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Abstract

During the last decade the super-modular Pair-wise
Markov Networks (SM-PMN) have become a routinely
used model for structured prediction. Their popularity
can be attributed to efficient algorithms for the MAP in-
ference. Comparably efficient algorithms for learning
their parameters from data have not been available so
Jfar. We propose an instance of the Analytic Center Cut-
ting Plane Method (ACCPM) for discriminative learn-
ing of the SM-PMN from annotated examples. We em-
pirically evaluate the proposed ACCPM on a problem of
learning the SM-PMN for image segmentation. Results
obtained on two public datasets show that the proposed
ACCPM significantly outperforms the current state-of-
the-art algorithm in terms of computational time as well
as the accuracy because it can learn models which were
not tractable by existing methods.

1. Introduction

A Pairwise Markov Network (PMN) is a powerful
representation of dependencies in structured objects. A
PMN is defined by an undirected graph consisting of
nodes 7 and edges £ C (2) The nodes correspond
to elementary objects while the edges represent pos-
sible interactions between them. Each object t € T
is characterized by an observation x; € X and a dis-
crete label y, € Y. Dependencies between observa-
tions and labels are modeled for each object ¢ by a func-
tion ¢; (x4, y;) called unary potential. Dependencies be-
tween objects connected by an edge are modeled by
functions g (yt, y) called pair-wise potentials. The
PMNs are typically used for prediction of the labels
Yy = (yt ceY|te T) from a tuple of observations
x = (z; € X |t € T) using the prediction rule

Yy = argmax s(x, y)
yeyT
whose scoring function s: X T« YT — Ris defined as

s(z,y) = Z%@n%) + Z g (Ye, yrr) -

teT tt'eE

ey
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Evaluation of (1) requires solving an integer program
called a max-sum problem which is NP-complete in
general. Polynomially solvable instances of the max-
sum problem are obtained by restricting either the
neighbourhood structure £ or the pair-wise potentials
gt/ (y+, v+ ). In this paper we concentrate on the later
case when & can be arbitrary but gy (ye, yi ) are super-
modular (SM) functions. The definition of SM func-
tions requires the set of labels to be fully ordered;
w.lo.g. weuse Y = {1,2,...,Y} endowed with natu-
ral order. Then, the function g(y,y’) is SM iff for each
pair of labels (y,y’) € Y? suchthaty +1€ Y,y +1 €
Y the following inequality holds

9wy +9ly+1Ly +1) > gy, ¥’ + 1) +g(y+1,9)

2
We denote (1) with pair-wise potentials (2) as SM max-
sum problem. It is well known that the SM max-sum
problem with two labels, Y = 2, can be solved effi-
ciently by graph-cuts [5]. It is not widely known that
the SM max-sum problems with more than two labels,
Y > 2, can be also efficiently solved via transform-
ing them to their two-label equivalents [7]. The Super-
modular Pair-wise Markov Networks (SM-PMN) are
routinely used in computer vision e.g. for image seg-
mentation or stereo matching.

Before the SM-PMN can be applied its potentials ¢,
g+ have to be specified. In principle this can be done by
hand but modeling complex objects may require learn-
ing. A discriminative learning of a general SM-PMN
formulated as a polynomially solvable convex optimiza-
tion problem has been first proposed in [2]. Unfortu-
nately, existing optimization methods are not efficient
enough on real-life instances of this problem. In this pa-
per we attempt to improve the situation by adapting the
Analytic Center Cutting Plane Method (ACCPM) [3]
for the SM-PMN learning. The ACCPM is a power-
ful method for non-smooth optimization which has been
so far overlooked by the machine learning community.
We compared the proposed ACCPM against the Bun-
dle Method for Risk Minimization [8], the current state-
of-the-art approach for structured output learning, on a



problem of learning the SM-PMN for image segmenta-
tion. Results on two public datasets show that the pro-
posed ACCPM signifiantly outperforms the BMRM al-
gorithm in terms of the time and the accuracy.

The paper organization: the formulation of the SM-
PMN learning is given in Section 2. The proposed the
ACCPM is derived in Section 3. Section 4 presents ex-
periments and Section 5 concludes the paper.

