N > 180), and the size d of a pixel is given by

d = Ur+1 − Ur (10)

The distance di from point pi to the following point pi+1 on line L is thus given
by

di =
Uri+1 − Uri

sin γi
=

Γ (i)
sin γi

(11)

Again, the function Γ (x) is a one-dimensional lookup-table, which depends only
on the sensor, and also the sine of γ in the denominator is only needed for
discrete values and can be stored in a lookup-table. With equation (11) we can
approximately measure the length along L by adding the di while constructing
the line. This again can be done with low computational effort, namely one
division and two additions per step.

3.3 Subpixel accuracy

A line L constructed with equation (9) has an exact floating point value r(αi)
for each row αi. It may however be necessary to interpolate new points between
two such discrete locations p1 and p2, for example when intersecting two lines.
For practical image processing tasks it is sufficient to interpolate linearly in spite
of the logarithmic scale: the error one commits when linearly interpolating r in
the log-polar image is the distance dr between the image of L and the straight
line joining p1 and p2, measured along the r-axis (see Figure 3a). Let us assume
– without loss of generality – two neighboring points p1, p2 on a vertical line,
i.e., α0 = 0. For an arbitrary intermediate point α = α1 + tαS , where 0 ≤ t ≤ 1,
the distance dr is given by

dr = logU

cos(α1 + tαS)
cos α1

− t logU

cos(α1 + αS)
cos α1

(12)

As can be seen from Figure 3b, this error is negligible except for values of α1

close to ±π
2 . Such values are only reached if the perpendicular distance from L

to the origin is small, and even then only close to the image borders. If subpixel
computations shall be carried out in such cases (which is unlikely because of the
low resolution close to the image borders), a viable method is to compute Λ(x)
not only for a spacing of αS , but for a fraction αS

k , k ∈ {2, 3, . . .} in order to
reduce the error.

3.4 Combining operations

Figure 4 shows the two described operations in log-polar coordinates and how
they can be combined to construct more complex geometric entities:
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Fig. 3. Linear interpolation error of lines in log-polar coordinates. (a) Interpolation
of a new point between neighboring rows. (b) The maximum interpolation error as a
function of the point position α1.

– A straight line segment between two given points is incrementally con-
structed as described above.

– A rectangle is constructed as a sequence of line segments of given length
with a 90 degree turn at the end of each segment.

– The center of a circle through 3 points is constructed with the classical ge-
ometric construction: draw the straight line segment from the first to the
second point and measure its length, find the midpoint of the segment, i.e.,
the point where the length is half of the total length, and construct a per-
pendicular line through the midpoint. Repeat the whole construction with
the second and the third point, then intersect the two resulting lines.

4 Feature Detection

The principles described in the previous section have been used to implement
conventional methods for line and circle detection in the log-polar domain. The
following section describes the procedures used for feature detection, shows ex-
perimental results, and presents empirical results for the obtainable accuracies
based on synthetic images with known ground truth. Special-purpose sensors
with log-polar sampling have actually been built [4], but since no such sensor
was available for the present research, the log-polar images were simulated by
resampling conventional digital images to log-polar geometry.

4.1 Straight line detection

For line detection, edgel chains extracted at sub-pixel accuracy with the method
first described by Canny [13] and refined by Rothwell [14] were extracted from
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Fig. 4. Geometric constructions in log-polar coordinates. (a) Constructing a line seg-
ment between two points, a rectangle, and a circle. (b) Cartesian remapping of the
image with constructed features. See text for details.

the images. For each point in a chain the local gradient was estimated, and
a greedy search procedure was used to split the chain into subchains which are
consistent with the tangent constraint from equation (4). Finally, subchains with
few edgels were discarded with a simple threshold.

Figure 5 shows the results of line detection for two images. The first one
is a synthetic image, which contains several linear structures, but also curved
objects, in order to verify that the method can indeed discriminate between
straight and curved lines. The image size is 360 × 234 pixels, corresponding to
the log-polar parameters U = 1.01745, rmin = 95, rmax = 328. The second
image is a log-polar remapping of one of the images of the ’corridor’ sequence.
The image size is 360× 227 pixels with the parameters U = 1.01745, rmin = 95,
rmax = 321. The first image and two more synthetic images with known line
directions (all with the same parameters) were used to quantitatively evaluate
the detected line sets. The results are displayed in Table 1.

min
max
rms
DR

0.13◦

1.36◦

0.80◦

100%

min
max
rms
DR

0.01◦

2.06◦

0.78◦

100%

min
max
rms
DR

0.06◦

2.52◦

1.07◦

82.5%

Table 1. Accuracy of straight line detection in log-polar coordinates. The top 3 rows
are the minimal, maximal and root mean square direction errors for each extracted
line set. For the rms, each segment has been weighted with the number of contributing
edgels. The last row is the detection rate DR. Segments are only missed close to the
image border, where the resolution is low.