2. Discriminative learning of Super-
modular Pair-wise Markov Networks

In this section we formulate learning of the SM-
PMN as a convex optimization problem following [2]
and we mention the current state-of-the-art optimization
method for its solution together with its weaknesses.

Let us assume we are given a single' training ex-
ample (2,9) € &7 x Y7 iid. from an un-
known p.d.f. P(x,y). The goal is to learn poten-
tials q¢, gyv of the SM-PMN such that for a given
loss function A: Y7 x Y7 — R the expected
risk Ep(A(y,argmax,, s(x,y'))) of the prediction
rule (1) is minimal. It is further assumed that the poten-
tials are linear functions, i.e. g;(v,y) = 0T, (z,y),
gie(y,y") = 0Ty (y,y') where @ € R™ is an un-
known parameter vector to be learned and 1),: X x
Y = R, ¢Yy: Y x Y — R" are fixed maps. Un-
der this assumption the prediction rule (1) becomes an
instance of a linear classifier, i.e. the scoring func-
tion reads s(x,y) = 07 ¥(x,y) where ¥(x,y)
> Ye(Ty, yt) + >4 Yo (yy, yr ). Learning of the pa-
rameter vector 8 of the SM-PMN (1) is formulated as a
empirical risk minimization problem

A
0" = argmin /(0) = [S16]° +7(60)] . 3
6co

where © {0 ¢ R* | gwy)
07, (y,y') satisfies (2) Vit' € £} and

A@.y) + 67 (R(@,y) - ¥(@.9))] -

7(0) = max
yeyT

. : . “)

The objective f is composed of the quadratic regular-
izer used to prevent over-fitting and the risk term 7
which is a convex upper bound on the empirical loss
A(g, argmax,, s(Z,y)). The strength of the regular-
ization is controlled by a constant A > 0 typically de-
termined on validation data. The problem (3) is con-
vex and for A > 0 it is strictly convex, i.e. ©* is a
set of minimizers in general but for A > 0 it contains
a single point. The problem (3) can be expressed as
an equivalent quadratic program with O(|Y|!71) con-
straints which is not solvable by off-the-shelf methods.

I This assumption greatly simplifies notation but all introduced al-
gorithms can be easily extended for a finite number of examples.
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The current state-of-the art method to solve (3) is the
Bundle Method for Risk Minimization (BMRM) [8, 4]
implemented e.g. in the popular StructSVM. The
BMRM requires an oracle which for any 8 computes
the value of (@) and its sub-gradient 7' (6). Computing
r(0) and r’(0) requires solving the maximization (4)
which is tractable if @ € © and the loss A is additively
decomposable over the objects and the edges like, e.g.
the Hamming loss A(y,y’) = >_,[y: # y+], in which
case (4) is an instance of the SM max-sum problem [2].

A notable advantage of the BMRM are its conver-
gence guarantees: for any € > 0 the BMRM returns
e-optimal solution of (3) (i.e. @ satisfying f(0) <
f(0%) + &, 0 € ©) in O(logy A + £) iterations at
most where C' is a problem dependent constant. Sadly,
the actual time required by the BMRM is overly high
if it is applied to real-life problems. The computational
time steeply soars for low values of \ as suggests the
bound O(logy A + %) Unfortunately, in typical ap-
plications of SM-PMN the regularization is not needed,
ie. A = 0is optimal. E.g, in the image segmentation
a single annotated image provides as many examples of
label-observation interactions as it has the number of
pixels and thus the over-fitting is unlikely. The BMRM
does not allow setting A = 0 and for values A — 0 it
requires excessively long times.

3. Analytic Center Cutting Plane Method

In this section we derive an instance of the AC-
CPM [3] suitable for solving the problem (3). The
ACCPM is a representative of the localization methods
which require an initial localization set Py C R™ con-
taining the set of minimizers ©*. We construct Py as an
intersection of the feasible set © and the origin centered
box whose sides are aligned with the axes, i.e.

Po=0N{0eR”|0;] <B,i=1,...,n}, (5
where the constant B > 0 has to be selected such that
Py 2 O©*. This can be achieved by using a problem
specific knowledge or by setting B to a conservatively
large value. Because our feasible set O is an intersection
of linear constraints (defining the condition of super-
modularity (2)) the set Py is a closed convex polyhedron
which can be represented by m linear inequalities, i.e.
Po = {0 e R” | OTa,- < b;,i = 1,...,m0}. The
idea behind localization methods is to build a series of
progressively shrinking nested subsets Py O Py -+ D
‘P:, each being a superset of ©*, until P; becomes a
close approximation of ©*. Starting from the initial Py,
the new localization sets are build iteratively by adding
a single linear constrain at each iteration, i.e. Py =
PN {0 € R" | 6Ta, < b,} where the added constraint
is constructed so that it cuts off the half-space {6 €



R™ | 8Ta;, > b} which does not contain ©*. The
parameters a;, b; of the added constraint determine a
hyperplane {8 € R™ | 8Ta; = b}, called a cutting
plane, separating ©* from a query point 8, € Py, i.e.

0"a; <b,,0 cO* and OTa,>b,, (6

hold. It is easy to show [1] that the parameters of the
cutting plane can be computed as follows

ay = f'(0r), b= f""—f(0,)+f(6,)70,, (1

where f(0;) and f/'(6;) € R™ are the objective value
and the subgradient of the objective f evaluated at the
query point 8;. The scalar fP! is the best available
estimate of the optimal value typically computed as
[Pt = mini—g,...¢ f(6y).

There exist several instances of the localization
methods which differ in the way they select the query
point 8; € P;. In particular, the ACCPM computes the

query point as an analytic center of Py, i.e.

AC (P) = argmin — Z log (bi - GTai) : ®)
]

As a byproduct of solvir;g_ 1(8) for given P, we can
obtain a lower bound [; on the optimal value f(6*)
(see [1] for details). We define the best lower bound as
1best = max;_¢ ¢ l;. The upper fP°* and the lower
1Pest bound allows to compute the optimality gap which
can be used as a rigorous stopping condition.

Algorithm 1 shows a pseudo code of the ACCPM
tailored for solving the problem (3). A convergence of
the ACCPM in a finite number of iterations was proved
in [10]. An excellent description of a practical imple-
mentation of the ACCPM is in [1] which we followed
in our work. In particular, we use the Infeasible Start
Newton Method with the backtracking line search al-
gorithm and the pruning method maintaining only 3n
cutting planes.

Algorithm 1: ACCPM for solving (3)

Input: £ > 0 and Py constructed by (5)

Output: e-optimal solution 8,

repeat
Compute query point 8; = AC (P;) .
Compute cutting-plane params. a;, b; by (6).
Update the localization set
PtJrl =P:N {0 S R”|0Tat < bt}
ti=t+1

until 1 — [Pest/fhest < ¢

4. Experiments
We compare the proposed ACCPM and the BMRM
on the problem of image segmentation.

Setting SM-PMN model The goal is to assign each
pixel of an image to a semantic class like background,
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Figure 1: Top: CPU time vs. value of A for the ACCPM
and the BMRM on Cows and Horse images. Bottom:
Examples of test images and estimated segmentation.

cow, horse using the SM-PMN prediction rule (1). The
objects 7 are image pixels and edges £ describe 4-
neighborhood structure on the pixels. The observation
x; € R3isan RGB color and y; € {1,...,Y} is the se-
mantic label. The unary potential g;(x¢, y:) is set to be
a quadratic function of the RGB vector parametrized by
10 numbers. The pair-wise potentials gz (y:, ys) are
homogeneous but different for horizontal and vertical
edges. Le. the SM-PMN has 10Y" + 2Y2 parameters in
total to be learned. We used the Hamming loss, i.e. the
reported errors correspond to the percentage of misclas-
sified pixels in the image.

Datasets We used two sets of fully annotated images.
The first set contains 32 images of cows selected from
the MSRC database [9] when we improved the origi-
nal annotation by GrabCut [6]. The cow images have
213 x 320 pixels which are annotated to three classes:
cow, grass, sky. The second set contains 28 images of
horses selected from the Weizmann Horse Database?.
The horse images have 200 x 300 pixels which are an-
notated to two classes: horse, background.
Implementation We implemented the BMRM and
the ACCPM in Matlab with critical parts written in
C++. Both methods used the same functions for evalu-
ation of the objective and its sub-gradient which are the
most time consuming parts. In all experiments we set
the precision parameter to € = 0.01. The quadratic pro-
gram required by the BMRM was solved by the com-
mercial package MOSEK?. The experiments run on PC

2 Available at http://www.msri.org/people/members/eranb/
3http://www.mosek.com/



with AMD CPU 2000 GHz and 66GB RAM.