(a) (b)

(c) (d)

Fig. 5. Straight line detection in log-polar coordinates. (a),(b) Synthetic test image
with detected lines in log-polar coordinates and remapped to Cartesian coordinates.
(c),(d) ’corridor’ image with detected lines in log-polar coordinates and remapped to
Cartesian coordinates.

4.2 Circle detection

For circle detection the edgel chains were split at sharp creases, and a RANSAC
scheme was set up to find a circle in each chain: Three distinct points were
randomly drawn, the corresponding circle center was constructed as already
shown in Figure 4, and the radius measured. Then a straight line segment was
constructed from the center to each edgel in the chain and its length compared
to the radius. This was repeated many times and only the best circle, i.e., the
one with the largest number of consistent edgels, was retained for each chain.
Finally, circles with too few edgels were again discarded with a simple threshold.

Detection results are displayed in Figure 6 and in Table 2. Again synthetic
images were used to verify that the algorithm can correctly discriminate between
circles and other structures, and to enable a quantitative evaluation. The log-



polar images have 360×227 pixels, corresponding to the parameters U = 1.01745,
rmin = 95, rmax = 321. The coordinates of the circle center were used to assess
the accuracy. Since detection with RANSAC is a statistical process, it was re-
peated 20 times, and the root mean square error with respect to the known circle
centers was used as error measure. The errors have been computed in both log-
polar and Cartesian coordinates in order to demonstrate how the space-variant
resolution affects the uncertainty. Note that the log-polar errors increase expo-
nentially close to the center due to the exponential decrease in scale, whereas
the Cartesian errors decrease due to the better resolution. As a real example,
a picture of a few coins was taken with a digital camera and resampled to a
log-polar image of 360×235 pixels with the parameters U = 1.01745, rmin = 95,
rmax = 329.

(a) (b)

(c) (d)

Fig. 6. Circle detection in log-polar coordinates. (a),(b) Synthetic test image with
detected circles in log-polar coordinates and remapped to Cartesian coordinates. (c),(d)
’coins’ image with detected circles in log-polar coordinates and remapped to Cartesian
coordinates.



circle lp[px] ct[px]

minlp

maxlp

minct

maxct

rms

1.8
30.0
30.0
1.8

17.4

5.5
2.5
2.5
5.5
3.8

circle lp[px] ct[px]

minlp

maxlp

minct

maxct

rms

1.5
3.5
3.1
3.3
2.8

3.0
3.8
1.9
9.8
5.5

Table 2. Accuracy of circle detection in log-polar coordinates. 20 runs of RANSAC
detection were performed on each image. The location error of the center is given in
log-polar and Cartesian coordinates for the circles with the smallest and largest rms-
error in log-polar coordinates (rows 1+2), and for those with the smallest and largest
rms-error in Cartesian coordinates (rows 3+4). The last row is the rms-error calculated
over all circles. In the first image, all 3 circles where detected, in the second image one
circle near the image border was missed.

5 Concluding Remarks

The starting point for this work has been the observation that one of the main
problems of image processing in log-polar sampled images is that straight lines
and distances are not preserved. To overcome this difficulty, we have derived
computationally efficient methods to perform the construction of straight lines
and the measurement of Euclidean distances in the log-polar plane. These meth-
ods were then used as basic operations to implement line and circle detection
in log-polar images. Results on synthetic and real images were shown and the
accuracy of the detection results were assessed empirically. A direct comparison
with detection in conventional images is not possible due to the space-variant
resolution, but the obtained results are good enough for many vision tasks.

The log-polar imaging geometry naturally focuses the visual attention and
the capability to recover the scene geometry accurately in the image center due
to the higher resolution. For many applications in robotics it will therefore be
necessary to combine the presented techniques with eye movements, so that
the relevant part of the scene is scanned with the image center and can be
successively reconstructed with high accuracy. The presented scheme may be
useful in such a case, because it extracts features in the periphery of the field
of view, too, albeit with comparatively lower accuracy. These features are a
good indicator for potentially interesting areas and can be used to guide the eye
movements and refine the features.

The ability to construct straight lines in log-polar images has another natural
application. Given the camera motion or the relative position and orientation of
two log-polar cameras, corresponding epipolar lines can be constructed with the
method, which will potentially simplify the stereo matching problem, a notori-
ously cumbersome task in log-polar images. This is ongoing research.

An investigation, how the results of log-polar image processing are affected by
image measurement noise and errors, is still missing. Both a sound theory of the
error propagation from log-polar images to the (usually Cartesian) coordinate



system of the observed scene and an experimental evaluation of the effects of
noise would be valuable contributions towards the use of log-polar sensors in
practical applications. In the same line of research it would also be interesting
to design an error functional, which allows to optimize the detected features in
the log-polar domain.
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