Experiment 1: Model selection We split the anno-
tated images to fraining, validation and test subsets us-
ing partitioning 10 + 10 + 12 for Cows and 9 + 9 + 10 for
Horses. We trained the SM-PMN for a range of \’s on
the training subset and evaluated on the validation sub-
set. The SM-PMN with the minimal validation error is
selected as the best and evaluated on the test subset. We
repeated this process for 3 randomly chosen trn/val/tst
splits and computed the mean errors and their standard
deviations. The training and validation errors obtained
by the ACCPM are summarized in Table 1. It is seen
that the best model is obtained for A = 0 for which the
test errors are: 4.42 4+ 1.27 for Cows and 17.80 £ 5.47
for Horses. We repeated the same experiment with the
BMRM, however, only for non-zero A’s because A — 0
prevents the BMRM from convergence. The training
and validation errors for the BMRM are almost identical
to the values for ACCPM and hence not reported. The
test errors obtained for the lowest A the BMRM could
manage were: 6.50 4+ 2.72 for Cows and 18.41 + 3.98
for Horse, i.e. clearly higher than the ACCPM errors.

Horses Cows
A TRN% VALY TRN% VAL%
50 | 25.70 £5.53 | 25.59+5.39 | 26.93 +3.29 | 31.65 +5.11
10 | 24.04 +£5.54 | 24.33 +6.22 | 21.06 - 4.81 | 28.87 +6.12
1 | 14.26 £3.15 | 18.91+2.93 | 2.90 +0.91 6.25 +1.73
0 | 11.44+3.66 | 17.25 £3.27 | 1.55+0.32 | 4.294+1.74

Table 1: Training and validations accuracy for different
value of A for Horse and Cow images.

Experiment 2: Training time In this experiment we
learned the SM-PMN from all images using the AC-
CPM and the BMRM. For a range of A we measured
the CPU time, the number of iterations and the final ob-
jective value for both methods. The results are summa-
rized in Table 2 and in Figure 1. Due to the low value of
the precision parameter both methods achieve the same
precise solution as can be seen from the values of the
objective function, however, the computational time is
significantly different. The CPU time of the ACCPM
scales gracefully with varying value of A\. The CPU
time of the BMRM soars steeply for A — 0. On Cow
images the BMRM did not converge after 500 even for
A = 1 still much higher than optimal A = 0. The AC-
CPM not only allows to train with arbitrary low A but it
requires considerably lower CPU time. The number of
iterations, which is an implementation invariant perfor-
mance measure, behaves similarly as the CPU time.

5. Conclusions

We have proposed the ACCPM algorithm for learn-
ing the SM-PMN. Experiments show that the proposed
ACCPM outperforms the so far state-of-the-art BMRM
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ACCPM BMRM

A | Time [min] ‘ Tter ‘ £(0) | Time [min] ‘ Iter ‘ 1(9)
Horse images

50 21.42 152 | 57.29 2.10 26 | 57.36
10 16.71 129 | 55.65 3.62 44 | 55.75
1 13.60 104 | 51.21 6.14 76 | 51.32
0 7.38 62 | 46.11

Cow images

50 156.76 266 | 57.56 37.77 54 | 57.76
10 132.60 240 | 49.96 94.65 112 | 50.10
1 128.07 235 | 25.17 353.59 500% | 25.43
0 63.26 165 | 5.52

Table 2: CPU time, number of iterations and objective
value vs. value of A for the ACCPM and the BMRM on
Horse and Cow images; * means not converged.

in terms of computational time for problems which re-
quire small regularization constant. The proposed AC-
CPM is able to work completely without regularization
which is not possible by the BMRM yet it is useful in
problems with many examples and few parameters. The
proposed algorithm is generic and can be easily adapted
for learning of other structured output models.
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